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Abstract

A novel budding yeast species was isolated from a soil sample collected in the United States of 

America. Phylogenetic analyses of multiple loci and phylogenomic analyses conclusively placed 

the species within the genus Pichia. Strain yHMH446 falls within a clade that includes Pichia 
norvegensis, Pichia pseudocactophila, Candida inconspicua, and Pichia cactophila. Whole genome 

sequence data were analyzed for the presence of genes known to be important for carbon and 

nitrogen metabolism, and the phenotypic data from the novel species were compared to all Pichia 
species with publicly available genomes. Across the genus, including the novel species candidate, 

we found that the inability to use many carbon and nitrogen sources correlated with the absence 

of metabolic genes. Based on these results, Pichia galeolata sp. nov. is proposed to accommodate 

yHMH446T (= NRRL Y-64187= CBS 16864). This study shows how integrated taxogenomic 

analyses can add mechanistic insight to species descriptions.

Graphical Abstract

The discovery, formal description, and taxogenomic analysis of a novel species of Pichia revealed 

correlations between genome content and traditional physiological assays.

Introduction

The fungal subphylum Saccharomycotina consists of over 1000 known species and at least 

84 recognized genera, including the well-known genera Candida and Saccharomyces. The 

genus Pichia was described in 1904 by Hansen (Hansen 1904; Kurtzman 2011). Pichia 
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species, as well as Candida species affiliated with this genus, are widely distributed and 

have been isolated from multiple environments, including soil, fermented products, and cacti 

(Kurtzman, Fell and Boekhout 2011; Opulente et al. 2018). The species Pichia kudriavzevii 
(syn. Issatchenkia orientalis syn. Candida krusei) is an opportunistic pathogen and one of 

the leading causes of yeast infections in humans (Pelletier et al. 2005; Douglass et al. 
2018; Opulente et al. 2019), as well as being considered as a potential industrial producer 

of organic acids (Tran et al. 2019). Despite this broad ecological diversity, many Pichia 
species grow on a limited number of carbon sources. On average, they can only use six 

of the commonly tested carbon sources, whereas Saccharomycotina species can use an 

average of 15 carbon sources (Kurtzman, Fell and Boekhout 2011; Opulente et al. 2018). For 

example, glucosides (e.g. maltose, sucrose, and lactose) and hexoses other than glucose (e.g. 

galactose) are generally not utilized by Pichia (Kurtzman 2011).

During a survey of yeast biodiversity throughout the United States of America, we identified 

a candidate novel species of Pichia through yeast enrichment and isolation protocols. 

The candidate novel species was isolated from a soil sample from Pavilion Key in the 

Everglades, Florida. The isolate was first identified to be a candidate for a novel species 

through sequencing the ITS and LSU regions of their rDNA locus. With the cost of 

whole genome sequencing decreasing and the availability of publicly available genomes 

increasing, whole genome sequence data can be integrated into taxonomy to further solidify 

species placement and yield additional mechanistic insights, such as the genetic bases of 

phenotypic traits or a genotype-phenotype map. Recently, a handful of papers have begun 

using genomic methods to identify and describe novel species (Libkind et al. 2020; Čadež 

et al. 2021). The development of more formal taxogenomic pipelines would further facilitate 

these approaches. Here, we used whole genome sequencing and taxogenomic analyses 

of this novel species to provide further support for its placement, identify novel genome 

characteristics, and correlate traits with genome content.

Materials and methods

Species isolation and identification

The strain representing the candidate novel species examined in this study is listed in Table 

S1; all additional species are included in Table S2. The isolation and identification of the 

strain in this study was done according to the enrichment protocols in Sylvester et al. (2015) 

with modifications adopted by Spurley et al. (2022). The strain yHMH446 was part of 

a broader survey project, which sampled different substrates (e.g., soil, fruits, and bark) 

across the United States to isolate and identify different yeast species (Sylvester et al. 2015; 

Haase et al. 2017; Opulente et al. 2019; Spurley et al. 2022). The strain yHMH446 was 

both collected and isolated by Max A. B. Haase. The soil sample was from Pavilion Key 

in the Everglades, FL (GPS: 25.707884, −81.351863). This sample was also incubated at 

30०C in liquid SC (Yeast Nitrogen Base w/o Amino acids, Ammonium sulfate, or Glucose 

