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Abstract

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) aims to improve Alzheimer’s

disease (AD) clinical trials. Since 2006, ADNI has shared clinical, neuroimaging, and

cognitive data, and biofluid samples. We used conventional search methods to iden-

tify 1459 publications from 2021 to 2022 using ADNI data/samples and reviewed 291

impactful studies. This review details how ADNI studies improved disease progres-

sion understanding and clinical trial efficiency. Advances in subject selection, detection

of treatment effects, harmonization, and modeling improved clinical trials and plasma

biomarkers like phosphorylated tau showed promise for clinical use. Biomarkers of

amyloid beta, tau, neurodegeneration, inflammation, and others were prognostic with

individualized prediction algorithms available online. Studies supported the amyloid

cascade, emphasized the importance of neuroinflammation, and detailed widespread

heterogeneity in disease, linked to genetic and vascular risk, co-pathologies, sex, and

resilience. Biological subtypes were consistently observed. Generalizability of ADNI

results is limited by lack of cohort diversity, an issue ADNI-4 aims to address by

enrolling a diverse cohort.
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1 INTRODUCTION

As the Alzheimer’s Disease Neuroimaging Initiative (ADNI) enters its

fifth phase and 19th year, the field of Alzheimer’s disease (AD), for the

first time, stands on the cusp of a treatment era, finally offering hope

to millions of individuals and families suffering from AD. The contri-

bution of ADNI to reaching this point cannot be overstated. ADNI is

an observational study designed like a longitudinal clinical trial, and

since its founding in 20041 has enrolled and followed 868 cognitively

unimpaired (CU) participants, 1090 with mild cognitive impairment

(MCI), and 408 with dementia diagnosed as AD. ADNI’s overall goal

has been to provide data for the design of clinical AD trials and to

validate biomarkers for such trials. Pharmaceutical companies that

have used ADNI data to help design and statistically power their trials

includeBiogen (aducanumab), Eisai (lecanemab),Merck (verubecestat),

Lilly (solanezumab, donanemab), Genentech (crenezumab), and Roche

(gantenerumab).

Many of ADNI’s contributions to the development of these thera-

pies have resulted from studies explicitly designed to enhance clinical

trials. However, the availability of ADNI data to scientists world-

wide without embargo (http://adni.loni.usc.edu/data-samples/access-

data/), together with sharing of biospecimens (cerebrospinal fluid

[CSF], blood, urine, and brain tissue), has enabled many studies that

have augmented our understanding of the complexities of disease

progression, and identified additional potential therapeutic targets.

Additionally, ADNI data have been increasingly used in fields out-

side of AD, contributing to studies of Parkinson’s disease (PD),2 pri-

mary tauopathies,3 coronary artery disease,4 traumatic brain injury,5

depression,6 and brain changes over the human lifespan,7 among oth-

ers. One limitation of the open availability of ADNI data is thatmultiple

statistical analyses may be performed on the same data, which raises

concerns regarding multiplicity. However, there is no obvious solution

to this problem.

As of the end of 2022, there have been > 4.8 million downloads

of ADNI clinical data and > 300 million downloads of ADNI imaging

data. More than 5000 “ADNI studies” (defined as those using ADNI

data and/or samples, either as a primary cohort, part of a larger con-

sortium, or as a replication cohort) have been published thus far and

reviewed to the end of 2020.8–13 All ADNI studies are searchable at

https://adni.loni.usc.edu/news-publications/publications/.

In 2021 and 2022, 1459 ADNI studies were published (see support-

ing information for a complete list), representing a period of unprece-

dented productivity and impact spanning the COVID-19 pandemic.

During this time, the ADNI-3 study14 drew to a close, and ADNI tran-

sitioned to the latest study, ADNI-4,15 funded entirely by the National

Institutes of Health. This review covers 291 selected impactful ADNI

studies from this time frame. Studies in which ADNI data and/or sam-

ples have been used as part of a larger cohort or meta-analysis, or in

which ADNI serves as a discovery or replication cohort, are noted. The

review is divided into three sections that reflect ADNI’s overarching

goals. Section 2 examines how ADNI data have directly contributed

to the development of AD therapies, describes important data har-

monization efforts, outlines progress in the development of plasma

biomarkers for clinical use, and reviewsdiagnostic andprognosticmod-

RESEARCH INCONTEXT

1. Systematic review: The authors identified 1459 journal

publications usingAlzheimer’s DiseaseNeuroimaging Ini-

tiative (ADNI) data/samples from 2021 to 2022 using

traditional searchmethods.

2. Interpretation: ADNI studies improved subject selec-

tion, modeling, and detection of treatment effects for

clinical trials, and described harmonization methods.

ADNI samples contributed to the development of plasma

biomarkers such as phosphorylated tau for clinical use,

and described prognostic abilities of amyloid beta, tau,

neurodegeneration, and inflammation biomarkers. ADNI

studies supported the amyloid cascade sequence of dis-

ease progression and detailed how genetic and vascular

risk, co-pathologies, resilience, and sex contribute to het-

erogeneity and biological subtypes. Results may not be

generalizable due to the limited cohort diversity.

3. Future directions: The ADNI-4 cohort, currently

enrolling, will be more diverse to ensure generaliz-

ability of results. In the age of Alzheimer’s disease (AD)

treatment, ADNI will continue to improve AD clinical tri-

als and provide data for the development of personalized

medicine approaches.

els. Section 3 describes how ADNI studies have contributed to an

increasingly nuanced understanding ofmechanisms underlyingADdis-

ease progression. While the National Institute on Aging–Alzheimer’s

Association (NIA–AA)AT(N) research framework for thebiological def-

inition of AD16 is based on biomarkers for amyloid beta (Aβ) deposition
(A), pathologic tau (T), and neurodegeneration (N), these studies paint

a picture of AD as a complex multifactorial disease that is not part of

normal aging, and that commonly coexists with multiple pathologies,

resulting in the observed heterogeneity in disease course. The deeper

understanding of the biology of AD resulting from recent ADNI studies

reveals more potential therapeutic targets and suggests the need for

multiple simultaneous therapies. It is important to note that the gener-

alizability of the studiesmay be limited by the lack of ethnocultural and

educational diversity of the ADNI cohort. Section 4 addresses these

limitations and describes howADNI-4 plans to overcome them.

2 ADNI’S CONTRIBUTIONS TO THE
TREATMENT, DIAGNOSIS, AND PREDICTION OF AD

2.1 Studies of existing and developing therapies

Even though ADNI is a non-treatment, observational study, ADNI

data have been used to assess the effects of established medica-

tions for AD, the use of medications targeting risk factors for AD,

http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.usc.edu/data-samples/access-data/
https://adni.loni.usc.edu/news-publications/publications/
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and disease-modifying therapies under development. The following

reports should be interpreted with caution because they are not from

randomized placebo-controlled trials. Cholinesterase inhibitors that

enhance cholinergic neurotransmission (donepezil, rivastigmine, and

galantamine) were for many years the only treatment option for AD

symptoms. Lower longitudinal tau deposition in early Braak stages

was observed in Aβ positive (A+) participants taking cholinesterase

inhibitors. The authors suggested a neuroprotective effect of these

medications.17 Non-demented users of anticholinergic medications,

which are used to treat a variety of other conditions and have the

opposite effect to cholinesterase inhibitors, suffered more cognitive

impairment than non-users.18 This was partially mediated by an effect

of gray matter (GM) density and functional connectivity in the nucleus

basalis of Meynert.18 The authors suggested that the results support a

hypocholinergicmechanism underlying cognitive decline. In contrast, a

third study reported that long-term donepezil treatment in MCI par-

ticipants was associated with greater regional Aβ and tau load with

concomitant worse cognitive performance.19 This result could be due

to the selection of more impaired patients with greater Aβ and tau

load for treatment with donepezil long term. The greater atrophy and

hypometabolismobserved in acetylcholinesterase inhibitor users com-

pared to non-users did not survive adjustment for baseline differences,

likely due to a greater rate of prescription of thesemedications tomore

impaired patients rather than a drug effect.20

There has been recent interest in repurposing drugs for treatment

of AD risk factors such as hypertension, inflammation, and type II dia-

betes mellitus (T2DM) as therapies for AD. Several ADNI studies have

investigated the effects of these drugs on AD disease progression. The

use of angiotensin receptor blockers for the treatment of hyperten-

sion was associated with a lower risk of progression to AD demen-

tia in MCI participants compared to other or no anti-hypertensive

medications.21 Similarly, aspirin usewas associatedwith slowerdecline

in the Mini-Mental State Examination (MMSE) in participants with

AD dementia22 suggesting, to the authors, a neuroprotective effect.

T2DM in MCI participants was associated with worse cognition and

lower brain volumes but treatment with metformin attenuated these

effects, likely via a glycemia-independent mechanism.23 Finally, selec-

tive serotonin reuptake inhibitors for the treatment of depression

were not found to have any beneficial effects on cognition or Aβ
load in ADNI participants.24 Results from these observational, non-

randomized studiesmay suggest future randomized trials to assess the

benefits of these treatments.

With the lecanemab phase 3 trial results25 and subsequent acceler-

ated US Food and Drug Administration (FDA) approval, in addition to

prior accelerated FDA approval of aducanumab in 2021, anti-Aβ ther-
apies have been demonstrated to have a significant effect in not only

clearing Aβ plaques, but in slowing cognitive decline. Knowledge of

relationships between AD biomarkers and clinical presentation deter-

mined from ADNI data formed the basis of a model of the long-term

health outcomes of lecanemab.26 The model, when applied to phase

2 lecanemab trial data, estimated that long-term use of lecanemab in

MCI participantswould delay time to progression to ADdementia by≈

2.5 years, and increased time in mild ADwhile decreasing time in mod-

erate and severe AD and in institutional care (Figure S1 in supporting

information).

2.2 Methodological improvements to clinical
trials

To date, the effects on cognition of Aβ-modifying disease therapies

have been at best modest.25 ADNI studies have pointed to poten-

tial explanations for the discrepancy between these results and the

body of evidence supporting a central role for Aβ in disease pro-

gression. Targeting of CSF Aβ42 alone may miss the contribution of

different Aβ isoforms.27 Higher levels of CSF Aβ38 were associated

with a lower risk of conversion from MCI to AD dementia and slower

cognitive decline in both the ADNI and Biomarkers for Identifying

NeurodegenerativeDisorders Early andReliably (BioFINDER) cohorts,

suggesting that other Aβ isoforms resulting from differential process-

ing of the amyloid precursor protein (APP) also influence disease

progression.27

Selection of participants for clinical trials based on Aβ status is

increasingly common, but Aβ positivity does not necessarily iden-

tify those most likely to progress to biomarker-defined AD (A+T+ as

per NIA-AA guidelines28). A study of A+ ADNI participants identified

a substantial proportion of individuals whose tau positron emission

tomography (PET) scans remained normal over 5 years.29 These indi-

viduals declined more slowly and were characterized by having lower

frequencies of the apolipoprotein E (APOE) ε4 allele, larger hippocam-

pal volume, and lower Aβ PET Centiloid (CL) units,30 suggesting that

they can be identified from baseline characteristics. An alternative

approach to identifying individuals likely to decline used a machine

learning classifier developed from early post-injection 18F-florbetapir

image frames. This was highly correlated with a [18F] fluorodeoxyglu-

cose (FDG) PET AD progression biomarker and with decline in global

cognitive measures, outperforming region of interest (ROI) standard-

ized uptake value ratio (SUVR).31 Slow and fast decliners may also be

detected using a “run-in period”without treatment to estimate rates of

disease progression.32

Subject stratification may be improved by leveraging knowledge of

MCI heterogeneity. Four distinct MCI clusters were detected using

neuropsychological subscores.33 These differed in impairments in spe-

cific cognitive domains and rate of progression to AD dementia.

A subtype with the most impaired memory and worst orientation

had the fastest progression to AD. The addition of comorbidities to

non-comorbidity data (demographics, APOE ε4, magnetic resonance

imaging [MRI] volumes, cognitive and functional tests, and plasma

biomarkers) in cluster analysis improved the differential prognoses of

identified subtypes. The comorbidities that contributed the most to

defined subtypes were obesity, cardiovascular issues, hearing loss, and

hypertension. In the subtype with the worst prognosis, no patients

reverted to CU, and 60% converted to AD dementia over 5 years. Con-

sideration of comorbidities may therefore enhance the probability of

selecting participants who will progress to dementia within the trial

time frame.
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Detection of a treatment effect using cognitive decline as a primary

endpointmay bemademore difficult by heterogeneity in cognitive tra-

jectories that results in unequal rates of cognitive decline between

treatment and placebo groups. This may lead to underestimation or

overestimation of the treatment effect.32 A simulated clinical trial in

ADNI32 using inclusion criteria from recent anti-amyloid trials of MCI

and mild AD confirmed heterogeneity in the rate of change of three

cognitive endpoints (MMSE, Alzheimer’s Disease Assessment Score–

Cognitive subscale [ADAS-Cog], and Clinical Dementia Rating–Sum of

Boxes [CDR-SB]) over up to 9 years. At 18 months, there was a wide

range in effect sizes of simulated group differences with those from

recent trials largely falling within the 95% range for all cognitive out-

comes (Figure 1). Stratification based on tau positivity and APOE ε4
genotype resulted in a steeper decline in cognition in high-risk groups

but even greater variability in progression. These results illustrate the

difficulty in detecting a statistically significant treatment effect using

cognitive outcomes and may help select a trial duration at which the

treatment effect overcomes variability in disease progression.

Another source of heterogeneity in disease course is the differ-

ences in MCI diagnostic criteria between cohorts. ADNI data from

MCI participants form the basis of the Placebo Group Simulation

Approach, which aimed to decrease the number of study participants

and placebo groups in clinical trials.34 However, the development of

more generalizable algorithms for this approach was precluded by

differing MCI criteria, which resulted in variable disease progres-

sion across cohort studies, convenience samples, and a clinical drug

trial.34 Likewise, ADNI MCI participants differed from those from the

National Alzheimer’s Coordinating Center (NACC) Uniform Data Set

in cognitive measures, most critically in prose memory tests (Wech-

slerMemory Scale Revised Story A in ADNI and Craft Story immediate

recall inNACC).35 StandardizedMCI psychometric criteriawould facil-

itate comparison of patient data from different sources by minimizing

diagnostic heterogeneity, and would allow assessment of approaches

such as the Placebo Group Simulation.

ADNI data have formed the basis of a modeling tool, SimulAD,

designed to simulate interventions with disease-modifying drugs.36

This tool uses relationships between ADNI multimodal imaging and

clinical data to describe disease progression, forming the basis for

simulation of a variety of anti-amyloid therapy intervention scenar-

ios in preclinical patients. Modeling using SimulAD estimated that for

an intervention that lowers Aβ load by 100%, > 80% power can be

obtained with 1000 subjects per arm around 7 years before conver-

sion fromMCI to AD using a variety of clinical outcomes for equivalent

power with fewer subjects per arm. For a goal of greater efficacy of Aβ
removal, earlier intervention is needed (Figure S2 in supporting infor-

mation). These results suggest that intervention in thepreclinical phase

before the pathological cascade is entrenched is critical to the success

of anti-amyloid trials, and that recent anti-amyloid trialsmayhavebeen

consistently underpowered. However, the large sample sizes predicted

to be requiredmay not be practical. SimulADmay have utility as amul-

timodal enrichment tool and has recently been validated in a memory

clinic sample.37

2.3 Harmonization efforts

External validation of studies in independent cohorts is complicated

by lack of harmonization of methods, lack of universal cut-points for

biomarkers, and issuesof data set accessibility.Harmonizationofmeth-

ods across different data sets is crucial for enabling comparison of

data obtained using different methodologies, replicating results in

research and clinical trials, and pooling data for increased statistical

power. Quantitative Aβ or tau load determined by PET requires har-

monization across sites, scanners, and tracers for comparison of data

from multisite studies. A study of ADNI Aβ PET scans38 determined

transformationequations for the conversionof cross-sectional and lon-

gitudinal SUVRs from 18F-florbetapir or 18F-florbetaben PET scans

to CL units to promote data harmonization. Additionally, it derived CL

thresholds from both a young control sample (18 CL) and from ADNI

(21 CL) that were consistent with the existing 18F-florbetaben thresh-

old for Aβ positivity (20 CL). Using florbetaben, cut-points around this

region, 13.5 CL and 35.7 CL, were found to bracket a “gray zone” of

emerging Aβ pathology that is predictive of faster subsequent Aβ accu-
mulation in a five-cohort study.39 An alternative MRI-free index of Aβ
load, AMYQ, was developed using Aβ PET scans and neuropatholog-

ical data from ADNI and was in high agreement with CL measures

across four different PET tracers.40 The determination of tau positivity

from PET scans differs between cohorts and radiotracers and depends

on both the quantity and location of tracer retention. This variability

can result in differing tau positivity rates that impact inclusion into

clinical trials, staging methods, and more. A systematic review of 23

cohort studies41 derived a tau PET cut-point that differentiated tau

positive and negative groups on CSF phosphorylated tau (p-tau)181

and cognitive measures.

Determination of Aβ and tau status from CSF biomarkers is also

complicated by variability in assay methods that precludes the use of

universal cut-points. A method to standardize the procedure for cut-

point determination in different cohorts was developed that relies on

CSF p-tau181 levels to determine the cut-point values for CSF Aβ42
and CSF Aβ40.42 The method was validated against Aβ and tau PET

and tested across 11 cohorts including ADNI and may make selection

of cut-points across cohorts a more transparent process. Neuropsy-

chological batteries also vary between cohorts, which may complicate

efforts to combine data in the quest for larger sample sizes. A novel

approach developed in ADNI and the Australian Imaging, Biomarker &

Lifestyle Flagship Study of Ageing (AIBL) used amachine learning algo-

rithm to impute longitudinal neuropsychological test scores not used

in one cohort to align with the other cohort, facilitating harmonization

of the data sets.43 A harmonized version of the widely used Preclinical

Alzheimer Cognitive Composite (PACC) was developed using confir-

matory factor analysis across ADNI, AIBL, and theHarvardAgingBrain

Study (HABS), and outperformed the common standardized version in

combined cohort analyses.44

Another barrier to external validation in independent cohorts is

accessibility of the data set and compatibility of the variables within

the data sets. An interactive tool that allows exploration of features
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F IGURE 1 Rates of change of three cognitive outcomes in a simulated clinical trial in ADNI using inclusion criteria from anti-amyloid trials. Left
column: individual trajectories on the (A) CDR-SB, (C) ADAS-Cog, and (E)MMSE. The vertical dotted lines represent scores at 18months. Right:
simulated group differences in change from baseline tomonth 18 based on the total sample (n= 302) on (B) CDR-SB, (D) ADAS-Cog, and (F)MMSE,
including 95% range of effect sizes as indicated by vertical gray lines and effect sizes reported for recent clinical trials as indicated by vertical
dashed colored lines (blue= EMERGE; yellow= ENGAGE; green= EXPEDITION-3; orange=DAYBREAK-ALZ; red= IDENTITY-2; magenta=
BAPINEZUMAP). ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive subscale; ADNI, Alzheimer’s Disease Neuroimaging Initiative;
CDR-SB, Clinical Dementia Rating Sum of Boxes; MMSE,Mini-Mental State Examination. Reproduced under open access from Jutten et al.32
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of different data sets, AdataViewer, aims to increase the findability

and interoperability of cohort data sets, saving time and effort for

researchers in the field.45 It allows researchers to access metadata

from 20 cohort studies including ADNI, to select cohorts that contain

their variables of interest, and to apply for data access (Figure S3 in

supporting information).

2.4 Blood biomarkers for AD

There has been a recent rapid development of blood-based biomarkers

that reflect AD pathobiology for use in primary care and clinical tri-

als. These biomarkers, assessed using ultrasensitive assay techniques,

circumvent the issues of cost, invasiveness, and accessibility of PET

and CSF biomarkers. Recent ADNI studies have focused on clini-

cal assay development and validation, and retrospective longitudinal

studies, two key steps toward clinical implementation.46 These stud-

ies have primarily assessed AT(N) plasma biomarkers but also have

reported novel blood-based biomarkers reflecting different aspects

of disease progression. There has been extensive work in this area

(recently reviewed in Balogun et al.47). The following covers only blood

biomarker studies that either used ADNI samples or analyzed existing

data from the ADNI database.

