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The prefrontal cortex (PFC) has been implicated as a key brain region responsible for age-related 

cognitive decline. Little is known about aging-related molecular changes in PFC that may 

mediate these effects. To date, no studies have used untargeted discovery methods with integrated 

analyses to determine PFC molecular changes in healthy female primates. We quantified PFC 

changes associated with healthy aging in female baboons by integrating multiple omics data 

types (transcriptomics, proteomics, metabolomics) from samples across the adult age span. 

Our integrated omics approach using unbiased weighted gene co-expression network analysis 

(WGCNA) to integrate data and treat age as a continuous variable, revealed highly interconnected 

known and novel pathways associated with PFC aging. We found GABA tissue content associated 

with these signaling pathways, providing one potential biomarker to assess PFC changes with 

age. These highly coordinated pathway changes during aging may represent early steps for aging-

related decline in PFC functions, such as learning and memory, and provide potential biomarkers 

to assess cognitive status in humans.
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1 Introduction

The prefrontal cortex (PFC) is central to working memory, temporal processing, decision 

making, flexibility, and goal-oriented behavior (Funahashi and Andreau 2013; Friedman 

and Robbins 2022). Studies in humans and multiple nonhuman primate (NHP) species 

have shown reductions of PFC activity and changes in neuronal morphology without loss 

of neurons in aging that are associated with cognitive decline. Age-related declines in 

PFC function, observed in humans and in NHPs, include deficits in working memory, 

abstract rule learning, and cognitive flexibility (Lacreuse et al., 2020; Upright and Baxter 

2021). These are troubling cognitive changes in their own right, and age-related declines 

in PFC function, as well as in other brain areas, may set the stage for the development of 

neurodegenerative diseases (Beckman et al., 2019; Morrison and Baxter 2014).

Studies of age-related changes in PFC neurobiology have characterized neurophysiological 

differences in the context of memory (Wang et al., 2011), changes in dendritic spine density 

and morphology on pyramidal neurons (Dumitriu et al., 2010), changes in mitochondrial 

morphology (Hara et al., 2014), and changes in neuromodulatory systems (Arnsten et al., 

1995; Arnsten and Goldman-Rakic 1985; Moore et al., 2005). The transcriptomic and other 

molecular changes that may underlie these changes have been less well-characterized. Ianov 

et al., (Ianov et al., 2016) observed age-related differences in gene expression in the PFC 

of young (5–6 months, n = 11) and older adult (17–22 months, n = 20) male Fischer 

344 rats; however, these were not associated with age-related cognitive impairment in a 

PFC-mediated task, and homology between the PFC of rodent species and primate PFC is 

limited (Wise 2008). Erraji-Benchekroun et al., (Erraji-Benchekroun et al., 2005) observed 

age-related transcriptional changes in Broadmann’s Area 9 (BA9) and BA47 in 39 humans 

from 13 to 79 years of age; however, half of these were samples obtained after suicides and 
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the postmortem interval (PMI) averaged 17.5 hours, both of which very likely effect RNA 

and protein quality.

Previous omics studies on primate PFC changes with age, which include humans and 

NHPs, focused on gene and miRNA expression (Somel et al., 2011; Yuan et al., 2012; 

Shao et al., 2010), RNA editing (Li et al., 2013), RNA splicing (Mazin et al., 2013), 

and associations between mRNA and their encoded proteins (Wei et al., 2015). However, 

some of these studies do not specify sex, or focus on males, and little data are available 

across the adult lifespan of any primate species. Furthermore, studies involving humans 

have variable postmortem intervals (PMI) or don’t report PMI, which can impact omics 

outcomes. Furthermore, to date there is no detailed dataset available characterizing multi-

omic molecular changes in the PFC across the adult age span in healthy primates.

The goal of this study was to integrate data from multiple omics methods to quantify PFC 

molecular changes associated with healthy aging in baboons (Papio), a NHP model of aging. 

This study is unique compared to prior studies in that it evaluates a relatively large group of 

female NHPs (n=34) across the entire adult age span (human equivalent ~24 to 88 years), 

which greatly advances our knowledge of female primate brain aging. All animals consumed 

the same healthy diet, were group-housed the same way, and tissues were collected on a 

defined schedule with short PMIs (~30 min); therefore, this type of controlled investigation 

is not possible in humans. In addition, previous studies used RNA-Seq data (Somel et 

al., 2011; Yuan et al., 2012; Shao et al., 2010; Li et al., 2013) and mRNA associated 

proteins (Wei et al., 2015) to quantify molecular changes associated with age; whereas, our 

study integrated transcriptomic, proteomic, and metabolomic data. In previous studies, we 

(Cox et al., 2021) and others (e.g., (Meng et al., 2019)) have demonstrated greater power 

to detect phenotypically relevant molecular pathways using integrated omics compared to 

transcriptomics analyses alone.