6.7g/L; Ammonium Sulfate 5g/L; Drop-out mix 1.7g/L) medium in 0.8% glucose. Upon 

visualization of growth, a second round of enrichment was done in liquid SC medium until 

growth was visible. The culture was then plated to yeast-peptone-dextrose agar (YPDA 

– Yeast Extract 10g/L, Peptone 20g/L, Glucose 20g/L, Agar 20g/L), and unique colony 
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morphologies were picked for species identification using Sanger sequencing of the internal 

transcribed spacer region (ITS) and the LSU region of the rDNA locus (Taylor et al. 
2000). After our initial species identification using the ITS region and LSU region, we also 

included the gene encoding transcriptional elongation factor 1-α (TEF1) in downstream 

analyses to determine phylogenetic relatedness and distinctness.

Physiological characterization

Microscopic examination and determination of physiological characteristics were done by 

standard methods (Kurtzman, Fell and Boekhout 2011). Growth tests were conducted in 

liquid media over 5 weeks at 25°C. Initial growth was performed in Yeast Nitrogen Base 

(YNB – Yeast Nitrogen Base w/o AA, AS, or glucose 6.7g/L; Ammonium Sulfate 5g/L) 

with 0.1% glucose. This culture was then inoculated into test media, and growth was 

assessed over 4 weeks using the protocols in Kurtzman et al. (2011). Two sequential rounds 

of growth in plastic tubes on a benchtop were done for both carbon and nitrogen source 

testing to ensure the yeasts were not using stores of carbon or nitrogen sources from the 

initial culturing step. Even using 0.1% glucose YNB media, we have found some yeasts (not 

included in this study) to display residual growth carbon sources that are not seen after the 

second round of growth, suggesting some yeasts use residual stores to grow.

Formation of true hyphae and pseudohyphae was investigated using the Dalmau plate 

method on YPD agar plates (Kurtzman, Fell and Boekhout 2011). Ascospore formation 

was investigated by growing strain yHMH446 on GPYA, 5% malt extract agar (MEA), 

and YPDA at 10°C and 22°C for 2 months; plates were examined every week under a 

microscope. The ascospore image (Figure 3D) was edited in photoshop to remove a blue 

tint that was an artifact of the camera. This was accomplished by setting the color saturation 

to zero. We also increased the contrast of the image to 100% and the brightness to six in 

photoshop. The original image is available also available (Figure S1).

Genome sequencing

Genomic DNA was isolated from strain yHMH446 using a phenol:chloroform extraction 

method (Shen et al. 2018). The strain was sequenced using the Illumina HiSeq platform 

(2×250) as described previously (Shen et al. 2018). Short read data are available at 

SRR16974481 for strain yHMH446.

Taxogenomic analysis

Genome assembly—Paired-end Illumina DNA sequencing reads were used to generate 

whole genome assemblies using the meta-assembler iWGS v1.1 (Zhou et al. 2016). The 

“best” assembly was chosen for each species based on genome size and N50 value 

(Table S3). The genome assembly for strain yHMH446 is available at JANIWQ000000000. 

Genome quality was assessed by quantifying their completeness based on the expected gene 

content of the Benchmarking Universal Single-Copy Orthologs (BUSCO) (v5.2.2) (Simão et 
al. 2015; Waterhouse et al. 2017). We used a set of 1711 genes inferred by BUSCO to be 

universal in Saccharomycotina. GenBank numbers for the ITS, LSU, and TEF1 sequences 

for yHMH446 are OL583853, OL583873, and OM328112.
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Phylogenetic analyses—Both whole genome and multilocus phylogenetic analyses were 

performed to assess species relatedness (Table S2). Phylogenetic analyses of the complete 

LSU and ITS regions of the rDNA locus and the TEF1 gene were conducted using MEGA 

(version 10) (Kumar et al. 2018). The rDNA locus and the TEF1 genes for strain yHMH446 

were obtained and assembled from raw paired-end reads using the HybPiper pipeline (v1.2) 

(Johnson et al. 2016). All species with publicly available sequences were obtained from 

YeastIP (Weiss et al. 2013), GenBank, and from the Westerdijk Fungal Biodiversity Institute. 

These sequences were aligned using the default parameters for CLUSTALW in MEGA. 

We constructed a maximum likelihood phylogeny using the default setting in MEGA, 

which uses the Tamura-Nei model of evolution with uniform rates among sites, with 1000 

bootstrap replicates.