2.4.1 Plasma Aβ

Two head-to-head studies48,49 compared six candidate plasma Aβ
assays, three immunoassays (Roche Elecsys Cobas e601, Adx Neuro-

Sciences Simoa Neuro 4-plex E Kit, and Quanterix Simoa Aβ40 and

Aβ42 Advantage Kit), and three mass spectrometry (MS)-based assays

(Washington University immunoprecipitation [IP]-MS, Shimadzu IP-

matrix-assisted laser desorption ionization time-of-flight-MS, and Uni-

versity of Gothenburg IP-MS assays). The first study,48 which aimed

to prioritize assays for more extensive study, identified the Roche,

Washington University, and Shimadzu assays as able, in combination

with age and APOE ε4 status, to improve prediction of Aβ PET status

beyond a base model (age and APOE ε4 status) in participants across

the AD spectrum. However, none of these assays reached the prespec-

ified threshold for a clinical prescreening tool of an area under the

receiver operating curve (AUC) of 0.90with an increase of 0.15 in AUC

over the basemodel. The best assay, theWashingtonUniversity IP-MS,

achieved an AUC of 0.842 compared to an AUC of 0.75 for the base

model. The second study49 also identified the Washington University

and Roche assays as the best performing for predicting Aβ PET status

in CU and MCI participants, and for discriminating between AD and

CU participants. The Washington University IP-MS plasma Aβ42/40
assay, now available commercially as Precivity AD (C2N Diagnostics),

was validated in ADNI, AIBL, and BioFINDER.50 Combined with APOE

ε4 status, it predicted Aβ PET status with an AUC of 0.88 and CSF Aβ
status with an AUC of 0.93 in the combined cohort. Prescreening with

this assay was estimated to decrease the number of Aβ PET scans by

up to 62% and 19% for the enrollment of CU and MCI participants,

respectively, into a clinical trial, potentially reducing screening costs

10-fold.50

2.4.2 Plasma phosphorylated tau

Recent ADNI studies have explored the ability of plasma p-tau to

predict not only Aβ status but also markers of disease progres-

sion. A replication study of plasma p-tau18151 reported that a lon-

gitudinal increase in levels of this biomarker was associated with

worse AD biomarkers (cortical Aβ accumulation, hypometabolism,

atrophy, cognitive decline, and CSF Aβ42, p-tau181, and total tau

[t-tau]) in ADNI participants across the AD spectrum and that the

association was strongest in A+ participants (Figure S4 in sup-

porting information). In similar studies, baseline plasma p-tau181

was associated with CSF Aβ42,52 CSF p-tau181,52,53 and CSF

t-tau;52 18F-florbetapir PET;53,54 18F-flortaucipir PET;54 regional

hypometabolism;53,54 gray matter (GM) atrophy in CU and cogni-

tively impaired (CI) participants;55 white matter (WM) volume in MCI

participants;52,55 cognitive measures;52,56,57 progression from CU and

MCI;52,56 time to dementia diagnosis;57 and Braak neurofibrillary

tangle (NFT) stages at autopsy.58 Plasma p-tau181 was additionally

associatedwith a polygenic risk score (PRS) containingAPOE in all diag-

nostic groups and in bothA+ andA– participants, andwith a non-APOE

PRS inMCI and A+ participants only.59

These studies provide strong evidence for the utility of plasma

p-tau181 as a biomarker of the full panoply of AD characteristics. Lev-

els of this biomarker increased across diagnostic categories,60,52,53

and differed significantly between CU and AD participants across all

age ranges,60 indicating that it may be a clinically useful diagnostic

test. Plasma p-tau181 additionally distinguished between pathology-

confirmed AD and A– CU57,58 and between pathology-confirmed AD

and non-AD dementia with comparable performance to CSF p-tau181

(Figure 2).57,58 Combined with APOE ε4 status, memory, and exec-

utive function, plasma p-tau181 predicted progression from MCI to

AD dementia within 2 years in an ADNI validation cohort with an

AUC of 0.90 achieving very similar results to the model developed

in BioFINDER using plasma p-tau217.61 These models performed

similarly to those using CSF biomarkers and outperformed clinical pre-

dictions by memory clinic physicians (AUC 0.72), illustrating the vast

potential of plasma biomarkers to transform clinical diagnosis and

prediction.

Investigators are beginning to focus attention on the definition

and utilities of cut-point determination. For example, in one study,

a cut-point based on Youdin balanced sensitivity and specificity was

determined in AD dementia (autopsy diagnosis) versus CU (A– by

PET) in the University of Pennsylvania (UPenn) Alzheimer’s Dis-

ease Research Center (ADRC) cohort and applied to an ADNI MCI

replication sample showing that values above cut-point were associ-

ated with faster rate of decline in MMSE, shorter time to functional

decline, and conversion to dementia.57 Much more work in this area

is needed especially across underserved minorities and those with

comorbidities.
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F IGURE 2 ROC curves for distinguishing pathology-confirmed AD dementia from non-AD dementia and Aβ-PET–negative healthy controls.
ROC curves showing the performance of (A) Elecsys CSF biomarkers and (B) plasma biomarkers compared to CSF tau phosphorylated at threonine
181 (p-tau181) for the discrimination of pathology-confirmed AD dementia from (A.a and B.a) Aβ-PET–negative healthy controls and (A.b and B.b)
non-AD dementia. AUC and 95% confidence interval are reported in the inset of each panel. Aβ, amyloid beta; AD, Alzheimer disease; AUC, areas
under the curve; CN, cognitively normal; CSF, cerebrospinal fluid; NfL, neurofilament light; PET, positron emission tomography; ROC, receiver
operating characteristic; T-tau, total tau. Reproduced under open access fromGrothe et al.58

Although p-tau181 provides very useful information, reports dur-

ing the past 2 years suggest that p-tau217 has a greater dynamic

range than p-tau181 and greater accuracy to predict Aβ positivity and
cognitive decline.62–64 At the time of this review there have been no

p-tau217 analyses of ADNI samples.

2.4.3 Plasma neurofilament light

Plasma biomarkers of neurodegeneration may have utility in AT(N)

studies, for predicting cognitive decline, and for assessing the rate

of disease progression. Plasma neurofilament light (NfL), considered

a non-specific marker of neuronal injury, is the most studied plasma

biomarker in this category. It outperformed plasma t-tau in the predic-

tion of atrophy and cognitive decline in a head-to-head comparison in

the Mayo Clinic Study of Aging (MCSA) with replication in ADNI.65 In

ADNICUandMCI participants, plasmaNfLwas cross-sectionally asso-

ciated with hippocampal volume and a range of cognitive measures,

and longitudinally with hippocampal atrophy and decline in Logical

Memory-Immediate Recall and ADAS-Cog13; no associations were

found cross-sectionally and longitudinally for plasma tau.65 Similarly,

elevatedplasmaNfLatbaselinepredictedgreater decline in functionas

well as cognition in ADNIMCI participants, and also predicted greater

decline in the PACC scores in CU participants with subjective sub-

tle cognitive decline66 (Figure S5 in supporting information). In CU

participants, elevated baseline plasma NfL was associated with worse

measuresof cerebral small vessel diseaseburden (lacunar infarcts,WM

hyperintensities [WMH], and cerebralmicrobleeds), and rate of change

in this measure predicted progression in cerebral small vessel disease

burden.67 A similar association was found with lacunar infarcts in the

MCSA cohort but this was not replicated in ADNI,65 so the utility of

plasma NfL as a biomarker of cerebral small vessel disease has yet to

be confirmed.
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How does the predictive ability of plasma NfL as a non-specific

marker of neurodegeneration compare to that of plasma p-tau181

as a marker of AD pathology across the AD spectrum? A head-to-

head study using ADNI longitudinal data68 reported that while both

biomarkers predicted glucose hypometabolism, atrophy, and cogni-

tive decline, plasma p-tau181 was associated with hypometabolism

and atrophy in AD-typical regions in A+ participants only, whereas

plasma NfL was associated with non-specific neurodegeneration in an

Aβ-independent manner (Figure S6 in supporting information). The

associations were stronger in CI than CU individuals. Similarly, ele-

vated baseline plasma p-tau181 predicted memory decline only in

A+ ADNI participants whereas plasma NfL predicted memory decline

regardless of Aβ status.69

2.4.4 Other blood-based biomarkers

The current AT(N) plasma biomarkers do not reflect elements of the

disease process occurring between tau deposition and neurodegener-

ation (described in Section 3.2). Synaptic dysfunction, reflecting the

loss of communication across the synapses or actual loss of neuronal

synapses, occurs before neuronal death, and represents a common

point at which pathological processes in AD and other dementias

converge before neurodegeneration and cognitive decline. The impor-

tance of synaptic dysfunction in the disease process is reflected in the

number of therapies under development aimed at preserving synaptic

function, such as those targeting glutamate receptors.70 A marker of

synaptic dysfunction is thereforedesirable for assessing target engage-

ment of these medications in addition to more finely tracking disease

progression. The N-methyl D aspartate receptor 2A, the therapeutic

target of memantine, is involved in synaptic function, and can be mea-

sured in blood extracellular vesicles (EVs) derived from the brain.71

Numbers of EVs carrying this receptor were lower in AD compared to

CU, and also compared to PD in samples from the Pacific Northwest

Udall Center of Excellence in PD Research, suggesting specificity for

AD. A model containing these EVs discriminated between AD and CU

withAUCsof0.91 in theexploratory cohort and0.81 in theADNIexter-

nal validation cohort. TheN-methyl D aspartate receptor 2Ameasured

in brain-derived EVs may therefore be a useful biomarker of neuronal

synaptic loss.71

An alternative blood biomarker for AD is based on consistent

differences in DNA methylation between AD and CU participants.

Distinguishing epigenetic marks were identified by meta-analysis of

epigenome-wide association studies from AIBL and ADNI.72 Five sig-

nificant CpG sites of methylation were identified, including one in the

FKBP5 gene involved in the promotion of tau protein aggregation, and

several biologically relevant promoter-associated CpG island regions.

A model comprising age, sex, immune cell type proportions, and a

methylation risk score based on significant CpG sites discriminated

between AD and CU participants with an AUC of 0.696 in an external

validation cohort (AddNeuroMed). As age is the greatest risk factor for

AD, and DNA methylation changes with age, the study highlights the

potential of methylated DNA as a source of AD biomarkers.

2.4.5 Blood biomarkers conclusions

Ultrasensitive assay techniques have allowed development of plasma

biomarkers that predict disease progressionwith accuracy comparable

to CSF biomarkers. They therefore have the potential to revolution-

ize clinical diagnosis and prediction. However further hurdles remain

before implementation in primary care: (1) validation in large, eth-

nically diverse primary care populations; (2) development of clinical

grade assays; (3) standardization of protocols; (4) determination of cut-

points and application in prospective studies; and (5) determination of

the impact of chronic comorbid conditions. ADNI will continue to play

a part in the development and validation of plasma biomarkers.

2.5 Diagnosis and prediction approaches

ADNI data, freely available to qualified researchers worldwide, have

been used for the development of many of the diagnostic and prognos-

tic methods in AD. For instance, 56% of studies included in a review of

the use of artificial neural networks to diagnose AD from brain imag-

ing scans usedADNI data.73 A number of systematic reviews ofmodels

predicting MCI progression to AD dementia reported that ADNI data

wereused in67%,74 85%,75,76 and92%77 of included studies. Thenum-

ber of articles, the number of participants per article, andAUCshave all

increased over time76 (Figure S7 in supporting information). This can

be considered both a resounding success of data-sharing in ADNI, but

also as a huge limitation to the interpretation of these studies, given

the lack of diversity of ADNI’s participants and its strict inclusion and

exclusion criteria thus far. Furthermore, few diagnostic and prognos-

tic methods have been externally validated in independent cohorts to

ensure generalizability, and there is considerable variability in statis-

tical methodologies and data presentation among studies.74,76,77 This

review will therefore highlight only studies of diagnostic and prognos-

tic approaches notable for their thoroughness, novelty, and potential

for clinical use, and otherwise present general findings from systematic

reviews.

2.5.1 Systematic reviews of prediction of
progression from MCI to AD dementia

Prediction of progression from MCI to AD dementia is a much

greater classification challenge than discriminating between AD and

CU patients. Prediction of clinical trajectories of MCI participants is

complicated by the heterogeneity in rates of progression, even within

those who are A+. This hampers the ability of secondary prevention

trials to detect cognitive outcomes within reasonable time frames;

therefore, the development of methods to circumvent this difficulty is

paramount. Many ADNI studies have used machine learning to select

variables and construct predictive models. A systematic review77 of

116 such studies from 2010 to 2021, the majority (92%) using ADNI

data, reported that the most common features used were whole brain

volumes (60%), glucose metabolism (27%), neuropsychological tests
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(16%), APOE ε4 genotype (14%), and demographics (13%). Around

half of studies used support vector machines (SVM) as their machine

learning method, with the remainder using other methods such as

random forest and neural networks. Models were most commonly

cross-validated (72/116), but only three were externally validated.

A second systematic reviewof 111 studies from2010 to 2018 (com-

prising 85% ADNI studies)76 also reported structural MRI measures

were the most common features (69%), followed by neuropsycho-

logical variables (43%), demographics (34%), and FDG PET (20%; it

should be noted that few studies used Aβ and tau PET within the time

frame of these systematic reviews, but methods using these modali-

ties have since been developed). In a performance analysis of ADNI

cohort experiments, only T1MRI ROIs, FDG PET features, and domain

targeted cognitive features significantly impacted AUC, with FDG PET

features outperforming MRI features. The most common machine

learning algorithmwas SVM, but the use of neural networks increased

from 2016 to 2018.

These reviews found little difference between the accuracies

achieved using different machine learning methods, although convolu-

tional neural networks (CNN) have a slight performance advantage and

are more frequently used in recent studies.77 Both reviews reported

that themean accuracy of predictivemodels converged at≈75%as the

number of participants increased.

2.5.2 Aβ-based approaches

Although baseline CSF Aβ42 was not a strong predictor of cogni-

tive decline in A+ subjects,78 other Aβ measures performed better.

Regional patterns of Aβ burden, particularly in the precuneus and pari-
etal cortex, together with sex and APOE ε4 status, better predicted

progression from CU to MCI, and from MCI to AD dementia over 1

and 3 years than global Aβ burden or CSF biomarkers.79 Subthreshold

Aβ deposition in similar regions also predicted conversion of amnes-

tic MCI participants to AD dementia.80 CL thresholds for predicting

future decline in CU participants in the PACC score calculated in

three independent cohorts including ADNI ranged from 15 to 18.5 CL

compared to cut-points for distinguishing between A+ and A–CU indi-

viduals, which ranged from 19.0 CL to 25.7 CL.81 This suggests there

is an inflection point below established thresholds for Aβ positivity at
which cognitive decline increases significantly. Accumulating regional

Aβ below positivity thresholds may therefore be meaningful in dis-

ease progression and should be taken into consideration in clinical trial

design.

2.5.3 Inflammation-based approaches

Microglial and T cell–mediated inflammation in response to Aβ deposi-
tion is an early feature ofADprogression (see Section 3.2.3), and there-

fore biomarkers of neuroinflammation may have prognostic value. A

group of CSF inflammation-related proteins comprising soluble tumor

necrosis factor receptors 1 (sTNFR1) and 2 (sTNFR2), and soluble

vascular adhesion molecule 1 identified using principal component

analysis, was associated with a halving of risk of progression of MCI

participants to AD dementia.82 The addition of these inflammation

markers to other AD biomarkers improved the prediction of cognitive

decline over 5 years; those with worst AD biomarkers and lowest lev-

els of sTNFR1 had the fastest decline and progression to AD dementia

(Figure S8 in supporting information). In comparison, higher levels of

CSF soluble TREM2 (sTREM2), amarker ofmicroglial activation indica-

tive of neuroinflammation, were associated with slower decline in AD

dementia.82 Biomarkers of neuroinflammation may therefore provide

complementary information to canonical AD biomarkers.

2.5.4 Tau-based approaches

Both global and Braak stage tau PET deposition outperformed global

Aβ PET deposition (CL) in the prediction of decline in global cognition

and episodic memory in ADNI participants across the AD spectrum83

(Figure S9 in supporting information). More advanced Braak stages

were associated with accelerated cognitive decline, independently of

global Aβ burden, but global Aβ PET did not remain a significant pre-

dictor of future cognitive decline after controlling for tau PET.83 Given

that tau PET scans are expensive and not readily available, several

studies investigated whether fluid biomarkers of tau offer similar pre-

dictive value.While an increased tauPET temporalmeta-ROIwasmost

strongly associated with worse cognition and reduced cortical thick-

ness in ADNI and BioFINDER-2 participants across the AD spectrum,

increased CSF and plasma p-tau181 and p-tau217 were most strongly

associatedwith old age,APOE ε4 status, andAβ positivity84 (Figure S10
in supporting information). Similarly, plasma and CSF p-tau181 were

more closely associated with Aβ PET than tau PET (Figure S11 in sup-

porting information).85 In CU and MCI participants, these biomarkers

were associated with Aβ PET whereas tau PET positivity was asso-

ciated with worse cognition.86 Tau PET ligands are believed to bind

insoluble NFTs, whereas soluble p-tau measures the concentration of

tau phosphorylated at specific amino acids that has leaked into theCSF

or blood compartments from the extracellular space.85 Fluid and PET

tau biomarkers may therefore reflect different stages in disease pro-

gression with fluid tau biomarkers being more related to earlier AD

pathology and tau PET to later AD pathology and cognitive symptoms.

These differences may be reflected in the discordance between fluid

and PET biomarkers.84,86 When ADNI CU and MCI participants were

characterized by plasma p-tau181, CSF p-tau181, and tau PET sta-

tus, discordance betweenmeasures ranged from6.1% (plasma–/PET+)

to 22.4% (plasma+/PET), with ≈ 15% of participants being discordant

between CSF and plasmameasures.86 Comparison of tau status deter-

mined by CSF p-tau181, tau PET SUVR, and tau PET visual read found

that all three modalities were concordant in only 59% of participants

across three cohorts including ADNI.87

2.5.5 Neurodegeneration-based approaches

Neurodegeneration,measured usingMRI, FDGPET, and fluid biomark-

ers such as t-tau and NfL, occurs later in disease progression and so
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is commonly used to predict cognitive decline or progression. MRI-

based classifiers based on modulated GM maps using both a CNN

and SVM were tested for generalizability to an external multicen-

ter memory clinic cohort.88 The classifiers achieved an AUC of 0.756

(SVM) and 0.742 (CNN) for the prediction of MCI progression to AD

dementia in the ADNI development cohort, and AUCs from 0.665

to 0.702 in external validation cohorts. The performances in ADNI

are consistent with the systematic reviews76,77 suggesting conver-

gence of predictionmethods aroundAUC0.75. However, the generally

lower performance in the external validation cohorts demonstrates the

challenge of generalizing classifiers across diverse cohorts.

A classifier based on the specific organization (small worldness) of

GMcovariancenetworks that typifyMCI progressionwasdeveloped in

the Amsterdam Dementia Cohort and validated in ADNI.89 Combined

with CSF p-tau181 and hippocampal volume, the classifier identified

MCI participants who progressed to AD dementia within 2 years with

an AUC of 0.67 in the ADNI validation cohort. Selection of participants

for a 2-year randomized controlled trial using the classifier was esti-

mated to nearly halve sample sizes required to detect a 25% slowing

in the rate of decline in MMSE and CDR-SB. Consideration of APOE

ε4 status improved the prediction of the development of AD dementia

in presymptomatic patients using structural MRI measures.90 Disease

timelines estimated using a discriminative event-based model differed

between APOE ε4 carriers and non-carriers in ADNI and were general-
izable to the population-based Rotterdam Study cohort. This approach

achieved anAUCof 0.81 and 0.88 inAPOE ε4 non-carriers and carriers,
respectively.

Patterns of hypometabolism on FDG PET are also predictive of

MCI progression to AD dementia and may outperform MRI-based

methods.76 In an ADNI validation study, an AD progression-related

pattern based on hypometabolism derived from FDG PET91 predicted

progression to AD dementia within 3 years with an AUC of 0.796,

outperforming the neurodegeneration biomarkers, plasma NfL, and

CSF t-tau.92 However, in a second ADNI validation study,93 FDG PET

and MRI regions selected using radiomics each provided comparable

predictive performance. When one modality was added to the other,

performance was enhanced only minimally, possibly due to the large

overlap of regions selected.