Our integrated omics approach using weighted gene co-expression network analysis 

(WGCNA), an unbiased method to construct molecular networks based on pairwise 

correlations between variables, and pathway enrichment analysis revealed 2 modules 

containing 587 transcripts and 13 proteins negatively correlated with age. We identified 

an additional 57 proteins and 20 metabolites associated with age using regression analyses. 

Pathway enrichment analysis revealed 25 overlapping, coordinated pathways negatively 

correlated with age. The top ranking pathways included dopamine-DARPP32 feedback in 

cAMP signaling and estrogen receptor signaling, both previously associated with age-related 

changes in PFC (Luine and Frankfurt 2013; Bailey et al., 2011; Arnsten et al., 1994). 

In addition, top ranking pathways included pathways not previously associated with aging-

related PFC changes - synaptogenesis, synaptic long term depression, and nitric oxide 

signaling. We also identified proteins negatively correlated with age that serve as key 

regulators in these signaling pathways, and age-associated metabolites that are regulators 

or by-products of these pathways. Our untargeted integrated omic approach revealed highly 

coordinated, novel pathways that may represent early events leading to aging-related decline 

in PFC functions, such as learning and memory, and provide potential biomarkers to assess 

cognitive status in humans.
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2 Materials and Methods

2.1 Animal Care and Maintenance

The study included 34 females ranging in age from 7.5y to 22.1y (human equivalent 

~24y to 88y), median age 14.3y (human equivalent ~50y) (Bronikowski et al., 2002). All 

procedures were approved by the Texas Biomedical Research Institute (TBRI) Animal Care 

and Use Committee and conducted in facilities approved by the Association for Assessment 

and Accreditation of Laboratory Animal Care. The TBRI animal use programs operated 

according to all National Institutes of Health (NIH) and U.S. Department of Agriculture 

guidelines, and were directed by board certified veterinarians (DVM). All animal care 

decisions were made by the Southwest National Primate Research Center (SNPRC) 

veterinarians at TBRI. Baboons (Papio hamadryas spp., crosses of olive, hamadryas, and 

yellow baboons) were housed in multiple outdoor social groups of 3–19 animals each, 

at the SNPRC at TBRI, in San Antonio, Texas. Social group size varied within and 

between individuals over their lifespan. Animals were fed monkey chow (Monkey Diet 

5LEO, Purina, St Louis, MO, USA) ad libitum throughout life, and water was continuously 

available with multiple lixits in each enclosure. All animals were provided complete 

veterinary care by SNPRC veterinary staff throughout their lives.

2.2 Necropsy

Baboons were pre-medicated with ketamine hydrochloride (10 mg/kg IM) and anesthetized 

using isoflurane (2%) as previously described (Schlabritz-Loutsevitch et al., 2007). All 

collections were conducted between 8:00 AM – 10:00 AM to minimize variation from 

circadian rhythms. While under general anesthesia, baboons were exsanguinated as 

approved by the American Veterinary Medical Association. Following cardiac asystole, 

3mm deep samples of gray matter from the frontal cortex on the left side of the brain, 

extending from the posterior part of the precentral sulcus to the intersection of the precentral 

sulcus and lateral sulcus, to the anterior frontal brain were collected (Broca’s area 8,9,10, 44, 

45 and 46). Tissues were snap frozen in liquid nitrogen and stored at −80°C.

2.3 Morphometric Measures

Morphometric measures were collected from sedated animals prior to necropsy using 

standard anatomical landmarks as described previously (Chavez et al., 2009).

2.4 Clinical Measures

Blood samples were collected from the femoral vein in overnight fasted animals after 

intramuscular administration of ketamine at 10 mg/kg. All collections were conducted 

between 8:00 AM – 10:00 AM to minimize variation from circadian rhythms. Blood 

samples were collected within 5 min of ketamine administration. For all measures, assay 

precision was determined by testing pooled samples using 5 replicates in each assay. These 

assays were repeated at 2 dilutions to assess linearity of the results. All test samples were 

run at dilutions estimated to achieve values in the middle of the assay calibration range.