Amino acid sequences for BUSCO genes that were present across all species were 

aligned using MAFFT. In total, 935 protein-coding sequences were used for this analysis. 

The alignments were concatenated and used to assess phylogenomic placement. Species 

placement was determined using RAxML (v) with Saccharomyces cerevisiae as an 

outgroup. We ran RAxML using the model PROTGAMMAWAG (n = 100) and calculated 

the maximum likelihood tree with 1000 bootstraps.

Gene Trait Analyses—Gene presence was detected using TBLASTX searches of 

query sequences (Tables S4, S5) from characterized pathways in model organisms (e.g., 

Saccharomyces cerevisiae) for both the novel species described here and for publicly 

available genomes of species in the genus Pichia (Shen et al. 2018). We used an e-value 

cutoff of 10−10 to infer gene presence. We also condensed the MAL12 and IMA1–4 genes 

into a single group (IMA/MAL) since these genes are closely related paralogs (Voordeckers 

et al. 2012; Opulente et al. 2018).

Results and Discussion

Phylogenetic analyses

Multilocus analysis suggested that strain yHMH446 was sister to the clade containing 

Pichia cactophila (CBS 6926), Candida inconspicua (CBS 180), Pichia norvegensis (CBS 

6564), and Pichia pseudocactophila (CBS 6929) (Figure 1A & Figure S2, Table S7). We 

found 1344 complete BUSCO genes in yHMH446 (Figure 1B, Table S8). Whole genome 

sequence data were limited, so we cannot determine the closest relative to yHMH446; 

however, our results indicated that the species with the most similar published genomes are 

P. norvegenesis and C. inconspicua (Figure 1C, Table S9) (Shen et al. 2018). Comparisons of 

the LSU sequences between yHMH446 and its closest relatives showed that known species 

differed considerably from yHMH446 in nucleotide sequences and indels, well beyond 

the 1% divergence often applied as a threshold for describing a novel species (Table S6). 

Combined, these results suggest that strain yHMH446 is a representative of a candidate for 

a novel Pichia species based on the phylogenetic species concept. Although only a single 

strain is currently available, its growth at unusually high temperatures (see below) and the 

publication of a genome sequence justifies its description. We propose Pichia galeolata sp. 

nov. to accommodate this strain.
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Genomic and phenotypic analyses

We tested the candidate novel species for growth at temperatures up to 45°C. In general, 

most species in the genus Pichia do not grow at temperatures higher than 42°C. However, 

at least one strain of P. kudriavzevii (CBS 2911) is known to grow at 45°C. The results 

of our temperature tests indicate that yHMH446 can grow in temperatures up to 45°C. 

While the higher temperature growth is unusual, strains of P. cactophila, P. norvegensis, P. 
pseudocactophila, and C. inconspicua can all grow at 42°C (https://wi.knaw.nl/).

Using taxogenomic approaches to describe novel species provides additional resources to 

explore trait-gene associations to better understand the complexities and differences in 

carbon and nitrogen metabolism and to begin to build a genotype-phenotype map (Libkind 

et al. 2020). We looked at trait and gene presence and absence across publicly available 

genomes and the genome of our novel species candidate (Tables S4, S5). Our analyses 

contained multiple sets of genes that can be used in future taxogenomic analyses, including 

the pleiotropic PGM1 gene, which can be used as a positive control. PGM1 has many 

functions beyond its role in galactose metabolism, and it is therefore more likely to be 

present and conserved among species (Kuang et al. 2018). Thus, it can be used as a control 

to ensure analyses are working properly. We have also included a set of genes associated 

with the utilization of nitrate and nitrite (YNR1, YNI1, YNA1, YNA2, and YNT ) (Shen et 
al. 2018), as well as multiple genes whose associations with carbon utilization traits have 

been established in S. cerevisiae and other model systems. Across the majority of the Pichia 
species examined, the genes responsible for the utilization of galactose (GAL1, GAL7, 

and GAL10), maltose (MALx1, MALx2, and MALx3), and sucrose and raffinose (SUC2) 

were absent (Figure 2). In most cases, these missing genes were consistent with the carbon 

sources that cannot be utilized by these species. For example, no species grew on maltose, 

and most MAL genes were missing across all Pichia species. In contrast, 40% of species 

grew on xylose, and all species have homologs of genes known to be associated with xylose 

utilization (XYL1, XYL2, and XYL3). The inability of yeasts to grow on xylose, despite the 

presence of utilization genes, has been previously suggested to be due to the regulation of 

genes, redox imbalance, or enzyme specificity (Riley et al. 2016; Nalabothu et al. 2022).