These imaging-based models predict a change in clinical status,

but one study suggests that these features may also reflect underly-

ing disease processes. A model derived from structural MRI features

that predicted progression from MCI to AD dementia was also asso-

ciated with early metabolic changes such as insulin resistance and

dyslipidemia, and with genetic variants in candidate genes involved in

AD-related processes such asAβdegradation,microglial activation and

inflammatory response, synaptic loss, and tau phosphorylation.94

Several data-driven approaches have used the ADNI data set to

test prediction of decline in cognitive scores rather than diagnostic

status. AnMRI brain signature regionmodel was associated with base-

line and longitudinal episodic memory in ADNI-1, ADNI-2/GO, and

the University of California Davis Aging and Diversity Cohort.95 A

data-driven MRI biomarker of dementia risk, the AD-PS score,96 was

trained in ADNI and tested in the Atherosclerosis Risk in Communities

(ARIC) data set for its ability to predict incipient cognitive decline in

CU participants.97 The ARIC cohort is more diverse than ADNI, com-

prised of approximately one third Black American participants, and

12% participants with < 12 years of education. In the full cohort, the

AD-PS score outperformed a hypothesis-driven MRI composite ROI

score, achieving an AUC of 0.692. However, significantly higher AUCs

were achieved in White compared to Black participants, in females,

and in APOE ε4 carriers, illustrating the need for more comprehensive

assessment of prognostic algorithms in diverse populations.

A complementary MRI-based approach used deviation from the

norm rather than AD-typical features to detect disease progression

in MCI and AD dementia participants from five data sets including

ADNI.98 Normativemodelswere constructed fromstructuralMRI data

obtained from UK Biobank CU participants, against which the degree

of deviation would indicate disease progression. This measure, most

highly significant in medial temporal lobe (MTL) regions in the ven-

tricular system, increased across diagnostic classes andwas consistent

over differing data sets. This approach achieved AUCs for discrimi-

nating between CU and AD dementia of between 0.74 and 0.91, and

for discriminating between CU and MCI of between 0.60 and 0.64,

demonstrating cross-cohort generalizability.

AsMRI scans are often available in the clinic, there has been a recent

emphasis on developing medical grade MRI biomarkers to assist in AD

dementia diagnosis. Notably, twoCNN-basedmodels have been exten-

sively validated for clinical applications.99,100 The first,100 developed in

a pooledMRI data set of> 85,000 scans including ADNI, and validated

in three independent data sets, achieved accuracies of > 90% for diag-

nosis of AD dementia, and predicted 65% of MCI converters as having

AD dementia compared to 20.6% of non-converters. The second99

not only validated the classification model in multiple cohorts, but

in three different MRI vendors, over different protocols, and in low-

resolution MRI scans typically commonly available in the clinic. In

the ADNI external validation cohort, the classifier achieved a classi-

fication accuracy of 0.88 and 0.83 for high- and low-resolution MRI,

respectively.

2.5.6 Combinations and comparisons of AT(N)
biomarkers

Combinations of AT(N) biomarkers may better predict disease pro-

gression than single biomarkers. However, their predictive ability in

part depends on the type of measure used and the cut-point cho-

sen. Fluid and imaging biomarkers are often discordant,86,101,102 which

results in considerable variability in AT(N) classification101,102 (Figure

S12 in supporting information). Tau PET positivity predicted short-

termepisodicmemorybetter thanCSFp-tau181 (or anyAβbiomarker),

likely as it becomes positive at a later stage in disease progres-

sion than CSF p-tau181.101,102 In CI participants, tau PET positivity

combined with cortical thickness best predicted 12 year longitudinal

cognition whereas in CU participants, the best predictors were MRI

measures (temporal cortical thickness and hippocampal volume).102

These studies illustrate that differentAT(N) biomarkers cannot beused
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interchangeably, and that their ability to predict future decline differs

by diagnostic stage.

Biomarkers of neurodegeneration are the least concordant.101

Although CSF t-tau putatively reflects axonal loss, normal CSF

t-tau in the presence of neuronal loss and vice versa is not

uncommon.103 A proteomics study in participants with evidence of

neurodegeneration103 found that those with normal CSF t-tau had

increased concentrations of proteins involved in blood–brain barrier

(BBB) and blood–CSF barrier dysfunction whereas those with high

CSF t-tau had alterations in proteins involved in neuronal plasticity.

This biomarker may therefore reflect not only neurodegeneration but

leakiness of the brain barriers. Alternative CSF biomarkers reflect-

ing synaptic dysfunction (neuronal pentraxin, 14-3-3 protein ζ/δ) or
synaptic plasticity (VGF) enhancedpredictionof conversionof lateMCI

participants to AD dementia over CSF Aβ42 and p-tau181 alone.104

Moreover, low CSF VGF combined with normal CSF Aβ42 and p-

tau181 predicted conversion in earlyMCI participants, suggesting that

it may reflect processes occurring earlier in disease progression than

other markers of neurodegeneration.

The choice of cut-point of dichotomized AT(N) biomarkers influ-

ences their predictive value. Data-driven methods for the selection

of cut-points for Aβ PET, CSF p-tau181, and FDG PET improved the

prediction of MCI progression to AD dementia by 30% to 35% over

2 years and ≈ 45% over 4 years over established cut-points.105 Most

cut-points are determined by their ability to discriminate between CU

and AD dementia diagnostic groups. However, with the exception of

plasma p-tau181,57 cut-points have not been determined against the

gold standard of autopsy to reflect actual neuropathological changes.

Using established cut-points for CSF biomarkers, between 50% and

73% of participants across three cohorts who were designated as A+

but T– and were assessed as having an intermediate or high degree of

AD neuropathologic change at autopsy106 (Figure S13 in supporting

information). CSF p-tau181 may therefore not accurately reflect tau

neuropathology and may instead represent other disease-related pro-

cesses that occur in response to Aβ deposition. Finally, a dichotomous

system for determining biomarker positivity may classify as negative

participantswith subthreshold but increasing levels of biomarkerswho

may be on a trajectory of cognitive decline. A lower and a higher cut-

point for the CSF Aβ42 ElecSys assay was defined using two-graph

receiver operating characteristics of CSF p-tau181/Aβ42 at 90% sen-

sitivity and 90% specificity and delineated three ranges.107 These

cut-points applied to the p-tau181/Aβ40 ratio identified not only fast

and slow CU and MCI decliners, but a group with intermediate tra-

jectories of Aβ deposition and cognitive decline that would not have

been identified using a dichotomous system (Figure S14 in supporting

information). Identification of this intermediate group allows both its

exclusion fromrecruitment to clinical trials,whichmay reduce required

sample sizes, andmonitoring of participantswhowould otherwise have

been predicted not to decline under the dichotomous system.

The ability of APOE genotype, fluid biomarkers, tau PET, cortical

thickness, and baseline cognition to predict decline in MMSE over 2

years in CI participants was tested systematically in BioFINDER 2 and

replicated in ADNI.108 Tau PET outperformed all other biomarkers,

and the most parsimonious model combined tau PET with baseline

cognition (Figure 3). The prediction of functional decline by AT(N)

biomarkers was enhanced by the addition of a baseline cognitive

measure.109 In preclinical AD andMCI participants, the previously val-

idated Discrepancy-Based Evidence for the Loss of Thinking Abilities

(DELTA) score improved the ability of Aβ PET SUVR, CSF p-tau181,

and hippocampal volume to predict scores on the Functional Activities

Questionnaire (FAQ) and CDR-SB.

2.5.7 Cognitive tests in CU participants

A particular focus in recent ADNI studies of prediction has been iden-

tifying and operationalizing for remote use cognitive tests associated

with future decline in CU participants. The first signs of subtle cog-

nitive decline can be measured using several tests and scales such as

the Everyday Cognition Scale (ECog), Cognitive Change Index (CCI),

and the PACC. ECog measures subjective decline in instrumental

activities of daily living that map to six cognitive domains, reported

by participants themselves or their study partners. A comparison of

these methods in ADNI CU participants found that different assess-

ments predicted different measures.110 Only ECog was associated

with future decline in the Montréal Cognitive Assessment (MoCA),

whereas only CCI was associated with greater decline in ADAS-Cog.

Different assessments also predicted different measures of atrophy,

suggesting that measurements of decline are not interchangeable.

Implementation of these tests and assessments online holds great

potential for remote screening andmonitoringof participants in clinical

studies. The online version of self-reported ECogwas highly correlated

with the in-clinic version, suggesting that remote assessments gather

asmuch information on cognitive and functional abilities as supervised

in-person assessments.111 Another digital cognitive biomarker gener-

ated frombaselineReyAuditoryVerbal LearningTest (RAVLT)word list

memory was developed in the Mayo Clinic, shown to identify CU par-

ticipants at risk of cognitive decline within 1 to 3 years, and validated

in ADNI.112 Finally, an unsupervised version of the Cogstate Brief Bat-

tery taken at home on any device had good concordance with the

supervised in-clinic version inCUandMCIADNI participants, although

compliance with test completion diminished over time, suggesting the

need for additional long-term support.113 These studies demonstrate

the feasibility and potential of remote monitoring of CU participants

and highlight some of the challenges involved in this approach.

2.5.8 Polygenic risk approaches

ADNI studies have assessed the potential of PRS, calculated from

genome-wide association study (GWAS) genotyping data, to predict

progression. Ten of twelve publications included in a systematic review

of machine learning models to predict lifetime AD risk based on single

nucleotide polymorphisms (SNPs) used ADNI data.75 A PRS including

the APOE region was more highly associated with an increased risk

of progression from MCI to AD dementia than a PRS without APOE
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F IGURE 3 Prediction of cognitive decline using biomarkers individually or in combination. Effect sizes for each biomarker in predicting future
cognitive decline either alone (orange bars, on top) or in a combinedmodel (black bars, below). Significant biomarkers are represented with a star.
Themodels using CSF biomarkers are shown on the left panel and themodels using plasmamarkers on the right panel. Bars represent 95%
confidence intervals. APOE, apolipoprotein E; CSF, cerebrospinal fluid; MRI, magnetic resonance imaging; NfL, neurofilament light; PET, positron
emission tomography; p-tau, phosphorylated tau. Reproduced under open access from Smith et al.108

(hazard ratio 1.468 with APOE and 1.293 without APOE).114 Both PRS

were better predictors in APOE ε4 non-carriers than carriers. A PRS

constructed from 40 independent non-APOE genome-wide significant

SNPs significantly predictedMCI toADdementia progression inADNI,

which was replicated in the NACC cohort.115 This PRS was also asso-

ciated with increased cognitive decline, and longitudinal worsening

in a range of other AD biomarkers. Genetic variants reflecting other

contributors to disease progressionmay also be predictive. APRS com-

prising genetic variants associated with T2DM explained almost 4%

of the variance in MCI to AD dementia conversion, performing only

slightlyworse thananAD-specific PRS.116 These studies, togetherwith

many others, suggest that genetic loci outside of APOE ε4 have small

but statistically significant predictive ability.

An issue with the use of PRS is a lack of standardization of PRS

calculations including the optimal P-value threshold for SNP selec-

tion. A comparison of PRS calculations across seven data sets including

ADNI reported the best predictive ability was achieved using a P-

value threshold of ≤ 0.1 with the contribution of APOE modeled

separately.117

2.6 Individualized prediction of future decline

The ability to predict the cognitive trajectory of a patient in rou-

tine clinical practice would address the patient’s desire to know their

personal risk and plan accordingly and may motivate them to mod-

ify their lifestyle in beneficial ways. Several studies have used ADNI

multimodal data to develop tools to enable this goal. NeuroPM-

box, an open access software toolbox, used multifactorial models of

disease progression applied to multimodal data to biologically strat-

ify patients.118 This tool integrated not just imaging and cognitive

data, but histopathology and molecular screening (epigenomics, tran-

scriptomics, and proteomics) by taking into account gene-level and

brain-level mechanisms of disease progression as well as the poten-

tial response for patients to therapeutic intervention (Figure S15 in

supporting information). Another framework based on a multifactorial

cascade model of disease progression was used to simulate a person-

alized response to anti-amyloid therapies using either aducanumab

or donanemab.119 The model simulated both short- (78 weeks) and

long-term (10 years) individualized responses that took into account

potential side effects such as amyloid-related imaging abnormalities

(ARIA).

A dementia risk score, the Mild Cognitive Impairment to Demen-

tia Risk (CIDER) score, designed to be used in primary care to predict

time to all-cause dementia within 3 years of an MCI diagnosis, was

developed in the NACC cohort and validated in two cohorts including

ADNI.120 CIDERwas implementedas anomogramwith variables easily

determined in clinic: age, sex, education, marital status, hypertension,

mood disorder, and either MoCA or MMSE (Figure S16 in support-

ing information). It predicted dementia risk with a c-index of 0.72

(95% confidence interval: 0.69–0.75) in the ADNI external validation

cohort. Knowing where a patient lies on a map of disease progression,

in addition to knowing overall dementia risk, could enhance personal-

ized medicine approaches. An AD Course Map of disease progression

was developed using hippocampal shape deformations, patterns of

progression of hypometabolism and cortical thinning, and neuropsy-

chological assessments.121 When applied to an individual, the model

generates a trajectory that considers an individual’s age of disease

onset, speed of progression, and genetics and sex.

A multimodal model to predict individual future cognitive decline

based on continuous rather than dichotomous biomarker measures

was developed in pre-dementia patients and validated in ADNI.122 The

model, comprising age; education; AD signature cortical thickness; hip-

pocampal volume; and CSF t-tau, Aβ42, and Aβ40, more accurately
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predicted decline in cognitive scores than a base model of demograph-

ics alone. It reduced estimated clinical trial sample sizes over demo-

graphics variables alone and is available as a web-based application

(https://disease-progression.shinyapps.io/disease_progression/). Simi-

larly, a model predicting 3-year cognitive decline that was developed

in BioFINDER 2 and replicated in ADNI comprised baseline tau

PET, baseline cognition, CSF NfL, and cortical thickness was oper-

ationalized for individual prediction (https://brainapps.shinyapps.io/

PredictMMSE).108 This model reduced clinical trial assessment costs

by approximately half compared to no enrichment.

Dementia risk was found to be influenced by sex, APOE ε4 status,

and age of onset of Aβ positivity in a study of longitudinal biomark-

ers in ADNI and two additional cohorts.123 The age of Aβ onset in

APOE ε4 allele carriers was earlier than in non-carriers and was dose-

dependent for the ε4 allele. APOE ε4 allele carriers, females, and those

with a later age of Aβ onset had a shorter time until the onset of cog-

nitive impairment. Survival curves from the study may form the basis

for individualized prediction of time to cognitive impairment based on

these factors.

Clinical diagnosis based on neuropsychological tests may not accu-

rately reflect the disease process and therefore prediction of change

in diagnostic state may be inherently flawed. To overcome this lim-

itation, a metric, termed the pathology progression rate (PPR), was

developed124 based on a network diffusion model that spatially and

temporally describes the spread of AD-related neurodegeneration

along brain WM fibers.125 PPR varied across diagnostic classes and

APOE ε4 genotype and was associated with global atrophy rate and

decline in MMSE. A model comprising a profile of baseline CSF

biomarkers identified by hierarchical cluster analysis that represents

an intermediate stage of AD neurodegeneration, combined with base-

line MRI regional atrophy predicted PPR at the subject level with

reasonable accuracy (r2 = 0.26 in linear regressionmodels). The model

was less accurate in predicting a global atrophy rate. This approach

may offer individualized prediction of biologically based disease pro-

gression usingMRI scans commonly available in primary care, and CSF

biomarkers.

The development of highly sensitive assays for plasma AT(N)

biomarkers opens the possibility of their use in individualized progno-

sis. The ability of plasma Aβ42/40, p-tau (181 or 217), and NfL, alone

and in combination, to predict conversion of MCI to AD dementia and

longitudinal cognitive decline in individuals over 4 yearswas compared

in BioFINDER and models were validated in ADNI.126 A model com-

prising plasma p-tau217 (in BioFINDER) or p-tau181 (inADNI) andNfL

outperformed a base model of demographics and baseline MMSE for

the prediction of clinical conversion (AUC of 0.89 compared to 0.74

for the base model in the ADNI validation cohort), achieving compara-

ble accuracies to CSF biomarkers. Aβ biomarkers or APOE ε4 genotype
did not contribute to prediction. Patient-level models for the conver-

sion to AD dementia and change inMMSE and CDR-SB scores within 4

years were operationalized into an online tool available at predictpro-

gression.com. Similarly, a model developed and validated in the same

cohorts to predict individual conversion fromMCI to AD dementia and

comprising plasma p-tau, APOE, memory, and executive function was

implemented online at http://predictAD.app.61 As plasma biomarkers

become approved for clinical use, individualized prediction algorithms

have great potential, not only in primary care, but for recruitment

into clinical trials, substituting for more invasive and/or expensive

CSF biomarkers and PET scans. However, it must be emphasized that

these studies have been performed in limited cohorts and that further

validation inmore diverse primary care populations is required.

2.7 Prediction of AD pathological features

With the recent FDA accelerated approval of anti-amyloid monoclonal

antibody therapies, prediction of Aβ status to select those likely to ben-
efit from treatment has become an immediate challenge. As PET scans

are expensive and not widely available, and lumbar puncture for CSF

is invasive, recent ADNI studies have reported predictionmodels using

modalities accessible in primary care. Such predictionmodels may also

lower costs associated with participant selection for clinical trials.

A model for the prediction of Aβ status in CU participants based

on data from the A4 study and optimized for both ADNI and Japanese

ADNI consisted of information easily accessed in primary care: demo-

graphics, family history, CDR-SB, PACC, and APOE ε4 genotype.127

Other approaches have used additional predictors such as MRI mea-

sures and plasma biomarkers.128,129 Of single AT(N) plasma biomark-

ers, plasma Aβ42/40 best predicted Aβ PET status in all ADNI partic-

ipants while plasma p-tau181 had moderate predictive ability in MCI

participants.128 The addition of clinical information (APOE ε4 status

and education in CU, APOE ε4 status and age in MCI participants) and

an MRI score to plasma Aβ42/40 improved prediction, but plasma p-

tau181 and plasma NfL added little additional predictive ability over

clinical information andMRI128 (Figure S17 in supporting information).

Hippocampal morphometry features also predicted Aβ PET burden in

CU and MCI participants from ADNI and the Open Access Series of

Imaging Studies (OASIS) cohort.129

Specific regional tau accumulation is strongly linked to future neu-

rodegeneration and cognitive decline and therefore prediction of tau

accumulation may be useful for identifying CU individuals at risk of

future decline. A prognostic index able to distinguish between stable

CU over 5 years, and declining CU or MCI based on baseline corti-

cal Aβ and MTL volume as continuous variables together with APOE

ε4 genotype was developed from baseline ADNI data and validated

in the Berkeley Aging Cohort Study.130 The clinically declining group

defined by the index had significantly greater baseline global cortical

tau and faster accumulation of cortical tau in Braak stages IV and V,

and greater decline in PACC than the clinically stable group. This group

also accumulated global tau faster than a sample defined by Aβ posi-
tivity. The index predicted individual regional variability in future tau

accumulation and was estimated to reduce sample size required to

detect a 25% decrease in the rate of future tau accumulation by 44%.

Use of the prognostic index to define a more stringent threshold for

future tau accumulation lowered sample heterogeneity in a simulated

trial (Figure 4). Other methods for predicting tau accumulation have

been based on the structural connectome;131 PRS based on SNPs from

https://disease-progression.shinyapps.io/disease_progression/
https://brainapps.shinyapps.io/
http://predictAD.app
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F IGURE 4 Tau prognostic index to predict future tau accumulation. (A), Cortical maps show average rate of tau accumulation for individuals
classified as Clinically Stable (CS) versus Clinically Declining (CD). (B), Relationship of the scalar projection with future rate of tau accumulation
within the fusiform gyrus (circled in cortical maps are shown in [A]). The solid black vertical line indicates the probabilistic boundary used to
perform the binary stratification, blue crosses indicate rate of tau accumulation for the clinically stable group, black circles indicate future rate of
tau accumulation for the clinically declining group. Restratification to amore stringent threshold, indicated by the dashed black vertical line, using
the prognostic index allows a new sample to be selectedwith higher future rates of tau accumulation and lower heterogeneity within the sample.
SUVR, standardized uptake value ratio. Reproduced under open access fromGiorgio et al.130

the tau pathway;132,133 and a combination of demographics, regional

cortical thickness, andmemory tests.134

2.8 Conclusions

In 2021 and 2022, ADNI studies have contributed to the assess-

ment, development, and implementation of AD therapies and blood

biomarkers; described methodological improvements to clinical trials

and AD research; and improved AD diagnosis and prediction methods.

Of particular note were: (1) the use of ADNI data and methodologies

underlying clinical trials that led to the FDA approval of lecanemab; (2)

the emergence of plasma p-tau as a promising biomarker of many AD

characteristics; (3) the predominance of the ADNI cohort in machine

learning AD diagnosis and prediction studies, suggesting a lack of

generalizability of these results; (4) the investigation of biomarkers

beyond AT(N) such as those reflecting neuroinflammation as predic-

tors of future decline; and (5) the provision of online software tools for

individualized prediction of future decline.

3 ADNI’S CONTRIBUTIONS TO
UNDERSTANDING AD DISEASE PROGRESSION

Development of therapies for AD depends on a nuanced understand-

ing of underlying biology and how this affects disease progression.

It has become clear in recent years that AD is a complex, multifac-

torial disease with much heterogeneity in disease course and clinical

manifestation. The breadth of ADNI data and availability of sam-

ples along with its longitudinal design has facilitated a wide range

of approaches to untangle this complexity. In this section, we exam-

ine how AD causes cognitive decline and dementia and extensively

discuss recent evidence supporting the cascade of events originally

proposed in the amyloid hypothesis.135 We then consider the influ-

ence of vascular risk factors on disease trajectory. We examine types

and patterns of heterogeneity and factors that contribute to them such

as co-pathologies, resilience and sex, and neuropsychiatric symptoms

(NPS). By linking lines of evidence from multiple areas of research

in a thematic structure, we hope to shed light on how the interac-

tion of these complex factors may account for the observed cognitive
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decline in patients and highlight possible novel therapeutic targets and

strategies.

3.1 The relationship of age to AD

In patients in apresymptomatic stagewith family historyofAD, author-

termed “functional brain aging”measuredusing resting state functional

MRI (rs-fMRI) accelerated near the age of parental onset but was not

associated with either APOE ε4 or Aβ positivity.136 “Accelerated func-

tional brain aging”was also observed inADNIMCI andADparticipants,

suggesting that it was AD specific.136 A metric predicting brain age

from MRI scans was associated with cognitive deficits and was higher

in amnestic MCI than CU ADNI participants, and in APOE ε4 carriers

and those who were A+.137 Similarly, the brain age gap, the differ-

ence between individual brain age, assessed from a temporal pattern

of hypometabolism and atrophy, and chronological age, was greater

in MCI participants who progressed to AD compared to those who

were stable or CU participants.138 The brain age gap increased at a

faster rate in MCI progressors and in females (Figure S18 in support-

ing information). These studies suggest that some features associated

with brain aging such as changes in functional connectivity, glucose

metabolism, and brain volume, are accelerated in AD.

Biological age, as opposed to chronological age, can also be assessed

using “epigenetic clocks,” which aggregate epigenetic changes, such as

changes in CpG DNA methylation patterns associated with aging. Of

five first-generation epigenetic clocks tested, only the Hannum epi-

genetic clock was associated with hippocampal volume in ADNI and

AIBL.139 However, ADNI AD participants had extremely high ages

on a more sophisticated third-generation epigenetic clock, Dunedin-

PACE. This clock is based on methylation patterns related to the rate

of physiological change that characterizes the aging process rather

than deviation from chronological age, and so reflects a range of

age-related physiological processes from multiple organs.140 Genetic

susceptibility to AD progression and epigenetic age acceleration may

be shared.141 Systemic factors beyond AD pathology and AD genetic

risk alleles may contribute to the observed accelerated pathology in

AD patients. A range of neurological and systemic biological processes

were implicated in a study that identified modules of coexpressed

genes associated with accelerated biological aging.142

What might these factors be? A comprehensive study of CSF pro-

teomics in CU participants ranging in age from 46 to 89 years from

three cohorts including ADNI sheds some light on this question.143 Of

1149 proteins tested, 911 differed with age; among these 194 were

altered in participants older than 60 years; 172, 22, and 352 proteins

differed by Aβ status, APOE ε4 status, and sex, respectively. Inde-

pendent of these factors, 252 proteins showed age-related changes,

and these were enriched for immune response, signal transduction,

and cellular responses to external stimuli. At a genetic and pathway

level, there was substantial overlap between healthy aging and AD

in a study investigating causal relationships between RNA transcripts

and neuroimaging.144 A relatively small set of genes contributed sta-

bly to multimodal imaging and subsequent cognitive decline in healthy

aging (Figure S19A in supporting information). In contrast, in AD,

the study identified 111 genes and 65 functional pathways with sta-

ble causal alterations (Figure S19B), some of which were associated

with healthy aging, but had exaggerated effects in different brain

areas. Predominant pathways highlighted in AD patients were apop-

tosis, oxidative stress, and immune/inflammatory response. Leukocyte

migration involved in systemic inflammationwas associatedwith accel-

erated aging on epigenetic clocks.142 Together, the authors suggested

that the changes observed in AD are a result of accelerated aging and

enhanced vulnerability of brain substrate to both known risk factors

for the disease (Aβ positivity, APOE ε4 allele, and female sex), and other

physiological processes.

Frailty, defined as “an age-related state of multisystem physiologi-

cal decline increasing the risk of adverse outcomes,”145 may modulate

the relationship between neuropathology and dementia in AD. Frailty

was associated with lower CSF Aβ42 and hippocampal volume, worse

glucose metabolism, and greater cortical Aβ binding, and strength-

ened the association between glucose hypometabolism and dementia.

As frailty encompasses a variety of health deficits, these indices may

conglomerate diverse mechanisms contributing to dementia such as

inflammation and immunosenescence. These associations reflect the

complexmultifactorial nature of AD.

3.2 Recent ADNI evidence supporting the
amyloid cascade hypothesis

Until recently anti-amyloid therapies, including immunotherapy (mon-

oclonal antibodies and vaccines) and BACE inhibitors, failed to show

a significant beneficial effect in clinical trials. However, in the past 2

years, several clinical trials have associatedmonoclonal antibodies that

greatly reduce or eliminate Aβ plaques with significant slowing of cog-
nitive decline.25,146 These findings support the amyloid hypothesis135

(Figure S20 in supporting information). Although ADNI is an observa-

tional study, numerous analyses of ADNI data have been performed

to determine the association of brain Aβ, tau, neurodegeneration, and
cognitive decline.

Much of the evidence to support the view that late-onset AD begins

with the accumulation of Aβ (subsequently leading to the spread of tau
and neurodegeneration) stems from studies of patients with autoso-

mal dominant AD, resulting from a single gene mutation that causes

overproduction of Aβ. A recent study explored the degree to which

underlying pathophysiology is shared between autosomal dominant

AD, in the Dominantly Inherited Alzheimer Network (DIAN) cohort

and late onset AD in ADNI.147 Levels of CSF Aβ42, p-tau181, and
t-tau were similar in preclinical and early symptomatic participants

from both cohorts when the disease trajectories of both autosomal-

dominant and late-onset participants were anchored at the age of

symptom onset for comparison. After symptom onset, the rates of

change of cognitive impairment and regional atrophy accelerated in

both groups, although this acceleration was greater in autosomal-

dominant AD participants. The authors conclude that the two forms

of AD share pathobiological underpinnings, providing support for the

central role of Aβ accumulation in disease progression.
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F IGURE 5 Consensus ordering of AD biomarkers from 10 cohorts. All base sequences from the 10 investigated cohorts and the resulting
meta-sequence. Due to only partially overlapping lists, the determining factor for an event’s position in themeta-sequence was not its absolute
position in each base sequence (i.e., rank 1, 2, . . . , 11), but its relative position to other biomarkers in the same sequence. ABETA, amyloid beta; AD,
Alzheimer’s disease; AIBL, Australian Imaging, Biomarker, & Lifestyle Flagship Study of Ageing; ANM, AddNeuroMed; ARWIBO, Alzheimer’s
Disease Repository without Borders; JADNI, Japanese ADNI; EDSD, European DTI Study onDementia; EMIF, EuropeanMedical Information
Framework; CSFVOL, accumulated CSF volume in the brain; ENTOR, entorhinal volume; FICG, Figure Copy; FUSIF, fusiform volume; HIPPO,
hippocampal volume; LDEL, Logical Memory–Delayed Recall; LIMM, Logical Memory-Immediate Recall; MIDTEMP, middle temporal lobe volume;
NACC, National Alzheimer’s Coordinating Center; OASIS, Open Access Series of Imaging Studies; PTAU, phosphorylated tau; VENT, ventricular
volume;WMHAD,WhiteMatter Hyperintensities in Alzheimer’s Disease. Reproduced under open access fromGolriz Khatami et al.150

[Correction added on September 21, 2023, after first online publication: First author name has been corrected for reference 150.]

A neuroimaging study of ADNI CU andMCI participants grouped by

AT(N) status (Aβ PET, tau PET, hippocampal volume)148 provided both

cross-sectional and longitudinal evidence for a unidirectional pathway

beginning with Aβ deposition, followed by tau deposition and neu-

rodegeneration. Whereas A+T–N– participants had higher tau than

A–T–N– controls suggesting sub-threshold tau accumulation, there

was no evidence of Aβ accumulation in either A–T–N+ or A–T+N+

participants. Likewise, high baseline Aβ was associated with subse-

quent tau accumulation, but neither higher baseline tau accumulation

nor lower hippocampal volume was associated with subsequent ele-

vated Aβ. Faster decline in PACC was observed only in A+T+N– and

A+T+N+ groups, linking tau and neurodegeneration more tightly to

cognitive decline. The association of suspected non-Alzheimer’s dis-

ease pathology (SNAP; T+ and/or N+ in the absence of A+) with

cognitive decline likely represents a different neurodegenerative path-

way. In a second PET study of ADNI CU participants,149 overlapping

regions of Aβ and tau deposition in AD-typical regions were strongly

associated with baseline and longitudinal cognition. Specifically, Aβ
to tau but not tau to Aβ, interactions in the MTL were associated

with cognitive impairment, supporting Aβ to tau to cognitive impair-

ment directionality. It is important to note that these studies provide

strong support for directionality, but do not establish causality of Aβ in
initiating AD.

Several studies have investigated the sequence of events in the amy-

loid cascade using biomarkers. An event-based model fitted to data

from 10 cohorts including ADNI150 largely recapitulated the hypo-

thetical ordering of biomarkers in AD proposed by Jack et al.151 CSF

Aβ42 consistently became abnormal first, followed by p-tau181 or t-

tau (Figure 5). The order of these tau biomarkers varied but they were

always positioned next to each other, indicating that they are directly

linked. There was some variability in the positioning of neurodegen-

eration biomarkers but there was a consistent sequence of clinical

assessments inwhichmemorywas impaired first, followed by language

and visuospatial ability, and last, executive function (Figure 5).

This ordering of biomarkers is based on established thresholds

for positivity, but meaningful changes in biomarkers may occur at

sub-threshold levels. When the temporal ordering of CSF and PET

biomarkers as well as PACC were aligned relative to time to Aβ pos-
itivity assessed by PET,152 small increases in CSF p-tau181 and MTL

tau PET binding were seen 5 to 8 years before the Aβ threshold was

reached. Small changes in cognitive dysfunction were also observed

in this time frame (Figure S21 in supporting information). CSF Aβ42
reached the positivity threshold before Aβ PET and plateaued approx-

imately two decades later. Aβ accumulation assessed using serial

florbetapir PET scans followed a sigmoidal curve that was consistent

with hypothesized trajectories151 and slowed ≈ 4 years after reach-

ing the positivity threshold, ≈ 10 years beforeMCI diagnosis.153 In CU

participants below the positivity threshold, the rate of deposition was

associated with subsequent tau deposition and decline in memory.

A study that used structural equation pathway modeling to investi-

gate the direct and indirect effects of not only global Aβ PET uptake,

regional tau PET uptake, and regional MRI atrophy, but demograph-

ics, APOE ε4, white matter lesions, and cognition in A+ ADNI CU

and CI participants also supported an Aβ–tau–atrophy unidirectional

pathway.154 Importantly, the Aβ–tau–atrophy pathway accounted for

only 50% to 56% of the longitudinal variance in cognition, with Aβ,
tau, and atrophy individually accounting for 16%, 46% to 47%, and

25% to 29% of longitudinal variance in cognition, respectively. Age,
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the APOE ε4 allele, and WM lesions all affected cognition but were

insufficient to explain the total variance in cognition combined with

the Aβ–tau–atrophy axis. These results suggest that other factors such
as α-synuclein (α-syn), TAR DNA-binding protein 43 (TDP-43), vascu-

lar risk, inflammation, and genetics also contribute to cognitive decline

and may help to explain why monoclonal antibodies that remove

plaques “only” slow cognitive decline by 25% to 30%. If only 50% of

decline is accounted for by the AT(N) pathway, and plaque removal is

slowing AT(N)-related decline by 50%, the overall effect would be a

25% slowing of decline.

Together, these studies support a unidirectional sequence of events

that occurs on a timeline in which abnormal Aβ rises years before

reaching the threshold for positivity, continues on that trajectory for

years after reaching the threshold, decelerates a decade before MCI

diagnosis, and subsequently plateaus. Phosphorylated tau and t-tau

becomeabnormal followedbyneurodegenerationbiomarkers and cog-

nitive assessments. The limited success of anti-amyloid therapies to

see a clinical benefit in MCI and early AD dementia patients may be

partially attributable to timing (at a point at which Aβ deposition is

markedly slowing after most of the deposition has already occurred)

and target, given that Aβ explains only a small portion of variance in

cognition.

In the following sections, we outline recent ADNI studies that have

providedevidence for steps in the amyloid cascade, detailing howcellu-

lar pathways link Aβ and tau deposition and the cascade of events that
lead to neurodegeneration and cognitive decline (Figure S20).

3.2.1 Abnormal Aβ processing and Aβ
accumulation

The earliest (which is not to say causative) step in the amyloid cas-

cade is the disruption of homeostasis of Aβ production. Recent ADNI
studies have identified genetic variants involved in this process beyond

APOE. A large GWAS of plasma Aβ40, Aβ42, and Aβ42/40 levels in >

12,000 nondemented participants from eight studies including ADNI

identified variants in amyloid pathway genes BACE, APP, and PSEN2,

as well as in APOE.155 Expression of 11 variants of the top 30 non-

APOE ε4AD risk alleles inADNI blood samples, including novel variants

in ADAM10, IGHV1-68, and SLC24A4/RIN3, were associated with brain

amyloidosis.156 A large case–controlGWAS that includedADNIdata as

part of the Cohorts for Heart and Aging Research in Genomic Epidemi-

ology (CHARGE) consortium identified six novel genes (ICA1L, DGKQ,

ICA1, DOC2A, WDR81, and LIME1), all likely involved in modulation of

APP metabolism, which is central to the production of Aβ.157 Most

variants included in a non-APOE PRS of Aβ status were involved in

biological aspects of the Aβ pathway: regulation of APP catabolism,

Aβ formation, or Aβ clearance.158 This PRS predicted Aβ status even
in APOE ε4 carriers, further supporting the regulatory role of these

non-APOE variants.

The micro-RNA miR20b-5p negatively regulated APP expression

in human cell lines, and an SNP (rs13897515) upstream of the

MIR20B gene was associated with CSF Aβ42 and entorhinal corti-

cal thickness.159 Cleavage of APP by β-secretase (BACE1) may be

regulated by a rare variant associated with AD.160 A rare variant

risk association study in two cohorts including ADNI and molecu-

lar docking simulation identified rs3120654 (S742Y) in a modulator

of BACE1 activity, FLG, which encodes an intermediate filament-

associated protein.160 This study provides a molecular-level explana-

tion for the effect of a rare variant associated with AD, via influencing

APP processing by BACE1.

The association of the amyloidogenic pathway with downstream

events has been documented in recent ADNI studies. A PRS based on

variants involved in endocytosis of APP and extracellular aggregation

of Aβ (BIN1, CD2AP, EPHA1, PICALM, SORL1, andCD33) correlatedwith

baseline CSF t-tau.161 Spatial patterns of hypometabolism measured

by FDGPETwere associatedwith patterns of expression of BACE2 and

NDUFS4, amitochondrial protein that bindsoligomericAβandhasbeen
implicated in cognitive deficits.162

Finally, the minor allele (C) of rs10751647 in IFITM3 was asso-

ciated with not only decreased brain Aβ deposition, but also lower

CSF p-tau181, greater entorhinal cortical thickness, and slower cog-

nitive decline and progression to AD dementia.163 IFITM3 encodes

interferon-induced transmembrane protein 3, which upregulates γ-
secretase in response to viral infection, suggesting that an innate

immune response tomicrobial infectionmay increase Aβ deposition.

3.2.2 Impaired clearance of extracellular Aβ

The removal of extracellular Aβ from the perivascular space into CSF

via the glymphatic system has been proposed to be disrupted in AD,

leading toaccumulationof extracellularAβanddeposition intoplaques.
In the glymphatic system, polarized distribution of aquaporin 4 chan-

nels in astrocytic end feet promotes the rapid movement of CSF to the

brain interstitial space. There it mixes with interstitial fluid and waste

solutes such as Aβ before being drained out of the brain via the perive-
nous influx pathway164 (Figure S22 in supporting information). Two

SNPs in AQP4, the gene encoding aquaporin 4, were associated with

in vivo brain Aβ independently of the APOE ε4 allele.165 MRI measures

reflecting the glymphatic system, such as the volume of and diffusivity

into the perivascular space,wereworst in participantswithADdemen-

tia, and intermediate in participants with MCI.164 This indicated an

enlargement of the perivascular space with disease progression and

a concomitant decrease in diffusivity of CSF into that space. Changes

in these measures in MCI and AD participants were significantly asso-

ciated with CSF Aβ42, FDG PET, and cognition.164 Enlargement of

the perivascular space in the centrum semiovale was associated with

WMHvolume,166 glucose hypometabolism inA+participants,167 brain

tau,168 diagnostic conversion and longitudinal cognitive decline,169

and sTREM2.166 sTREM2, in turn, mediated the association between

enlarged perivascular space in the centrum semiovale and CSF p-

tau181.166 There are several possible explanations for these findings.

These findings may implicate dysfunction of the glymphatic system,

by sleep disturbances or small vessel disease (indicated by WMH vol-

ume), as a key causal event in pathogenesis. In this scenario, disruption
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of Aβ clearance contributes to its accumulation, which may trigger a

microglial inflammatory response that results in further enlargement

of the perivascular space in a feedback loop via tau. A second possibil-

ity is that these changes are secondary to the neurodegeneration that

occurs in AD and somay not reflect a cause–effect relationship.

As the glymphatic system operates primarily during sleep, several

ADNI studies have investigated the role of sleep, derived from self-

report assessments, in the clearance of Aβ. An rs-fMRI study that

detectedCSFmovements indicative of glymphatic clearance linked this

signal with cortical Aβ binding, diagnosis, cognition, symptom severity,

and the APOE ε4 allele.170 Disturbances to sleep appear to be asso-

ciated with increased AD risk (i.e., a cause-and-effect relationship),

and may offer a treatment target. A+ ADNI participants who reported

insomnia had faster cognitive decline than those without insomnia.171

Baseline informant-reported sleep disturbances interacted with the

APOE ε4 allele alone, and CSF Aβ42 and p-tau181/Aβ42 together,

to enhance regional atrophy rates.172 Self-reported obstructive sleep

apnea (OSA) was associated with a shorter time of progression from

CU to MCI, and from MCI to AD.173 The risk of progression was

increased by 2- to 3-fold in A+ participants with OSA, and by 3- to 5-

fold in (TN)+ participants with OSA, compared to participants with no

OSA.173

These results may suggest a causal relationship in which sleep dis-

turbances perturb the glymphatic system, resulting in aheightened risk

of disease progression mediated by a synergistic interaction with Aβ
and tau. Alternatively, it is possible that the neurodegeneration caused

by AD pathology causes sleep disturbances or that both mechanisms

occur.