In some cases, we found the possible presence of a gene in a species that cannot grow on the 

carbon or nitrogen sources associated with the gene (e.g. MAL11 and YNR1). Discordance 

between genotype and phenotype could potentially occur for multiple reasons, including 

too lenient of a threshold used for gene presence, protein-coding or non-coding regulatory 

differences affecting gene function, or mutations that inactivate the gene. In the case of 

the MAL11, the gene presence met the e-value cutoff for strain yHMH446, but both the 

percent identities and lengths of the sequence alignments were lower in the species than 

they were for true positives (Table S5), suggesting this hit likely does not play roles in 

maltose metabolism. The YNR1 gene had a similar pattern; both sequence alignment lengths 

and percent identities were lower in the species than they were for true positives (Table 

S5). These false-positive results suggest that, while BLAST with e-value cutoffs can be 

used to detect genes, other measures more tailored to specific gene families should also 

be developed. Despite this handful of false positives, assessing gene-trait associations in 

taxogenomic studies is a useful practice that provides insight into the genomic bases of 
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the physiological traits traditionally scored by taxonomists. In addition to providing further 

support and validation for previously explored carbon and nitrogen gene-trait associations, 

it simultaneously flags other metabolic genes and traits where alternative mechanisms and 

correlations need to be investigated by future research to address gaps and discrepancies in 

the budding yeast genotype-phenotype map.

Description of Pichia galeolata sp. nov.

D. A. Opulente, Q. K. Langdon, M. Jarzyna, Ke. V. Buh, M. A. B. Haase, M. Groenew., 

Hittinger

Growth on glucose-peptone-yeast extract agar: After 7 days of growth at 22°C on 

YPD, cells are spherical to elongated. The cells occur singly and range from 2.0 – 15.0 × 2.0 

– 5.7μm in size (Figure 3D).

Growth in 2% glucose-yeast extract-peptone agar: After 7 days, colonies are 

cream, dull and ridged, butryous, and flat with undulate margin (Figure 3A). After 7 days 

at 22°C, pseudohyphae are formed under the cover glass on a Dalmau plate with YPD agar 

(Figure 3B–C).

Ascospore formation: Ascospore formation was observed after 7 days on GPYA at 

22°C. Asci are unconjugated and persistent, and they form two to four hat shaped ascospores 

within an ascus. (Figure 3D).

Fermentation: Glucose is fermented, but galactose, maltose, raffinose, sucrose, lactose, 

and xylose are not (Table 1).

Assimilation of carbon compounds: Growth occurs with glucose, inulin (weak), 

sucrose (weak), cellobiose (weak), L-sorbose (weak), xylose (weak), glycerol (weak), 

DL-lactate, succinate, and glucosamine. . Growth is absent with mannose, fructose, 

raffinose, melibiose, galactose, lactose, trehalose, maltose, melezitose, methyl-alpha-D-

glucoside, salicin, rhamnose, L-arabinose, D-arabinose, ribose, methanol, ethanol, adonitol, 

erythritol, xylitol, galactitol, mannitol, sorbitol, myo-inositol, citrate, gluconate, N-acetyl-D-

glucosamine, and hexadecane (Table 1).

Assimilation of nitrogen compounds: Growth occurs with nitrite, allantoin, and 

lysine. Growth is absent with creatinine and nitrate (Table 1).

Temperature growth: Growth is observed at 22°C, 30°C, 37°C, 42°C, and 45°C. Growth 

is absent at 50°C (Table 1).

Holotype: yHMH446 was isolated from soil collected from Pavilion Keys in Everglades, 

FL, USA (GPS: 25.707884, −81.351863) and is preserved in a metabolically inactive state 

in the yH strain collection at the University of Wisconsin-Madison. Ex-type strains are CBS 

16864 and NRRL Y-64187.
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Etymology: The epithet gal.e.ol.a’ta, L. adj. nom, galeolata, helmet-shaped, but modified 

with “ol” to reflect the small size of the ascospores, which look like small helmets (Figure 

3D).