Aβ metabolism in blood has been proposed to affect Aβ clearance
from the brain.174 A cis- expression quantitative trait loci (eQTL) analy-

sis of 29 AD-associated SNPs identified elevated expression of APH1B,

encoding a subunit of γ-secretase, in blood. This was associated with

global Aβ burden, entorhinal cortex (EC) thickness, andMCI to ADpro-

gression, and the authors suggest that APH1B may represent a novel

therapeutic target.174

3.2.3 Immune response and inflammation

Chronic low-grade inflammation is a hallmark feature of AD, and the

importance of immune response in AD pathogenesis has been increas-

ingly recognized. An immune pathway–specific PRS constructed from

top AD risk loci was associated with increased longitudinal Aβ depo-
sition, regional atrophy and hypometabolism, and worse cognition.161

In response to Aβ deposition, microglia and astrocytes are activated,

causing a neuroinflammatory response that can be exacerbated by

peripheral inflammation. This vital step in the cascade of disease

progression links Aβ deposition with downstream events eventually

leading to tau deposition. RecentADNI studies have provided evidence

for the importance of this step and helped identify potential normal

therapeutic targets.

Several studies have investigated associations of a marker of

disease-activated microglia, sTREM2 in CSF with AD biomarkers. In

ADNI participants across the AD spectrum, elevated sTREM2 was

associated with old age and CSF AD biomarkers (Aβ42, p-Tau181, and
t-tau) aswell as cytokines related to inflammation (chitinase-3-likepro-

tein 1 [YKL-40], progranulin, interleukin [IL]-10, transforming growth

factor [TGF]-β1, tumor necrosis factor alpha [TNF-α], C3, factor H) and
neurodegeneration (NfL, synaptosomal-associated protein 25, neuro-

granin, growth-associated protein 43) but not with brain metabolism,

MRI volumes, or cognition.175 In contrast, in another study, elevated

CSF sTREM2 predicted cognitive decline in A+ but not A– MCI and

AD ADNI participants with an effect size comparable to that of CSF

p-tau181 but less thanMRI volumes.176

The disparity between these results may reflect a stage-dependent

effect of microglial activation. GWAS have identified TREM2 as a pro-

tective gene in AD (reviewed in Veitch et al.8,9 and Weiner et al.13)

that promotes anti-inflammatory cytokine expression and reduces

pro-inflammatory cytokine release, activating microglia to surround

and endocytose Aβ plaques. However, this response may eventually

become detrimental later in disease progression, causing neuronal

damage and facilitating disease progression. Higher levels of baseline

CSF sTREM2 were associated with lower regional atrophy and WM

damage in A+T+ MCI participants but with increased regional WM

damage in A+T+ADparticipants.177 The action of CSF sTREM2 at dif-

ferent disease stages may be further modulated by interaction with

CSF tumor necrosis receptor 2.178

Microglia may also be activated by other upstream factors. Medi-

ation analysis of CSF IL-3, a marker of astrocytic activation, sTREM2,

and canonical AD biomarkers indicated that IL-3 modulated the levels

of sTREM2 in response to Aβ deposition, and was associated with sub-
sequent tau pathology and cognitive decline.179 The authors suggest

that cross-talk between astrocytes and microglia is an important link

between Aβ and tau deposition in disease progression (Figure S23 in

supporting information). Changes in iron homeostasis, critical for cen-

tral nervous system function, may also affect CSF sTREM2. High levels

of CSF ferritin, a biomarker of brain iron accumulation, were signif-

icantly associated with accelerated accumulation of CSF sTREM2 in

participants stratified by AT(N) across the AD continuum as well as

controls.180 The authors suggested that this may indicate a role for

iron-induced neuroinflammation. CSF ferritin levels increased across

the AD continuum,181 and higher CSF ferritin was associated with

worse cognition,181,182 worse CSF p-tau181,181,182 and with other

inflammatory proteins181 but not Aβ.181,182 The association between

CSF ferritin and p-tau181 was mediated by APOE.182 The contribution

of iron metabolism to AD disease progression appears to be a complex

process involvingmicroglial activation, p-tau, and APOE.

Other markers of neuroinflammation have been associated with

AD pathogenesis in recent studies. CSF IL-12p40, TNF-α, and IL-9,

biomarkers involved in the nuclear factor kappa-light-chain-enhancer

of activated B cells (NFκB) pathway that transcriptionally regulates

many genes involved in immune response,were associatedwith clinical

progression to MCI or AD.183 CSF progranulin acted in a protec-

tive manner. Higher levels of proganulin were associated with lower

Aβ burden in T+ and/or N+ participants only via interaction with

neuroinflammatory markers (sTNFR1, sTNFR2, TGF-β1, intercellular
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F IGURE 6 Conversion to dementia diagnosis by levels of CSF p-tau181 and sTNFR1. (A) ADNI. (B) Atlanta replication cohort. *Lower
conversion compared to those with p-tau181 ≥ 24.1 pg/mL but low yfsTNFR1 (P= 0.049 in ADNI and P= 0.038 in the Atlanta cohort). †Two
subgroups with p-tau181< 24.1 were combined due to small numbers, P= 0.068 versus high p-tau181 and low ysTNFR1. ADNI, Alzheimer’s
Disease Neuroimaging Initiative; CSF, cerebrospinal fluid; MCI, mild cognitive impairment; p-tau, phosphorylated tau; sTNFR1, soluble tumor
necrosis factor 1. Reproduced under open access fromHu et al.82

adhesion molecule 1, and vascular cell adhesion molecule 1).184 This

complex interplay of inflammatory proteins that are regulated by both

pro- and anti-inflammatory processes makes selection of a single AD-

relevant CSF biomarker of inflammation challenging. A study of 15

CSF inflammatory proteins involved in microglial- and T cell–mediated

inflammation identified sTNFR1 as a prognostic biomarker in MCI

that added predictive ability above and beyond CSF p-tau181.82 MCI

patients with the lowest levels of this biomarker in addition to the

highest levels of CSF p-Tau181 had the worst prognosis over 5 years

(Figure 6). Higher levels of sTNFR1 therefore appeared protective, and

this biomarker may provide complementary information to core AD

CSF biomarkers.

The detrimental effects of neuroinflammation appear to be exac-

erbated by various other factors such as sex, APOE status, and cere-

brovascular disease. Female APOE ε4 allele carriers with high levels of

CSF IL-12p40, TNF-α, and IL-9 had the greatest risk of progression,183

andhigher levels ofCSF sTNFR2were associatedwithworse cognition,

mediated by CSF p-tau181, in women but not men.185 Higher levels of

eight proinflammatory CSF biomarkers combined with lower levels of

cerebrovascular disease, measured by pulse pressure, were associated

with higher levels of CSF Aβ42 in CU ADNI participants.186 However,

in MCI participants this combination was associated with higher lev-

els of CSF p-tau181 and t-tau but not Aβ42.186 These results again

support the hypothesis of an initial protective function of neuroinflam-

mation followedby a shift to detrimental effects at later disease stages.

The contributions of vascular disease toADwill be further described in

Section 3.3; sex differences in Section 3.7.

Peripheral inflammation is frequently associated with cardiovascu-

lar disease and T2DM, which are risk factors for dementia. Recent

ADNIpapershave suggesteda role for peripheral inflammation in exac-

erbating disease progression. Pro-inflammatory cytokines, released by

neuroinflammation in response toAβdeposition, can recruit peripheral
immune cells which can take advantage of changes in the perme-

ability of the BBB and infiltrate the brain.187 Genes associated with

immune cell infiltration were identified from comparison of differ-

entially expressed BBB- and immune-related genes in blood from

ADNI participants with AD dementia and CU controls.187 Five genes

(TNFRSF13C, CXCL3, CXCL12, CCL4L1, and CCL1) overlapped between

the two sets and were associated with CSF AD biomarkers.187 Expres-

sion of a pro-inflammatory receptor (P2X purinoceptor 7) and two

integrins (CD11b and CD11c) involved in phagocytosis on leukocytes

was lower in A+ CU ADNI participants and associated with higher Aβ
burden, more severe atrophy, andworse cognition.188

In a UK Biobank study with validation in ADNI, two SNPs in two

AD risk alleles involved in neuroinflammation, CLU and CD33, were

associated with faster MCI to AD progression in the presence of C-

reactive protein (CRP), a marker of peripheral inflammation189 (Figure

S24 in supporting information). Elevated CRP was found only in APOE

ε4 homozygotes and was associated with increased CSF p-tau181 and

t-tau, and worse global cognition.190 These results implicate dysfunc-

tion of the peripheral immune system in AD progression, which may

exacerbate genetic vulnerability for AD.

A number of studies have associated immune-related vari-

ants with AD. Gene- and pathway-level mapping of rare eQTL in

ADNI blood samples and brain tissue from the Religious Orders

Study/Memory and Aging Project (ROSMAP) cohort identified rare

and low-frequency variants involved in inflammation mediated by

cytokines and chemokine signaling.191 These included five genes

previously linked to AD (ALOX5AP, CXCR2, FPR2, GRB2, IFNAR1). Rare

variants in NLRC3 were associated with neuroinflammation (CSF

YKL-40).192 These may act via counteracting the inhibitory action of

NLRC3 on the NFκB andNLRP3 inflammasome signaling pathways.192

Further evidence for the central role of these signaling pathways came

from a large case–control GWAS that included ADNI data as part

of the CHARGE consortium.157 Of the 75 risk loci identified, most

were expressed in microglia. Pathway enrichment analysis identified
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immune-associated gene sets involved in the regulation of the TNF-

α–mediated signaling pathway. Prioritized genes included SHARPIN,

RBCK1, and OTULIN, which implicated the involvement of the linear

ubiquitin chain assembly complex, essential for the activation of the

NLRP3 inflammasome and involved in TNF-α–mediated signaling.

A PRS constructed from these variants and others involved in APP

metabolism that excludedAPOEwas associatedwith 1.9-fold increased

risk of future conversion fromMCI to AD.157

3.2.4 Metabolic disturbances

Metabolic disturbances are an early feature of AD, resulting from the

combined influence of AD neuropathology, genetic variations, micro-

biota, immune response, and lifestyle and diet.193 Subtle changes in

metabolites, predominantly amino acids and lipids, were observed in

presymptomatic AD, preceding more pronounced changes later in dis-

ease progression in combined Knight ADRC and DIAN cohorts with

replication inADNI andROSMAP.194 A systemsbiology approachusing

data from the AD Metabolomics Consortium including ADNI data

investigated metabolite coexpression networks and their genetic reg-

ulators in relation to AD progression.193 Branched chain amino acids

and short chain acylcarnitines decreasedwith disease progressionwith

a concomitant increase in medium and long chain acylcarnitines over

time correlating with NFTs in the frontal cortex. This disturbance of

homeostasis was found to be regulated by ABCA1 and CPT1A, and

by adiponectin, a regulator of ABCA1. Expression of ABCA1 and lev-

els of adiponectin increased across diagnostic groups (Figure S25 in

supporting information). A second study linked serum metabolites

to global Aβ burden in addition to cognitive performance and MCI

progression to AD dementia.195 Seven phosphatidylcholines (PCs)

were associated with increased cortical Aβ burden and an acylcar-

nitine (C3) and kynurenine were associated with decreased cortical

Aβ burden. All differed in patterns of association with regional Aβ
burden (Figure S26 in supporting information). Of these metabolites,

C3, kynurenine, and several PCs were associated with worse memory

and executive function, and one PC was associated with MCI conver-

sion. A lipid metabolism PRS constructed from known AD risk loci

including CLU, SORL1, and ABCA7 was also associated with increased

cortical Aβ burden and with neurodegeneration.161 These studies sup-
port the role of a wide range of Aβ-dependent lipid perturbations

in influencing neurodegeneration, cognitive decline, and diagnostic

progression.

Perturbations of PC metabolism may underlie the vulnerability of

cholinergic neurons of the basal forebrain as one of the first sites

of neurodegeneration in response to Aβ and tau deposition. Cluster

analysis of serum lipids identified unsaturated PCs associatedwith sig-

nificantly higher GM atrophy in the basal forebrain nucleus basalis

of Meynert in participants with AD pathology compared to those

without.196 Cholinergic neurons have high metabolic demands for cell

membranemaintenance. These results support the hypothesis that AD

pathology contributes to their heightened vulnerability via abnormal

PCmetabolism.

Beyond PCs and acylcarnitines, other lipid classes have also been

implicated in AD. Levels of glycerophospholipids, cholesterol esters,

and complex sphingolipids, as well as PCs and acylcarnitines, were

altered in MCI and AD participants compared to CU, and associ-

ated with CSF p-tau181/Aβ42.197 Clustering analysis identified two

lipodomic endophenotypeswith hazard ratios forMCI clinical progres-

sion greater than that for the APOE ε4 allele (1.97 and 1.99 compared

to 1.48).197 Metabolism of sphingomyelin, a type of sphingolipid found

in the myelin sheath and in lipid rafts in microglia, astrocytes, and neu-

rons, is dysregulated in early AD.198 An integrated multi-omics study

focused on the sphingomyelin pathway, in which increased activity of

sphingomyelin phosphodiesterase in response to Aβ deposition results
in cleavage of sphingomyelin to form neurotoxic ceramides.198 The

study found that genes in this pathway were differentially expressed

in AD patients compared to controls and used multimodal neuroimag-

ing to identify variants (SPTLC3 and SGMS1) associated with AD

pathogenesis. A modulator of sphingosine-1-phosphate, an inhibitor

of sphingomyelin phosphodiesterase, was identified as a potential AD

drug target that may preserve synaptic function.

These metabolic changes reflect different components of the cas-

cade of disease progression. Membrane restructuring that leads to

brain Aβ accumulation is reflected in altered lipid metabolism195 and

these changes can trigger downstream responses such as apoptosis,

neuroinflammation, and APP processing within lipid rafts.195 Thus,

changes in lipid metabolism may mediate the relationship between Aβ
deposition and neurodegeneration. Activation of the kynurenine path-

way occurs in response to neuroinflammation, and increased levels of

acylcarnitines result from elevated oxidation of fatty acids and amino

acids, reflecting perturbation of mitochondrial function.195

3.2.5 Mitochondrial abnormalities

Mitochondrial dysfunction, resulting in a loss of energyproduction (vis-

ible by FDG PET), synapses, and neuronal vitality and longevity, plays

a key role in AD. The mitochondrial cascade hypothesis posits that

declining mitochondrial function resulting from age and genetic and

environmental factors is an upstream event that results in Aβ and tau

pathology.199 It is also possible that decliningmitochondrial function is

a byproduct of the amyloid cascade. Recent ADNI studies investigated

the involvement of mitochondrial dysfunction in disease progression

and identified novel therapeutic targets.

Several studies have investigated associations between genes

involved in mitochondrial function and AD. Mitochondria have a very

limited number of genes, and most genes involved in mitochondrial

function are encoded in the nucleus. Mitochondrial contributions

to pathogenesis are therefore likely attributable to nuclear genes.

An AD PRS comprising nuclear-encoded mitochondrial genes, and

three pathway PRS from genes involved in mitochondrial pathways,

were significantly associated with AD with odds ratios ranging from

1.22 to 2.01.200 Significant mitochondrial pathways were mitochon-

drial transport, hallmark oxidative phosphorylation, and response to

oxidative stress. A GWAS of mitochondrion-associated genes and
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subsequent epistasis analysis identified six modules of nuclear genes

associated with AD pathogenesis that interacted with mitochondrial

genes.201 Top hub genes identified through network analysis were

involved in synaptic function, signaling pathways, and neurodegener-

ative pathways, demonstrating how mitochondria-related biological

processes may contribute to AD pathogenesis beyond reduced energy

metabolism. The only gene identified from all investigative approaches

was APP, consistent with its central role.

Spatial patterns of tau pathology were associated with genes

involved in metabolism, as well as oxidative phosphorylation,

mitochondrial respiration, and electron transport, implicating mito-

chondrial dysfunction in addition to metabolic disturbances in tau

deposition.162

3.2.6 Tau deposition

Tau deposition is a critical step in AD pathogenesis. Brain tauopathy

was associated with 10 of the 20 top AD risk genes (ABCA7, BIN1,

CASS4, CLU, CR1, EPHA1, NME8, SORL1, DSG2, and ZCWPW1)202 and

with expressionof 7of the30 topnon-APOE risk alleles.156 Hyperphos-

phorylation of tau inmicrotubules occurs when signaling pathways are

altered for a variety of reasons including the Aβ-induced, microglia-

mediated inflammatory response. This causes tau deposition intoNFTs

with concomitant cytoskeletal abnormalities that result in synaptic

dysfunction preceding neuronal death.202 AD risk genes associated

with tau deposition have a variety of cellular functions involved in this

process such as tau phosphorylation (BIN1), lipid transport (ABCA7),

cellular adhesion signaling (CASS4), and immune function (CR1).202

Recent ADNI studies have provided further support for the crit-

ical function of tau deposition in the chain of events ultimately

resulting in cognitive impairment. The BIN1 SNP rs744373 risk allele

was associated with faster tau PET accumulation in ADNI and AIBL

participants.203 Carriers of the risk allele had greater global tau PET

and greater cognitive decline than noncarriers. Tau accumulation was

even greater in A+ risk allele carriers and mediated cognitive decline

(Figure S27 in supporting information). This is in agreement with the

modeling study that estimated tau to account for almost half of the

variance in cognitive decline154 and with a meta-analysis of 24 studies

including three ADNI studies that estimated an overall weighted effect

size of –0.46 (95%confidence interval [–0.73; –0.20],P<0.001) for the

association of tau protein biomarkers with episodic memory.204 Addi-

tionally, three novel variants (minor alleles inZBTB20, EYA4, andVNN2)

identified in a GWAS of brain tauopathy were associated with cogni-

tive decline mediated by tau PET.205 ZBTB20 is a transcription factor

expressed in dendritic cells previously identified in other neurological

disorders, and expression of VNN2 is regulated by the kinase, EYA4,

whichmay be involved in tau hyperphosphorylation.205

A haplotype of KLOTHO (KL), encoding a transmembrane protein

associated with brain health, was shown to be protective in combi-

nation with the APOE ε4 allele.206,207 KL*VS heterozygosity (carrying

only one copy of the functional haplotype encoding F352V and C370S)

lowered risk of Aβ positivity only in APOE ε4 carriers.206 At patho-

logical levels of global Aβ PET, KL*VS heterozygosity was associated

with lower increases in regional tau PET, especially in APOE ε4 allele

carriers, which mediated better memory207 (Figure S28 in supporting

information). These results suggest that KL*VS heterozygosity coun-

teracts the detrimental effects of the APOE ε4 allele on memory by

protecting against Aβ-related increases in tau deposition, contributing
to resilience.

3.2.7 Axonal and synaptic dysfunction

Axonal and synaptic dysfunction prior to neuronal death is a cru-

cial step in disease progression that has been difficult to measure,

largely because well-established biomarkers to track this process

are lacking.71 This step represents the first common point at which

different contributing factors to AD converge, not only hyperphospho-

rylated tau, but inflammation, oxidative stress, genetic contributions,

altered CA2+ homeostasis, and more.71 A compensatory response

involving microglia and astrocytes, which engulfs and clears accumu-

lated synaptic debris, is eventually overcome resulting in a net loss

of synapses.208 The development of CSF and, in some cases, plasma

biomarkers of axonal and synaptic damagehas allowed identificationof

additional genetic risk factors, better tracking of disease progression,

and assessment of whether putative medications are engaging their

target. ADNI’s collectionofCSFandblood samples has facilitatedmany

of these analyses.

An exploratory analysis that linked densities of 15 neurotransmitter

receptors derived from brain donors at the University of Düsseldorf

with ADNI neuroimaging data (tau, Aβ, and FDG PET, and struc-

tural, functional, and arterial spin labeling MRI) suggested that much

of the variability in cognitive decline can be attributed to receptor

differences.209 Differences in the interactions of three neurotransmit-

ter receptors with neuroimaging modalities explained up to 70% of

population variability in cognitive decline, primarily in executive func-

tion. Glutamatergic receptor interaction changes affected neuronal

activity and tau accumulation, and GABAergic receptor changes addi-

tionally affected Aβ accumulation. Cholinergic receptor interaction

changes affected tau accumulation. Dysfunction of these neurotrans-

mitters may be involved in AD pathological neurodegeneration.

A marker of presynaptic dysfunction, growth associated protein

43 (GAP43), reflects the importance of disruption of the synapses in

AD disease progression. GAP43 was measured in ADNI CSF samples

by the clinical neurochemistry lab at the Sahlgrenska University Hos-

pital, Sweden, and subsequent data were analyzed by many groups.

This biomarker increased over diagnostic classes210 and was strongly

associated with CSF p-tau181 levels,210–212 but less so with Aβ PET

positivity212 and not at all with CSF Aβ42.210,211 Higher baseline

levels or more rapidly increasing levels of CSF GAP43 were associ-

ated with greater hypometabolism,210–212 atrophy,210–212 cognitive

decline,210–212 and MCI to AD dementia progression.211,212 This dis-

crepancy between the association of CSF GAP43 with Aβ may be

because CSF Aβ42 positivity occurs earlier than Aβ PET positiv-

ity, positioning Aβ PET positivity closer to synaptic dysfunction. Aβ
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PET positivity worsened cognitive outcomes in GAP43-positive and

-negative participants.212 These studies suggest a pathway in which

synaptic dysfunction driven by increased tau pathology (and to a lesser

extent, Aβ deposition) results in neurodegeneration and cognitive

decline.

Not all synaptic dysfunction resulting in cognitive decline is

attributable to AD pathology. An ADNI study of CU and MCI par-

ticipants investigated associations of five putative CSF biomarkers of

synaptic damage and loss (chromogranin A, fatty acid binding protein,

neuronal pentraxin 2 [NPTX2], secretogranin, and neurosecretory pro-

tein VGF) with AD pathology, atrophy, and cognitive decline.213 Of

these proteins, NPTX2 had the greatest within-subject declines over

3 years and correlated most strongly with cognitive decline. Although

CSF NPTX2 declined more in participants with a positive baseline CSF

p-tau181/Aβ42 ratio than in those with a negative ratio, the greatest

decline was seen in participants with stable or slightly declining CSF

p-tau181. Therefore, CSFNPTX2, unlike CSFGAP43, may not be asso-

ciated with accelerated cognitive decline that occurs because of AD

pathology. This biomarker, which modulates postsynaptic AMPA-type

glutamate receptors, may therefore reflect other neurodegenerative

processes and represent a novel therapeutic target for intervention.

Like all CSF biomarkers, these require invasive lumbar puncture and

blood biomarkers are therefore preferable. However, peripheral lev-

els of brain proteins often do not reflect levels in the brain due to the

difficulty of diffusion through the BBB. The use of brain-derived EVs

that can be easily measured using techniques such as flow cytometry

circumvents this problem. A study using ADNI as a replication cohort

examined levels of N-methyl D-aspartate receptor 2A (NMDAR2A) in

brain-derived EVs.71 NMDAR2A is a glutamate receptor that is the

therapeutic target of memantine and so acts as a marker of synaptic

function. Levels of NMDAR2A were lower in AD compared to CU par-

ticipants andwere able to discriminate between these two groupswith

an AUC of 0.81 in the ADNI validation cohort.

A GWAS of the CSF biomarkers NfL (axonal damage), neuro-

granin (synaptic degeneration), and YLK-40 (astroglial activation) used

ADNI as a validation cohort.214 This study identified rs1548884 in

TMEM106B, an established risk gene for frontotemporal lobe dementia

(FTLD), as associated with CSFNfL. A further 124 SNPs were in strong

linkage disequilibriumwith this variant, 80 ofwhich reached a genome-

wide significance, pointing to the importance of this gene. In contrast,

established AD risk genes including APOE were not associated with

CSF NfL. ADNI whole genome sequencing data confirmed two novel

rare variants associatedwithAD.215 The first locuswas inDLG2, encod-

ing a synaptic scaffold protein thought to be downregulated early

in AD, and the second was in DTNB, encoding a neuronal-associated

protein possibly involved in postsynaptic function.

3.2.8 Trans-synaptic spread of tau

In AD, tau pathology usually spreads through the brain in a set pattern

reflected in Braak staging.216 From an initial hub in the EC, tau pathol-

ogy spreads from the MTL via synaptic connections to the neocortex,

where it becomes closely linked to neurodegeneration.217 Recent

ADNI studies of structural and functional connectivity based on MRI

tractography, cerebral blood flow (CBF), and rs-fMRI combined with

Aβ, tau, and FDG PET have provided insights into the trans-synaptic

spread of tau across these networks.

Tau PET data suggest that tau exhibited neuron to neuron trans-

mission along topological connections of the structural connectome of

WM from hub to non-hub regions, rather than along spatially adjacent

connections.218 This pattern of spread may be associated with alter-

ations in properties of WM. The pattern of association between WM

microstructural alterations characterized by greater diffusivity and

lower axonal packing density and tau PET resembled Braak stages.219

The degree of myelination in WM tracts also correlated with tau PET

spread, with lower levels of myelin sheath being associated with a

greater susceptibility of WM tracts to tau accumulation.220 Demyeli-

nation increased with disease severity and correlated with worse CSF

Aβ42, plasmaNfL, and accelerated cognitive decline.221

The trans-synaptic spread of tau is also associated with brain

functional networks. Tau deposition was higher within functional con-

nectivity networks.222 Clusters of tau deposition within functional

connectivity networks correlating with Braak stages were associated

not onlywith later Braak stages, butwith earlier Braak stages, suggest-

ing that tau spread may be bidirectional.222 Brain functional networks

become more diffuse and desegregated with aging.223 In A+ ADNI

participants with a given level of MTL tau in the EC, higher func-

tional network segregation was associated with slower rate of tau

accumulation in cortical regions corresponding to Braak stages III and

IV223 (Figure S29 in supporting information). This relationshipwas also

found in participants with different initial tau epicenters that resulted

in patterns of spread divergent from Braak staging.223 A mediation

analysis study in non-demented participants from the Baltimore Lon-

gitudinal Study of Aging (BLSA) and ADNI investigated the extent to

whichAβversus taudeposition in theMTLdrove taupropagation to the

neocortex.217 Greater MTL tau in the EC was associated with greater

neocortical tau in the inferior temporal gyrus (ITG), and this associ-

ation was stronger in A+ participants.217 Greater Aβ in the EC was

associated with greater ITG tau both directly and indirectly via EC

tau (Figure 7). Neurodegeneration markers were directly affected by

ITG tau, but only indirectly affected by EC Aβ. This synergistic interac-
tion betweenMTL Aβ and tau to influence tau neocortical propagation
and subsequent neurodegeneration suggests that removal of either

pathology would be insufficient to prevent neurodegeneration.

3.2.9 Genomic basis of neurodegeneration and
cognitive decline

As AD is a complex disease, neurodegeneration results from the con-

vergence of multiple pathways. The expression of eight variants in top

AD risk alleles in blood was associated with neurodegeneration.156

Threeof thesewerealso associatedwithbrain amyloidosis andonewas

also associated with tauopathy, implying that a range of common and

distinct mechanisms underlie neurodegeneration. ADNI genomics and
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F IGURE 7 Tau neocortical progression is influenced by synergistic interaction of medial temporal lobe amyloid and tau. (A), Schematic of
relationship among amyloid, medial temporal lobe tau, neocortical tau, and neurodegeneration. (B), Causal mediation analysis results for themodel
investigating the relationships among amyloid groups (+/–) and tau in the EC and the ITG in the BLSA and ADNI. The effect of amyloid on ITG tau is
mediated by EC tau. Arrow fromA to EC tau indicates the linear regression coefficient, and the gray and red arrows from EC tau to ITG tau indicate
the linear regression coefficients for the amyloid negative and positive groups, respectively. Both themediator and the outcomemodels were
adjusted for age, sex, APOE ε4 positivity, years of education, and 10-year cardiovascular disease risk. ***P< 0.001, **P< 0.01, *P< 0.05. A, amyloid;
ACME, average causal mediation effect; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; BLSA, Baltimore Longitudinal
Study of Aging; EC, entorhinal cortex; ITG, inferior temporal gyrus. Reproduced fromBilgel et al.217

proteomicsdata combinedwith imagingmodalities used in recent stud-

ies, often as part of larger consortia such as CHARGE, have revealed

contributors to neurodegeneration and cognition, and determined

underlyingmechanisms.

Inmost cases ofAD, the amygdala andhippocampus are sites of very

early atrophy in disease progression.Whenmachine learningwas used

to reprioritize hits from a GWAS of hippocampal and amygdala atro-

phy in AD, genes from several Aβ-related pathways predominated:224

(1) alteration of synaptic structure and function through effects on

the cytoskeleton, (2) changes in intracellular calcium levels resulting

in excitotoxicity, (3) apoptotic signaling via protein misfolding in the

endoplasmic reticulum, and (4) transcriptional regulation (Figure S30

in supporting information). A possible causal association mechanism

underlying hippocampal volume was identified using ADNI multiomics

data from blood and hippocampal tissues combinedwith causal associ-

ation tests.225 A non-coding SNP, rs1053218, was proposed to induce

a specific DNA methylation change that hyperactivated ANKRD37, a

gene involved in cell response to hypoxia, resulting in low hippocam-

pal volume. The exact mechanism by which ANKRD37 may exert its

effect on hippocampal volume is unknown, but hypoxia can impair BBB

function, accelerate Aβ accumulation, and increase tau hyperphos-

phorylation. These studies underscore the complexity of mechanisms

underlying neurodegeneration.

As described in Section 2.5.5, biomarkers of neurodegeneration are

not highly concordant as they reflect different, partially overlapping

processes. An established neurodegeneration marker is temporopari-

etal hypometabolism on FDG PET. A cross-sectional study of symp-

tomatic participants from ADNI and the University of California San

Francisco found that hypometabolism in this region was associated

with both local cortical thickness and tau PET SUVRbut not AβPET.226

Remote brain regions with strong structural connections, such as

the MTL, did not strongly influence temporoparietal hypometabolism,
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suggesting that hypometabolism in this region primarily reflects local

tau deposition and atrophy.226 Networks of hypometabolism became

progressively disrupted during disease progression in a longitudinal

study of CU participants,227 with the decreasing network modular-

ity and strength of connections particularly pronounced in women.

Eight major AD risk alleles (APOE, SORL1, CD33, FERMT2, TREM2,

MEF2C, CLU, and BIN1) significantly correlated with these metabolic

networks, most strongly in the MTL. Four of these genes are involved

in immune response, suggesting that inappropriate immune activation

may underlie hypometabolism.

A GWAS of regional cortical thickness combined with gene expres-

sion analysis identified two novel susceptibility loci underlying brain

atrophy.228 ST18 encodes a zinc finger transcription factor that is

highly expressed in the neocortex and, in fibroblasts, pierced influ-

enced the expression of TNF-α, IL-1α, and IL-6. NF1A is highly

expressed in astrocytes, implying a role in neuroinflammation.

A genome-wide association meta-analysis conducted in > 53,000

non-demented adults in the CHARGE consortium aimed to identify

genetic variants underlying verbal short-termmemoryand learning.229

The study identified four novel loci: (1) an intronic SNP in CDH18,

expressed in the brain and involved in maintenance of neuronal

and synaptic structure and neuronal cell adhesion; (2) 14 SNPs

in high linkage disequilibrium in 3p21.1, a transcriptionally active

region expressed in brain tissues and containing NT5DC2 and STAB1;

(3) 37 SNPs in an intergenic region in 13q21; and (4) an SNP in

the APOE–TOMM40–APOC1 locus at 19q13.3. Many of these com-

mon SNPs have been linked to other neurocognitive conditions

such as schizophrenia, learning difficulties, and anorexia nervosa.

ADNI data were also included in gene-based GWAS of longitudi-

nal episodic memory in seven consortia that notably included an

ethnically diverse population.230 The study identified DCDC2 as

associated with the maintenance of episodic memory in APOE ε4
non-carriers. Finally, a GWAS of the Trail Making Test Part A con-

ducted in ADNI identified a novel locus in INSC, a gene involved

in cytoskeleton organization, which was also associated with other

cognitive measures. The loci identified by the studies may repre-

sent new avenues of investigation for facilitating precision medicine

interventions.

3.2.10 Insights into cognitive decline

Subjective cognitive decline (SCD), that is, self-reported worse cogni-

tive performance, is measured in ADNI using self-report and informant

report ECog. While SCD has been associated with an increased risk of

AD, studies of its association with underlying AD pathology have been

mixed. This may be due to differences in definitions and assessments

of SCD between cohorts as rates of Aβ positivity varied widely (10%

to 76% at age 70) in SCD participants from cohorts in the 20 Amy-

loid Biomarker Study, which included ADNI.231 Specific characteristics

of SCD (memory complaints, attention/concentration complaints, and

informant confirmed complaints) were associated with Aβ positivity

only in research settings including ADNI and not in memory clinics.231

In the ADNI cohort alone, self-reported word finding complaints such

as “forgetting the names of objects” measured in the ECog-Language

subscale predicted lower CSFAβ42 levels and correlatedwith regional
atrophy.232

Memory awareness, defined as the difference between subjective

and objective cognitive decline, decreases with increasing cognitive

impairment.233,234 In the IMAP cohort with replication in ADNI, sub-

jective memory decline remained similar across increasingly impaired

diagnostic groups whereas objective memory decline increased.233 In

CU participants, greater subjective memory decline was associated

with greater neurodegeneration but the opposite was true in later

diagnostic stages (Figure S31 in supporting information).233 Informant

reports of complaints across the four domains of ECog were lower

than self-reported complaints in CU participants, in good agreement

in MCI participants, and higher in AD participants.234 Anosognosia

(lack of awareness of impairment) was associated with greater tau but

not Aβ deposition in impaired subjects.235 These reports suggest that

anosognosia increases over time with increasing tau deposition and

neurodegeneration and that subjective memory complaints should be

interpreted differently in those with normal cognition compared to

those with dementia.

An objective measure of subtle cognitive impairment (SCI) is

included in the NIA-AA staging framework for preclinical AD. In ADNI

CUparticipants, baseline scoresof themodifiedPACC,whichmeasures

cognitive changes that do not manifest as conspicuous impairment,

were associated with baseline and longitudinal Aβ deposition, sugges-
tive of tau deposition, and associated with greater clinical progression

(Figure S32 in supporting information).236 Subtle deficits in multiple

cognitive domains may pose an additional risk of future decline. ADNI

CU participants with deficits in both memory and executive function

performance onMoCA237 were associated with greater global Aβ bur-
den and entorhinal cortical and hippocampal atrophy than those with

only memory deficits.238

These studies support the idea that subtle cognitive changes, both

subjective and objective, occur very early in disease progression and

are associated with AD pathology.

3.3 Contribution of cerebrovascular disease to
disease progression

Cerebrovascular disease is a well-known risk factor for AD and is

found as a co-pathology in 70%of people diagnosedwithADdementia.

Risk of cardiovascular disease is associated with cerebrovascular dys-

function, and high scores on the Framingham General Cardiovascular

Disease Risk Score were associated with worse baseline and longitu-

dinal measures of glucose metabolism, executive function and other

cognitive measures, and clinical progression.239 Recent ADNI studies

have continued to investigate the effects of cerebrovascular disease on

disease progression using measures of CBF, an indicator of neurovas-

cular function detected using arterial spin labeling MRI, and WMH

burden, an MRI marker of small vessel cerebrovascular disease. How-

ever, these studies are limited because participants with moderate to
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severe cerebrovascular disease were excluded in ADNI-1, ADNI-GO,

ADNI-2, and ADNI-3.

Impaired CBFwas associatedwith AD risk alleles.240 AnAD genetic

risk score was consistently associated with worse regional CBF over

the lifespan. Moreover, regions of high expression of AD risk genes

overlapped with regions of worse cerebral hypoperfusion in areas

affected early in the disease progression.240 Lower baseline entorhi-

nal, but not hippocampal, CBF predicted entorhinal cortical thinning,

faster memory decline, and increasing WMH levels in non-demented

participants.241 CBF alterations at the site of early disease may pre-

cede downstream events including the development of WMH. Alter-

natively, early synapse loss may lead to reduced CBF. The cause–effect

relationship of these factors remains unclear.

ADNI, like many AD cohorts, restricts the amount of vascular co-

pathology in its participants. To address this limitation, one study

investigated the association of WMH burden with neurodegeneration

and cognition inADNIMCIparticipants stratifiedbyWMHburden, and

inMCI participants from an external “real-world” cohort across the AD

spectrum recruited from stroke prevention clinics.242 Total WMH vol-

ume was associated with poor cognition, especially EF and semantic

fluency, and this association was mediated primarily by cortical thick-

ness inAD typical regions. To amuch lesser degree, this associationwas

mediated by Aβ (Figure S33 in supporting information). The authors

suggested that this latter Aβ-mediated pathway reflects exacerbation

of AD-related pathology via reduced Aβ clearance and/or induction of
neuroinflammatory responses, as described in Sections 3.2.2 and 3.2.3.

Additional support for this less prominent pathway comes froma study

of CU participants243 in which lower baseline CSF Aβ42 together with
higher WMH were associated with worse memory but not executive

function. Small vessel disease early in AD progression combined with

abnormal Aβ may therefore promote an AD-typical disease pathway

characterized bymemory impairment.

In contrast, a study that followed CU, A+MCI, and A+ AD partici-

pants for up to 13 years244 reported that WMH burden was not only

associated with memory impairment but also EF and global cognition

deficits, with a maximal effect in MCI. This may represent a mixture

of Aβ-dependent and -independent pathways for the effect of small

vessel disease. The associations ofWMHburdenwith deficits in differ-

ent cognitive domains may be explained by their differential effect on

regional cortical thickness. Global WMH were associated with lower

thickness of frontotemporal regions in CU participants and cingulate

regions inMCI participants, independent of regional Aβ deposition.245

Regional WMH, when covaried for cortical atrophy patterns in A+

participants with AD dementia, accounted for the majority of the

canonical AD pattern of cortical thinning except for parahippocampal

and entorhinal regions and the precuneus.246 These studies support a

major contribution ofWMHburden on neurodegeneration in AD.

These studies suggest that vascular dysregulation and hypoperfu-

sion early in disease progression may be an important AD pathophys-

iological mechanism, influenced by AD risk alleles. This contributes to

Aβdeposition, cortical atrophy, thedevelopmentof regionalWMH, and

memory impairment early in disease progression. At the MCI stage,

WMH indifferent regions contribute to impairments of other cognitive

domains and global cognitive impairment, independent of Aβ deposi-
tion. This Aβ-dependent and Aβ-independent dichotomy of the effects

of cerebrovascular disease on AD strongly supports its treatment as a

therapeutic strategy.

3.4 Biological subtypes of AD

Patients on the AD spectrum (i.e., A+), often diverge from the “typi-

cal” AD pathway described in Section 3.2. They differ in rate of decline,

distribution of tau and neurodegeneration, and impairment of specific

cognitivedomains.What is thebiological basis of thesedeviations?This

section will discuss types of biological heterogeneity and what factors

underlie these differences in disease progression. AD subtypes have

been previously identified using ADNI data from a variety of modal-

ities, primarily imaging and cognition (reviewed in Veitch et al.8,9).

Recent studies have refined these subtypes and identified novel sub-

types using CSF proteomics, lipid profiles, mitochondrial function, and

comorbidities.

3.4.1 Amyloid-based biological subtypes

Aβ may not follow a universal trajectory of accumulation assumed to

begin in medial cortical regions and to spread sequentially to corti-

cal association regions followed by occipital striatal regions. A Subtype

and Stage Inference (SuStaIn) model analysis of Aβ PET scans from five

cohorts including ADNI247 recapitulated the stereotypical pattern of

spread when the model was set to recover one trajectory. However,

an optimized model identified three spatiotemporal subtypes based

on regions of initial cortical Aβ accumulation (Figure S34 in support-

ing information). Approximately half of participants were assigned a

subtype with an initial site of cortical deposition in the orbitofrontal

region. This frontal subtype was characterized by having the highest

proportion of APOE ε4 allele carriers, and higher Aβ and tau burden.

Approximately one quarter were assigned a parietal subtype with ini-

tial Aβ deposition in the precuneus. This subtype was characterized

by intermediate APOE ε4 allele carriage and lower age. The remainder

belonged to anoccipital groupwith the lowestAPOE ε4allele frequency
and highest proportion of participants with dementia. The Aβ depo-

sition trajectories of all subtypes converged at late stages of disease

despite the initial differences. The association of the subtypes with

cognitive impairment and underlying pathophysiology remains to be

determined.