Databases: The genome of this species described below was deposited at DDBJ/ENA/

GenBank under the accession JANIWQ000000000. The version described in this paper is 

version one. The Mycobank no. is 838264.

Conclusions

Pichia galeolata sp. nov. has been formally described and placed within the genus Pichia. 

Following the trend of most species of the genus Pichia, P. galeolata grows on a limited 

range of carbon sources. Whole genome sequence analyses suggest that their limited 

metabolic breadths are the result of the absence of genes known to be important for these 

metabolic traits.

Whole genome sequence data is rapidly becoming available for budding yeasts, and 

employing similar taxogenomic approaches to produce robust phylogenies, explore gene-

trait associations, and build genotype-phenotype maps will soon be broadly conceivable and 

fruitful, especially when done in conjunction with formal species descriptions. Phylogenetic 

analyses using the LSU, ITS, and additional protein-coding gene regions will continue to be 

a valuable tool in species descriptions, as will traditional physiological assays. Nonetheless, 

we conclude that deploying taxogenomic approaches to describe new yeast species will 

advance our understanding of budding yeasts metabolic, phylogenetic, and genetic diversity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Take Away

• The novel species Pichia galeolata is discovered and formally described.

• The genome sequence of P. galeolata is reported.

• Taxogenomic analysis shows how genome content correlates with traditional 

physiological assays.
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Figure 1: 
Both the concatenated ITS, D1/D2, and TEF1 phylogenetic placement and whole genome 

sequence analyses support the designation of strain yHMH446 as novel species in the genus 

Pichia. A) Maximum likelihood tree for 22 Pichia species based on concatenated D1/D2, 

ITS, and TEF1 sequences. Bootstrap values (n = 1000, reported as recovery frequencies) are 

indicated by blue stars; larger stars represent higher bootstrap values. B) BUSCO analyses 

for Pichia species whose genomes have been sequenced, including strain yHMH446. The 

bar graphs indicate that our novel genomes are of similar quality to publicly available 

genomes. C) Phylogenetic placement of strain yHMH446 obtained from a concatenated 

alignment of 935 conserved, single-copy orthologous genes. Saturnispora dispora was 

included as the outgroup. Bootstrap values (n = 1000, reported as recovery frequencies) 

are indicated by blue stars; larger stars represent higher bootstrap values.
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Figure 2: 
Metabolic traits and their underlying genes for the carbon sources galactose, cellobiose, 

sucrose, raffinose, maltose, L-sorbose, and xylose. Filled in boxes indicate either the ability 

to utilize a carbon source or gene presence. Gene presence was determined by BLAST 

analyses.
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Figure 3: 
A) Colony morphology on YPD, B-C) pseudohyphal formation at 22°C on Dalmau plates, 

and D) hat-shaped ascospores of Pichia galeolata sp. nov. (yHMH446) grown on GPYA at 

22°C. Bars = 5μm. Color saturation of this panel was decreased to zero to remove an artifact 

that colored the whole image blue.
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Table 1:

Physiological characteristics of strain yHMH446.

yHMH446 P. norvegensis

Carbon Assimilation

Glucose + +

Mannose − ND

Fructose − ND

Inulin w −

Sucrose w −

Raffinose − −

Melibiose − −

Galactose − −

Lactose − −

Trehalose − −

Maltose − −

Melezitose − −

Methyl-alpha-D-glucoside − −

Cellobiose w +

Salicin − −

L-Sorbose w −

Rhamnose − −

Xylose w −

L-Arabinose − −

D-Arabinose − −

Ribose − −

Methanol − −

Ethanol − +

Glycerol w +

Adonitol − ND

Erythritol − −

Xylitol − −

Galactitol − −

Mannitol − −

Sorbitol − ND

Myo-inositol − −

DL-Lactate + w

Succinate + +

Citrate − w

Gluconate − −

Glucosamine + +

N-Acetyl-D-glucosamine − −
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yHMH446 P. norvegensis

Hexadecane − −

Nitrogen

Creatinine − ND

Nitrate − −

Nitrite + ND

Lysine + +

Allantoin + ND

Fermentation

Glucose + s

Galactose − −

Sucrose − −

Maltose − −

Lactose − −

Raffinose − −

Xylose − ND

Temerapture

22°C + ND

30°C + ND

37°C + ND

42°C + ND

45°C + ND

50°C − ND
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