3.4.2 Tau-based biological subtypes

The SuStain model was similarly applied to tau PET scans from five

cohorts including ADNI.248 This study identified four subtypes charac-

terized by different spatiotemporal patterns of tau deposition (Figure

S35 in supporting information). These subtypeswere consistent within

individuals across disease progression and different PET tracers. One
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third of participants had a limbic predominant–pattern of tau pro-

gression resembling Braak staging with an estimated center of tau

spreading in the EC. This limbic predominant–subtype was charac-

terized by better global cognition than other subtypes. Slightly fewer

participants were assigned a subtype with an estimated tau spreading

center in the fusiform gyrus. This posterior-predominant subtype was

characterized by occipital lobe binding and slower cognitive decline

than other subtypes and may include the posterior cortical atrophy

variant of AD. Approximately one fifth of participants had a lateral

temporal subtype with an estimated center for tau spreading in the

ITG and a pronounced lateralization of tau spreading from the tempo-

ral to parietal and frontal cortices. This subtype was characterized by

faster cognitive decline in global cognition but not memory and may

include the logopenic primary progressive aphasia AD variant. Finally,

anMTL-sparing subtype with early precuneus tau binding spreading in

a right-sided manner to the temporoparietal and frontal cortices was

identified in 18% of participants. These individuals were younger, had

worse executive function and ahigher overall tau burden, andwere less

likely to be APOE ε4 allele carriers. The latter subtypemay typify early-

onset disease. A combined tau PET and rs-fMRI study of early versus

late sporadic disease249 examined the association of tau PET uptake

with hub regions of brain functional networks. Younger age of onset,

but not disease severity, was associated with a hippocampal-sparing

tau PET pattern with early deposition in frontoparietal hub regions

vital for cognitive function. Greater tau deposition in these hub regions

was associated with faster subsequent tau accumulation and memory

decline, suggesting preferential tau spread along themany connections

from a key hub region.

How do tau subtypes relate to atrophy subtypes? For comparison,

data-driven clusters were derived from both tau PET and structural

MRI in participantswith biomarker-definedAD.250 Four clusters of tau

deposition on a gradient of severitywere identified. The largest cluster,

Cluster I, represented early tau deposition and contained four subclus-

ters largely congruent with those identified by Vogel et al.248 Clusters

II to IV had incrementally greater cognitive impairment and progres-

sion. Cluster II was distinguished by a high frequency of the APOE

ε4 allele. Participants in Cluster IV were substantially younger than

other clusters and had the largest brain age gap and fastest progres-

sion, likely representing a youngonset groupwith faster taudeposition.

All tau clusters were more highly associated with clinical measures

than the three atrophy-defined clusters, which were described as hav-

ing limbic predominant, diffuse, and hippocampal-sparing patterns of

atrophy. These atrophy-based clusters were modulated to a greater

degree by WMH volume and to a lesser degree by APOE genotype

than tau-based clusters. The authors suggest that these patterns of

tau spread are closely tied to clinical progression whereas those of

atrophy may more closely reflect the influence of co-pathologies.

Tau and atrophy-based clusters overlapped incompletely with the

greatest degree of overlap between the hippocampal-sparing tau sub-

cluster and the hippocampal-sparing atrophy cluster. This is consistent

with another study demonstrating that tau PET was associated with

neurodegeneration primarily within theMTL in CU participants.251

3.4.3 Neurodegeneration-based biological
subtypes

AD subtypes based on neurodegeneration consistently identify a “typ-

ical AD” subtype as well as a subtype that spares neurodegeneration

in “typical” AD regions. The “typical” subtype derived from patterns of

hypometabolism, found in approximately half of AD dementia partici-

pants, showed classic posterior temporoparietal hypometabolismwith

lesserMTLhypometabolism252 (Figure S36 in supporting information).

Variations in this “typical” AD pattern of hypometabolismwere associ-

ated with specific impairments to memory, language, and visuospatial

ability in a study of ADdementia participants stratified by primary cog-

nitive domain impairment.253 A second major subtype was character-

izedbypredominant hypometabolism in limbic regions, severememory

impairments but fewer impairments in other cognitive domains, and

slower progression to AD. A third minor group had a more frontal

pattern of hypometabolism, and more severe EF dysfunction.252 The

limbic predominant and “typical” AD subtypes were also found in MCI

participants252,254 in whom the limbic-predominant subtypewas asso-

ciated with slower progression to AD and a non-AD AT(N) profile of

biomarkers.254

Atrophy-based subtypes have been extensively studied (for previ-

ous ADNI studies, see Veitch et al.8,9) and validated in clinical settings

after identification in research cohorts.255 A systematic review256

proposed that atrophy exists over two orthogonal dimensions: typi-

cality, ranging from a “typical” AD limbic-predominant subtype to a

hippocampal-sparing subtype; and severity, spanning minimal atrophy

to typical AD dementia. The question of how these dimensions relate

to AD pathology and additional co-pathologies was investigated using

ante mortem MRI atrophy subtyping together with post mortem neu-

ropathological analysis of participants with MCI and AD dementia.257

Although the typicality and severity dimensions were not significantly

associated, the limbic predominant subtype and typical AD subtype

weremoreassociated in a regional-specificmannerwith allpostmortem

pathologies considered (Aβ plaques, NFTs, TDP-43, and α-syn) than
the hippocampal-sparing andminimal-atrophy subtypes (Figure S37 in

supporting information). The authors suggest that despite lying on dif-

ferent dimensions, the limbic predominant and typical AD subtypes

may be biologically more susceptible to a variety of pathologies than

the hippocampal-sparing subtype,whichmay represent a different bio-

logical pathway. The minimal atrophy subtype may represent an early

stage of an undetermined biological pathway.

The consistent reporting of subtypes with predominantly cortical

or limbic atrophy may reflect underlying dissociable MTL functional

networks. Disruption of functional connectivity networks is a fea-

ture of AD (for previous ADNI studies, see Veitch et al.8,9). The

anterior temporal networkmay underlie limbic-predominant subtypes

whereas the default mode network (DMN) may underlie cortical-

predominant subtypes, with these networks having differential sus-

ceptibility to accumulation of co-pathologies.258 Significant nodal

and global changes in functional connectivity were reported in four

cluster-defined AD atrophy subtypes in ADNI and German Center for
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Neurodegenerative Diseases Longitudinal Cognitive Impairment and

Dementia Study.69 SubtypeswithMTL predominant or diffuse atrophy

had worse CSF biomarkers and pronounced cognitive decline corre-

sponding to reduced intranetwork connectivity in the default mode,

dorsal attention, visual, and limbic networks, and also with reduced

global efficiency and regional clustering. These subtypes may repre-

sent a spectrum of “typical” AD. A limbic-predominant subtype with

less prominent cognitive decline despite worse CSF biomarkers was

characterized by substantial nodal network failure but only slight

perturbations to global networks. A mild atrophy subtype with less

cognitive decline showed pronounced global network failure.

Subtypes identified from clustering analysis of rs-fMRI data from

the multicenter Alzheimer’s Disease Imaging Consortium and repli-

cated in ADNI had some similaritieswith atrophy-defined subtypes.259

One subtype resembling “typical” AD was characterized by decreased

functional connectivity in the DMN, widespread cortical thinning,

and fastest cognitive decline. Another subtype, characterized by mild

and diffuse functional connectivity disruption, slow decline, and local

atrophy, resembled the mild atrophy subtype. A third subtype had

decreased functional connectivity in the anterior cingulate cortex

but increased connectivity in the prefrontal cortex, preserved hip-

pocampal volume, and word learning but impaired visuospatial ability

and severe atrophy in the anterior cingulate cortex. The authors

suggest that this corresponds to the posterior subtype identified

by tau PET.248 A fourth subtype had lower word learning abil-

ity and visuospatial learning together with patterns of decreased

connectivity and cortical volume loss consistent with corticobasal

syndrome.

3.4.4 The influence of co-pathologies

At autopsy, the presence of co-pathologies is so common that “pure”

AD is not the most prevalent form. For instance, 42% of autop-

sied ADNI AD dementia cases had α-syn, found in Lewy bodies;

21% had TDP-43, found in limbic-predominant age-related TDP-43

encephalopathy (LATE); 18%had agyrophilic grain disease; and 6%had

hippocampal sclerosis.260 Thesepathologiesmaymodulate the suscep-

tibility of biological subtypes to neurodegeneration. Clustering analy-

sis applied to tau PET and FDG PET revealed six groups that differed

in degree and region of neurodegeneration, but not tau deposition.258

The largest group had the expected hypometabolism for the level of

tau. Compared to this canonical group, three groups, deemed resilient

to tau deposition, had less than expected hypometabolism (two in cor-

tical and one in limbic regions) and lower cognitive decline. Two groups,

deemed susceptible to tau deposition, had worse hypometabolism

than expected (one in cortical and one in limbic regions) and greater

cognitive decline. The susceptible groups had a greater number of

vascular risk factors. The limbic susceptible group had a pattern of

hypometabolism suggestive of TDP-43. In contrast, the cortical sus-

ceptible group also had a greater burden of α-syn and other imaging

markers indicative of Lewy body disease (Figure 8). The association of

a pattern ofMTL-sparing longitudinal cortical neurodegeneration with

dementia with Lewy bodies (DLB) was also reported in a study of par-

ticipants with autopsy-confirmed AD and AD with concomitant Lewy

body disease.261

Similar canonical, resilient, and susceptible groups were identified

from the degree of mismatch between tau deposition and cortical

thickness.262 Susceptible groups had greater WMH burden, and the

authors suggested that the pattern of high temporal/limbic atrophy in

some susceptible groups is consistent with the typical sites of TDP-

43 deposition and with hippocampal sclerosis. Therefore, additional

co-pathologies may contribute to heterogeneity in neurodegeneration

beyond that expected from tau deposition. They may predominantly

modulate neurodegeneration in regions beyond the MTL. The hip-

pocampus, amygdala, and parahippocampal gyrus were strongly asso-

ciated with clinically diagnosed dementia after accounting for not only

AD neuropathology but also Lewy bodies and TDP-43.263 Hippocam-

pal sclerosis was the exception, impacting cognition via hippocampal

atrophy.

The importanceof co-pathologies inADwasunderscoredby ameta-

analysis of cohorts includingADNI that examined links betweenknown

AD risk variants and non-AD pathologies.264 Variants in several genes

were found to be significantly associated with LATE neuropathologic

changes (GRN and TMEM106B) and hippocampal sclerosis (TNIP1 and

WNT3p), and others trended toward association (SORL1 and TPCN1

with LATE neuropathologic change, USP6NL and BIN1with Lewy body

pathology).

3.4.5 Atypical AT(N) biomarker-defined groups

Several recent ADNI studies have investigated two groups defined

by atypical AT(N) biomarker profiles. The first is SNAP having tau

deposition and/or neurodegeneration in the absence of Aβ deposi-

tion (A–[T/N]+).265 The second is characterized by neurodegeneration

in the absence of tau despite being A+ (A+T–N+). SNAP partici-

pants with ante mortemMRI and autopsy data from ADNI and UPenn

had a greater number of neuropathological diagnoses such as FTLD,

Lewy body disease, progressive supranuclear palsy, and agyrophilic

grain disease than those with biomarker-defined AD.266 A subset of

SNAP with elevated tau in the absence of Aβ deposition is consis-

tent with primary age-related tauopathy.267 These individuals had

AD-characteristic neurodegeneration along with a higher WMH bur-

den. The authors suggest that subthreshold Aβ may interact with

cerebrovascular disease to produce an AD-like pattern of decline. In

contrast, in A+T–N+MCI participants had lower episodicmemory loss

and greater hippocampal volume at baseline, slower decline across all

cognitive domains, and less widespread cortical thinning restricted to

the MTL than A+T+(N)+ individuals. These characteristics had more

in common with A–T–N+ MCI participants, suggesting that a non-

AD neuropathological process is driving neurodegeneration in T–MCI

subjects. The authors suggest that non-AD pathologies such as cere-

brovasculardisease, LATE, or Lewybodydiseasemaydrive themajority

of neurodegeneration in these individuals on top of a background of

preclinical AD.239
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F IGURE 8 The dissociation of tau pathology and neuronal hypometabolism is related to co-pathologies. (A), Representative 18F-FDG SUVR
images from six patients. Susceptible patients shown here have imaging findings consistent with co-pathology (sagittal views are slices through the
right hemisphere). The cortical susceptible group (middle) had participants with cingulate island sign, the sparing of posterior cingulate cortex
(white arrowheads) relative to cuneus (black arrowheads). The limbic susceptible group (right) had participants withMTL and FSO 18F-FDG
hypometabolism (white arrowheads) relative to inferior temporal gyrus (I, black arrowheads). Vascular pathology features in susceptible groups
included greater (B) vascular risk factors and (C) subcortical infarcts. The cortical susceptible group (D) had higher cingulate island ratio across
groups, (E) had significantly worse clock drawing scores, and trended toward (F) greater proportion of participants with hallucinations on the
Neuropsychiatric Inventory (NPI) itemB and (G) worse ADNI visuospatial scores than the other groups. The limbic susceptible group had larger (H)
I/MTL/FSO 18F-FDG ratio andworseMTL asymmetry in (I) 18F-FDG SUVR and (J) thickness, and significantly worse (K) categorical fluency, (I)
language, and (M)memory z scores. Box plots show data points as dots, mean as an X symbol, median as themiddle box line, first quartile (Q1) and
third quartiles (Q3) as box edges (denoting the IQR), whiskers as theminimum/maximum points and outliers based on thresholds<Q1− 1.5(IQR)
or>Q3+ 1.5(IQR). Cognitive test comparisons included Aβ status, education, sex, and age as covariates. Significant differences in pairwise
comparisons by two-tailed likelihood ratio tests are denoted by *P< 0.05, **P< 0.005. Aβ, amyloid beta; ADNI, Alzheimer’s Disease Neuroimaging
Initiative; FDG, 18F-fluorodeoxyglucose; FSO, frontal supraorbital; IQR, interquartile range;MTL, medial temporal lobe; SUVR, standardized
uptake value ratio. Reproduced under open access fromDuong et al.258

3.4.6 AD subtypes derived from early metabolic
processes

Pathophysiological processesbeyond theAβ and taupathwaysor those
of co-pathologies may underlie AD heterogeneity. Early disruptions

to BBB function, lipid metabolism, and mitochondrial function typify

disease progression, as described in Sections 3.2.2, 3.2.4, and 3.2.5.

Subtypes based on distinct CSF proteomic profiles, previously iden-

tified in AD participants,268 were detected in A– CU participants.269

A neuronal hyperplasticity subtype with elevated levels of BACE1

had increasing CSF p-tau181 and decreasing CSF Aβ42, and a BBB

dysfunction subtype characterized by neuronal hypoplasticity showed

only decreasing CSF Aβ42. The early detection of the subtypes prior

to CSF biomarker abnormality suggests that differences in early
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hyperplasticity-related processes or BBB dysfunction may be a source

of heterogeneity in disease progression. Subgroups defined by SNPs

derived from mitochondrial haplogroup J, previously associated with

AD risk, had differing rates of progression independently of CSF

Aβ42 and p-tau181/t-tau.270 Two subgroups with exacerbating SNPs

had elevated risk of AD, small hippocampal volume, worse glucose

metabolism, and greater clinical conversion than other subgroups,

including one with protective SNPs. Lipidomic signatures were also

associated with differing risk of clinical progression, reflecting under-

lying metabolic differences.197 Five clusters of lipids were identified in

CU andMCI participants, two ofwhichwere associatedwith a high risk

of clinical progression.

3.4.7 Summary of recent ADNI studies of AD
subtypes

Recent ADNI studies have contributed considerably to our under-

standing of AD biological subtypes. Variability in disease progression

appears to arise before AD biomarkers become abnormal, reflected

in differences in lipid composition or CSF proteins. Aβ deposition

may diverge from the stereotypical pattern of spread with some

participants having different sites of initial cortical deposition that

later converge. AD subtypes based on tau deposition and atrophy

overlap to some degree, with tau deposition more associated with

APOE ε4 genotype and atrophy influenced to a greater extent by

co-pathologies. Biological subtypes are summarized in Figure S38 in

supporting information, along the conceptual axes of typicality and

severity. Limbic-predominant and hippocampal-sparing subtypes are

consistently identified and may be related to APOE ε4 genotype and

the effect of co-pathologies on atrophy. Other cortical predominant

subtypes may represent atypical non-amnestic AD presentations.

3.5 Resilience to cognitive decline

Just as factors suchaspresenceof comorbidities andAPOE ε4genotype
can exacerbate neurodegeneration and cognitive decline beyond what

would be expected for a given level of AD pathology, resilience can

maintain cognition or brain structure in the face of AD pathology.256

This section will describe investigations of the effects andmechanisms

of resilience using ADNI data.

3.5.1 Effects of resilience

Cognitive reserve,271 defined as the difference between actual and

expected cognitive function for a level of AD pathology, had a dif-

ferential effect depending on diagnostic status.272 It was associated

with a lower rate of progression in CU and MCI participants, but

higher rate of decline in participants with AD dementia. The accel-

eration of decline later in disease progression may signal the point

at which cognitive reserve mechanisms are “overrun” by AD pathol-

ogy after initially delaying cognitive impairment. Cognitive resilience

(defined in a similar way as cognitive reserve) and brain resilience

(defined by hippocampal GMmeasures) to Aβ deposition were studied
in CU individuals from the Chinese Sino Longitudinal Study on Cog-

nitive Decline cohort and ADNI.273 Both measures were associated

with younger age, female sex, and better cognitive performance, and

predicted longitudinal cognitive decline.

3.5.2 Mechanisms of resilience

An understanding of mechanisms underlying cognitive resilience is

important for clinical management of AD and for understanding

disease trajectory inpatients. Featuresof functional and structural net-

worksmayunderlie cognitive resilience.A typical brainwithout disease

has tightly connected functional networks with high intra-network

connectivity and low inter-network connectivity.274 This high system

segregation is correlated with higher global cognitive performance.274

In DIAN participants with autosomal dominant AD and in ADNI A+

participants, higher functional network segregation was associated

with lower than expected episodic memory or global cognitive decline

for a given temporal lobe tau burden.274 Moreover, higher functional

network segregation was associated with slower tau accumulation rel-

ative to baseline entorhinal tau burden.223 The rs-fMRI metric reflect-

ing segregation of functional networks may therefore be a biomarker

of cognitive resilience. The protective effect of this functional net-

work topology was highest in CU participants and diminished in MCI

and AD participants, and was greatest in APOE ε4 non-carriers.275

Other mechanisms of cognitive resilience to AD pathology identi-

fied in recent ADNI studies include redundancy in nodes of posterior

hippocampal functional networks276 and higher structural network

efficiency.277

Recent ADNI studies have pointed to a genetic component of

resilience. In CU participants from a multi-cohort study including

ADNI, there was a dose–response of the APOE ε2 allele for larger

GM volumes in areas related to cognitive resilience, and an opposite

effect for the APOE ε4 allele.278 The APOE ε2 allele may contribute to

resilience through the lowering of global Aβ burden.APOE ε2 allele car-
riers had a lower global Aβ burden but no difference in tau burden

or accumulation compared to APOE ε3/ε3 homozygotes.279 Similarly,

lower hippocampal volume in APOE ε2 allele carriers was mediated by

baseline CSF Aβ42.280 A GWAS of cognitive resilience to Aβ burden in
four cohorts including ADNI identified an SNP (rs62263260) related

to expression of the SEMA5B gene, which is involved in synaptic prun-

ing and axonal branching.280 Synaptic plasticity was also implicated in

a second GWAS of cognitive resilience to Aβ burden281 that identi-

fied CNOT7 linked to synaptic plasticity and hippocampal-dependent

learning and memory. This association was not due to cerebrovascular

disease or increases in tau deposition. Many other loci may contribute

to resilience.AGWASacross eight independent studies includingADNI

was conducted in individuals who remained CU despite having the

highest genetic risk outside of the APOE ε4 allele.282 Thousands of

SNPs were identified and from these, a polygenic resilience score was
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constructed. This polygenic resilience score was positively correlated

with a PRS. In other words, individuals whose cognition remained

intact despite having high genetic risk for AD also had a high poly-

genic resilience score. The authors suggest that multiple resilience loci

interact with AD risk loci to protect against AD pathology.282

3.5.3 Resilience in underrepresented populations

Factors such as socioeconomic status may impact resilience. Educa-

tion is often used as a proxy for cognitive reserve, and high levels

of education are generally recognized as being protective. How-

ever, while educational attainment was protective against memory

loss in ADNI White participants, this effect was not observed in

Black participants.283 This may reflect a lower quality of education

experienced by Black/African-American older adults or a combina-

tion of other factors that contribute to ethnocultural health dis-

parities. Caution should therefore be taken in interpreting ADNI

studies of cognitive reserve using education as a proxy. This result

underscores the need for a more diverse ADNI cohort to further

study the differential contributors to resilience in underrepresented

populations.

3.6 Effects of the APOE genotype

Recent ADNI studies support a differential effect of the APOE ε4 and

ε3 alleles compared to the protective ε2 allele in modulating disease

progression. The ε4 risk allele affected hippocampal shape in a simi-

lar manner to age,284 and was associated with greater atrophy of the

cholinergic basal forebrain.285 Both these studies suggest involvement

of the ε4 allele in sites of early neurodegeneration. In non-demented

older adults, higher cortical Aβ burden predicted faster hippocampal

atrophy in ε4carriers only but predicted faster cognitive decline in both
ε4 carriers and non-carriers.286 In contrast, greater WMH predicted

faster hippocampal atrophy in ε4 non-carriers only.286

APOE ε2 carriers may have alternative pathways of disease pro-

gression. Using a discriminative event-based model to estimate the

ordering of biomarkers, ε4 carriers had a sequence similar to that

described in Section 3.2 in which CSF Aβ42 abnormality precedes

that of CSF p-tau181 and hippocampal volume.287 A similar, but

less certain, ordering of biomarkers was estimated in ε3 homozy-

gotes. However, the order estimated for ε2 carriers differed substan-

tially with CSF neurogranin and MMSE predicted as early biomark-

ers with low confidence, and CSF p-tau181 preceding CSF Aβ42
abnormality.287 A large overlap of genes was reported between ε3
and ε4 carriers in an omics study including ADNI data.288 Func-

tions of these genes were consistent with “typical” AD processes and

included mitochondrial physiology, Aβ physiology, vesicle mediated

transport, and the immune response. APOE ε2 carriers had a distinct

set of genes with novel functions including chromatin remodeling and

regulation.

3.7 Effects of sex

Sex affects the prevalence and disease course of AD, and the impact

of risk factors. Recent ADNI studies have described the influence of

sex on modifying disease progression, important interactions with the

APOE ε4 allele that enhance vulnerability to AD pathology, and the

effect of sex-specific resilience on AD pathology.

A clustering study of MCI participants based on multimodal factors

identified sex-specific groups of differing prognoses.289 In the worst

prognosis group, there were almost twice as many female than male

APOE ε4 carriers, suggesting that the ε4 allele has a disproportion-

ately detrimental effect in women. Women had a greater association

between whole brain atrophy and functional decline than men, and

female ε4 carriers had the greatest functional decline for a given level

of whole brain atrophy.290 The interaction between sex and APOE

influences the accumulation of AD pathology. Female ε4 carriers had

a faster accumulation of Aβ in the striatum, followed by accumu-

lation of tau in limbic regions than male ε4 carriers or female ε4
non-carriers.291 After correcting for Aβ load, female ε4 carriers com-

pared to non-carriers had significantly higher tau burden in MTL sites

corresponding to Braak stages I and II.292 In contrast, there was no

difference in regional tau burden between male ε4 carriers and non-

carriers (Figure S39 in supporting information). APOE ε4 gene dosage

further affects regional tau binding in a sex-specific manner. Male

ε4 homozygotes had significantly greater regional tau binding than

heterozygotes or non-carriers.293 However, in women, this increased

regional tau deposition was observed for both ε4 heterozygotes and

homozygotes compared to non-carriers.293 Female sex may therefore

enhance the deleterious effect of the APOE ε4 on tau binding, con-

tributing to the differential risk of AD associatedwith this allele inmen

andwomen. Consensus metabolic signatures differed by sex and APOE

ε4 allele carriage andwere associatedwithmemory and ADAS-Cog,294

suggesting differences in underlying metabolic processes. Cardiovas-

cular risk may further modify this sex-specific effect in a three-way

interaction. In a study of CU participants, high risk of cardiovascu-

lar disease was associated with higher regional tau deposition in the

EC, inferior temporal cortex, and composite temporal ROIs in female

but not male APOE ε4 carriers295 (Figure S40 in supporting informa-

tion). The authors suggest that treatment of cardiovascular risk factors

such as hypertension may be of particular benefit in female APOE ε4
carriers.

Differences in resilience may also contribute to the greater vulner-

ability of women to AD neuropathology. A study of sex differences

in genetic architecture of cognitive resilience in four cohorts includ-

ing ADNI found that resilience is highly heritable.296 The study

identified female-specific genetic architecture that overlapped with

autoimmune disorders such as lupus and multiple sclerosis. These

disorders also have a higher prevalence in women and this overlap

may implicate a role of the immune system in resilience. The authors

suggest that increased neuroinflammation in women associated with

age-related metabolic shifts may underlie resilience. In men, specific

loci were related to heart rate variability, amarker of good heart health
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suggesting that cardiovascular-related pathways may underlie

resilience inmen.

3.8 Involvement of NPS

NPS such as apathy, depression, delusions, anxiety, and hallucinations

are frequently reported in MCI and are associated with greater cog-

nitive and functional impairment. Recent ADNI studies have assessed

associations among AD pathology, NPS, and cognitive and functional

decline.

Late-life depression was associated with higher rates of domain-

specific cognitive deficits in verbal learning and memory compared to

non-depressed older adults with matched memory impairment and Aβ
burden.297 These deficits partially overlappedwith deficits in cognitive

domains associated with AD biomarkers, and the authors suggested

that a portion of the cognitive impairment associated with late-life

depression could be attributed to AD.297 In a study including mul-

timodal data from ADNI and two other cohorts, two dimensions of

heterogeneity associated with late-life depression were identified.298

The first dimension had relatively preserved brain anatomy while the

second had widespread atrophy and WM disruptions, greater depres-

sion and cognitive impairment, and a higher degree of progression

to AD dementia.298 It remains to be determined whether late-life

depression is a risk factor for or a prodromal feature of AD.

NPS have complex associations with Aβ pathology. Depressive

symptoms are associated with a high risk of cognitive decline and

increased progression to AD, with symptoms becoming frequent in

MCI.299 A study of CU participants in the Age Well cohort with repli-

cation in ADNI reported that subclinical depressive symptoms were

associated with lower hippocampal volume and glucose metabolism

in the frontolimbic network, the site of processes related to depres-

sive symptoms.299 However, these participants did not have increased

brain Aβ, leading the authors to postulate that mechanisms such

as neuroinflammation and early tau aggregation may link subclini-

cal depressive symptoms with hippocampal degeneration. In contrast,

other studies suggest that brain Aβ contributes to the effect of

subclinical depression on cognition. In CU participants, the greater

cognitive decline associated with higher rates of increase in the Geri-

atric Dementia Scale was mediated by worse hypometabolism and Aβ
accumulation.300 When ADNI non-demented participants were strat-

ified using AT(N) biomarkers, subclinical depressive symptoms were

associatedwith bothmemory and executive function in those classified

as A+ or SNAP (A–[T/N]+) but not in thosewith normal biomarkers.301

Apathy was associated with faster cognitive and functional decline

in non-demented participants, and this was mediated by Aβ deposi-

tion in prefrontal regions.302 In addition, Aβ burden was a risk factor

for apathy syndrome, suggesting a bidirectional relationship influenc-

ing early disease progression.302 Aβ pathology also partially mediated

the effects ofmild behavioral impairment on decline in global cognition

and increased risk of clinical conversion.303

Tau deposition may also mediate the relationship between NPS

and cognitive performance. Tau deposition in frontal, occipital, and

medial temporal cortices was associated with psychosis, and acceler-

ated cognitive and functional decline.304 In MCI participants stratified

by Aβ status and the presence or absence of NPS, a greater associa-

tion between tau deposition and cognition was reported in those with

NPS.305 This association was observed in both A– and A+ participants

but was stronger in the presence of Aβ deposition. Similarly, Aβ pos-
itivity enhanced the associations between tau binding in the EC and

precuneus, and affective NPS such as depression, apathy, and anxiety

inMCI and AD participants.306

All CSF AT(N) biomarkers (Aβ42, p-tau181, and t-tau) were asso-

ciated with a distinct class of depression and apathy identified from

clustering analysis using the Neuropsychiatric Inventory in partici-

pants from ADNI and NACC.307 Over 5 years, the study identified

classes resulting from, rather than contributing to, stable, decreasing,

and increasing depression and apathy. Worse CSF biomarkers were

associated with the class of increasing depression and apathy charac-

terized by a high prevalence of ADdementia, lowerMMSE, and greater

use of psychotropic medications. The authors suggest that these NPS,

like cognitive decline, result from the AD disease process.

4 ARE ADNI RESULTS GENERALIZABLE?

Given the influence of ADNI studies on clinical trials of AD therapeu-

tic interventions, the development of prognostic algorithms, and our

understanding of disease progression, a critical question is: To what

extent are ADNI results generalizable to the wider population, given

the lack of ethnocultural and educational diversity in the ADNI cohort?

Recent ADNI studies have sought to answer this question, highlighting

differences between ethnocultural groups, and have plotted a course

for the next iteration of ADNI that aims to address these concerns.

4.1 Generalizability of ADNI results

The ADNI cohort is not representative of the general elderly popula-

tion. Compared to US census data, the ADNI cohort underrepresents

the Asian (2% vs. 4.7%), Black/African American (5% vs. 10%), and

Hispanic/Latinx (4% vs. 9.2%) populations, and those with ≤ 12 years

of education (16% vs. 43.7%), and overrepresents the non-Hispanic

White population (87% vs. 74.6%).308 Ethnocultural and socioeco-

nomic groups differ in the incidence and prevalence of AD, medical

and biological risk factors, clinical and neuropathological features,

and survival due to a range of genetic, behavioral, and sociocultural

factors.308 A comparisonof associations between risk factors, andneu-

roimaging outcomes and cognition in ADNI and in a more diverse,

randomly selected sample from four communities in North Carolina,

Mississippi, Minnesota, and Maryland, comprising the ARIC cohort,

explored the extent to which ADNI results are generalizable.309 The

ARIC cohort has six times the number of Black/African-American par-

ticipants as ADNI (23.7% vs. 4%). One third of associations between

predictors and outcomes across all modalities differed between the

two cohorts (Figure S41 in supporting information). Because The ARIC
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cohort is drawn from limited geographic areas, caution should be taken

in extending these findings to the broaderUS population. However, the

association between MTL structures with MMSE determined in ADNI

wasonlypartially generalizable toa Japanese cohort,310 suggesting the

issue is widespread. Further comparisons of ADNI results with diverse

cohorts are required to determine its extent.

Several studies have investigated effects of ADNI’s strict inclusion

and exclusion criteria. Cut-points for the ADNI amnestic MCI inclu-

sion criteria based on Story A from theWechslerMemory Scale Logical

Memory II were reported to be higher than demographically adjusted

normative data.311 The authors suggest that ADNI MCI participants

mayhavemildermemory problems than the amnesticMCI participants

diagnosed using memory test cut-points based on demographically

adjusted normative data, limiting the generalizability of results from

studies using these participants to thewider community. A critical step

in establishing clinical utility of predictionmodels is external validation

in independent and identically distributed samples. A comparison of six

clinical AD cohorts including ADNI312 reported a wide range of proba-

bilities of clinical progression over 10 years (Figure S42 in supporting

information), which the authors attributed to differences in recruit-

ment strategies. However, ADNI’s inclusion and exclusion criteria may

not fully explain issues of generalizability. Although individuals who

failed the ADNI screening process were less educated and younger

than those who passed, rates of screen fails did not differ between

underrepresented groups and overrepresented groups.308

4.2 Studies of ethnocultural differences

The issue of generalizability has also been highlighted in recent inves-

tigations of ethnocultural differences in AD risk factors, genetics, and

biomarkers, both within the ADNI cohort and compared to cohorts

from diverse populations. Analyses within ADNI are limited by small

sample sizes of underrepresented populations, leading to variable

results. No differences were reported in baseline CSF biomarkers

(Aβ42, p-tau181, t-tau) or plasma p-tau181 or NfL in any ethnocultural

group within ADNI.313 However, other studies reported differences in

AD biomarkers. Latinx and Asian ADNI participants had 64% and 46%,

respectively, reduced odds of Aβ positivity assessed by PET compared

to non-HispanicWhites.308 Among Black/African-American ADNI par-

ticipants, levels of CSF p-tau181, t-tau, and NfL were lower compared

to non-Hispanic White participants, although CSF Aβ42 levels did not

differ (Figure S43 in supporting information).314 In the same study,

Black/African-American participants had significantly lower levels of

CSF sTREM2, a biomarker of microglial activation, and had higher fre-

quencies of genetic variants in TREM2 and MS4A4A associated with

these lower levels (Figure S43). The authors suggest that these differ-

ences in biomarkers may indicate differences in the chain of events

leading to neurodegeneration between ethnocultural groups.

AD biomarkers and genetic contributors have been compared

between ADNI and Korean and Han Chinese cohorts. CU partici-

pants in a Korean cohort had a lower frequency of Aβ positivity (20%)
compared to ADNI CU non-Hispanic Whites (32.8%).315 The APOE

ε4 allele impacted Aβ status similarly in both cohorts, but polymor-

phisms in BDNF correlated with Aβ status in Koreans only, suggesting

genetic differences may underlie differences in Aβ positivity frequen-
cies. Normative data for many cortical and subcortical structures

differed between ADNI and OASIS non-Hispanic White participants

and those in a secondKorean cohort, affecting the performance of pre-

dictive algorithms.316 Beyond the APOE ε4 allele, additional predictive

associations were reported between alleles in ABCA7 and SORL1 and

cognitive decline in a Han Chinese population from Taiwan compared

to ADNI.317

Differences in the prevalence of risk factors for AD have been

identified among ethnocultural groups. Black/African-American ADNI

participants had greater total and regional WMH burden compared to

non-HispanicWhite participants, largely attributable to the higher rate

of vascular risk factors in Black/African-American groups.318 A Puerto

Rican cohort from Boston had five times the prevalence of T2DM and

nearly double that of hypertension compared to ADNI non-Hispanic

White participants.319 Those participants in the Puerto Rican cohort

with comorbid T2DM and hypertension had a greater brain age gap,

more hippocampal atrophy, reduced regional WM fiber integrity, and

lower MMSE scores than those with no comorbidities, and were clini-

cally comparable to theADNI progressiveMCI group. Cerebrovascular

risk factors that may be elevated in different ethnocultural groups due

to structural and social determinants of health are therefore important

treatment targets.

Together, these studies highlight the limitations of the lack of

diversity of the ADNI cohort. This prevents an understanding of eth-

nocultural differences and sociocultural factors involved in disease

risk and progression, and of how different groups might respond to

therapeutic interventions.

4.3 The future of ADNI

In September 2022, ADNI transitioned to its next 5-year phase, termed

ADNI-4, entirely funded by the National Institute on Aging.15 ADNI-4

represents a concerted effort to improve the generalizability of ADNI

results by enrolling 50% to 60% of its new participants from underrep-

resented populations. Its enrollment approach is based on strategies

tested through the ADNI-3 Diversity Task Force Project and the Brain

Health Registry’s Community Engaged Digital Alzheimer’s Research

(CEDAR) study320 and includes a culturally informed, community-

engaged research (CER) for digital and in-person outreach, engage-

ment, and retention efforts as well as several key methodological

changes. For instance, ADNI-4 uses relaxed inclusion/exclusion cri-

teria that will allow the enrollment of some middle-aged and older

adults with cardiovascular disease (although people with large strokes

will continue to be excluded), and lumbar punctures and study part-

ners are now optional. Moreover, ADNI-4 participants will now be

systematically paid for their time volunteering in the study and will

receive feedback on their study results if they wish to receive it. Last,

ADNI-4 includesmeasuresof sociocultural determinants of health (e.g.,

discrimination, acculturation, socioeconomic status).
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A new Engagement Core was formed to lead ADNI-4’s new brain

health equity aims, which are to make ADNI more ethnoculturally,

socioeconomically, and geographically diverse; to examine the biolog-

ical and sociocultural determinants of brain health equities; and to

improve health equity training for study personnel and scientists. In

close partnership with ADNI-4’s Administrative and Clinical Cores, the

Engagement Core aims to enroll an initial, diverse cohort of 20,000

to be screened using an online portal.15 Of these, 4000 participants

including 50% to 60% from underrepresented populations will com-

plete remote blood collection and screening for plasma biomarkers

and APOE. A final in-clinic cohort of 1000 (500 new and 500 rollover

participants), also comprising50%to60% fromunderrepresentedpop-

ulations, will complete further evaluations in a similar vein to previous

ADNI phases with some technological improvements. It is hoped that

ADNI-4 will improve our understanding of sociocultural contributors

to heterogeneity of disease progression and provide a more diverse

cohort for external validation of results, setting an example for other

clinical research cohorts.

5 CONCLUSIONS

In 2021 and2022, ADNI has continued to profoundly impact the devel-

opment of therapeutic interventions for AD and contribute to our

understanding of disease progression. ADNI studies have reported

improvements to clinical trial design through more focused partici-

pant selection and the detection of treatment effects in early disease.

ADNI data have provided the basis for modeling tools for clinical tri-

als, and the development of harmonization methods for PET scans and

fluid biomarker cut-points. ADNI plasma samples have been instru-

mental in the development of plasma p-tau as a blood biomarker

for AD. Machine learning-based algorithms have used ADNI AT(N)

biomarker data to predict future decline, and studies have investi-

gatedwhether inflammationbiomarkersmayaddadditional prognostic

value, acknowledging the critical role ofmicroglial-mediated inflamma-

tion in response to Aβ deposition. Several studies demonstrated that

different modalities of AT(N) biomarkers are discordant, particularly

those of neurodegeneration and to a lesser extent, tau. The develop-

ment of online sensitive cognitive tests in CU participants for remote

screening represents an innovative approach to substantially lower the

cost of enrollment into research and clinical cohorts. The development

of algorithms for individualized predictions of cognitive decline, and

operationalization as online tools represents important steps toward

personalizedmedicine.

Recent ADNI studies have improved our understanding of the mul-

tifactorial contributions to disease progression. Considerable evidence

from these studies supports a cascade of events central to the amyloid

hypothesis, from the disruption of Aβ homeostasis to microglial-

induced neuroinflammation to perturbation of signaling pathways and

metabolism to tau phosphorylation to disruption of synapses and the

transneuronal spread of tau to glucose hypometabolism and neuronal

cell death to neurodegeneration and cognitive impairment.

Beyond the Aβ cascade, ADNI studies have detailed myriad addi-

tional factors that may account for the observed heterogeneity in

clinical manifestation and in underlying distributions of AD pathol-

ogy. Vascular factors may affect disease progression via multiple

mechanisms including perturbation of CBF early in disease, and the

exacerbation of regional neurodegeneration and decline in specific

cognitive domains by regionalWMHburden via distinct Aβ-dependent
and -independent pathways. Biological AD subtypes have been iden-

tified based on Aβ status, influenced by the APOE ε4 allele. A large

body of work described subtypes based on regional tau deposition,

associated primarily with clinical characteristics and APOE ε4 status,

and on neurodegeneration, influenced by co-pathologies. A “typical

AD” atrophy subtype and one with minimal atrophy may exist along

the dimension of severity, while subtypes with predominantly MTL

involvement or cortical involvement may exist along the orthogonal

dimension of typicality. Subtypes may reflect the combined influence

of genetics and co-pathologies such as vascular disease, Lewy body

disease, and TDP-43 proteinopathies. Cognitive resilience appears to

buffer the effect of co-pathologies and genetic risk in accelerating

cognitive decline. ADNI studies have probed mechanisms underlying

cognitive resilience including genetic contributions and topologies of

structural and functional networks. Distinct pathways of neurodegen-

eration were described for carriers of the APOE ε2 allele and in female

APOE ε4 carriers who had the fastest overall decline.
Comparisons of associations reported in the ADNI cohort with

those in other cohorts revealed that the generalizability of these

results is limited. Genetic, biomarker, and risk factor differences in

underrepresented populations compared to the non-Hispanic White

majority in ADNI emphasized the need for a more diverse cohort. A

cohort more representative of the general population is critical for

the external validation results, to understand differences in disease

progression and response to therapeutic interventions, and to better

understand the implications of health inequities that result from a high

prevalence ofmodifiable risk factors in underrepresented populations.

ADNI-4, the current 5-year study, aims to address the lack of diver-

sity in the ADNI cohort to increase the generalizability and veracity of

results.
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