Plasma Lipids and Glucose - Total plasma cholesterol (TPC), low density lipoprotein 

(LDL) cholesterol, high density lipoprotein (HDL) cholesterol, triglyceride, and glucose 
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concentrations were determined by the Wake Forest Comparative Medicine Clinical 

Chemistry and Endocrinology Laboratory using reagents (ACE) and instrumentation (ACE 

AXCEL autoanalyzer) from Alfa Wasserman Diagnostic Technologies (West Caldwell, NJ). 

Plasma lipids were standardized to calibrated controls from the Centers for Disease Control 

and Prevention/National Institutes of Health Lipid Standardization Program (Solomon Park, 

Burien, WA, USA).

Leptin - Leptin concentrations were determined by radioimmunoassay using a kit from 

EMD Millipore (Burlington, MA, kit HL-81K).

2.5 Transcriptomics

2.5.1 RNA Isolation—Approximately 5 mg of frozen prefrontal cortex was 

homogenized in 1 ml RLT buffer (Qiagen) using a BeadBeater (BioSpec) with zirconia/

silica beads, and RNA was extracted using the Zymo Direct-zol RNA Miniprep Plus kit 

according to manufacturer’s instructions. RNA quality was assessed using high sensitivity 

RNA ScreenTape with the TapeStation instrument (Agilent). RNA was stored at −80°C.

2.5.2 Sequence Data Generation—The Kapa RNA HyperPrep kit with RiboErase 

(Roche) was used to generate cDNA libraries, and quality assessed using Agilent D1000 

ScreenTape according to the manufacturer’s protocol. cDNA libraries were pooled and 

sequenced using v1.5 reagent kit (Illumina) for paired-end sequencing (2×150) on a 

NovaSeq 6000 Sequencer.

2.5.3 Sequence Data Analysis—Low quality bases with Phred scores below 30 were 

removed prior to alignment. Trimmed reads were aligned against the olive baboon reference 

(Panu_3.0, GCF_000264685.3) using HISAT2 (Kim et al., 2015). Aligned reads were 

quantified using an expectation-maximization algorithm (Xing et al., 2006) with Panu_3.0 

annotation (NCBI release 103). The criteria to be counted as paired-end reads were 100% 

overlap with transcript sequences and skipped regions of junction reads matched the introns 

of transcripts. Transcripts without read counts across all samples were filtered out and 

normalized by the trimmed mean of M values method. Raw read counts were filtered to 

remove those with less than 30 counts across all samples and further filtered to include 

only transcripts with 3 or more counts in 50% of the samples, resulting in an average of 

23,352,009 reads per sample and 25,381 transcripts that passed quality filters.

2.6 Proteomics

2.6.1 Sample Processing—Proteomic samples were prepared as described (Hamid et 

al., 2022). Briefly, approximately 5 mg of each tissue sample was homogenized in Tris 

buffer, precipitated overnight in acetone at −20°C, and centrifuged at 12,000 g for 10 min. 

The protein pellet was dried, reconstituted in 100 mM of ammonium bicarbonate, and 

quantified. One hundred mg of protein were reduced using dithiothreitol for 1 h at 56°C, 

alkylated using iodoacetamide for 30 min in dark, and digested overnight with trypsin. 

Samples were cleaned and desalted using Thermo Scientific Pierce C18 Tips, dried, and 

reconstituted in 0.1% formic acid.
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2.6.2 LC/MS Data Acquisition and Analysis—LC/MS data were acquired as 

described (Hamid et al., 2022). One mg of each sample was loaded on a PepMap RSLC 

C18 easy-spray column (3um, 100A, 75um × 15cm) using Easy-nLC 1200 coupled 

to an Orbitrap Lumos Tribrid Mass Spectrometer (Thermo Scientific), and peptides 

were separated using a 3 hr gradient of Mobile phase A (0.1% Formic acid in 95:5 

Water:Acetonitrile) and Mobile Phase B (0.1% Formic acid in 80:20 Acetonitrile:Water). 

Peptides were eluted according to the gradient program: 2% to 30% B in 140 min, 30% to 

95% B in 30 min and 95% to 100% B in 10 min. Mass spectrometer data were acquired in 

MS1 scan mode (m/z=375–1800) with a resolution of 120,000 with Automatic Gain Control 

of 4.0×105 and maximum injection time of 50 ms. MS/MS data acquisition was done using 

HCD mode at a resolution of 30,000 with an Automatic Gain Control target of 4.0 × 105 and 

maximum injection time of 50 ms. All data acquisition was done using Thermo Scientific 

Xcalibur software.

MS raw data were analyzed using MetaMorpheus (Hamid et al., 2022; Miller et al., 

2019) using the P. anubis reference proteome database from Uniprot with 44,721 entries 

(UP000028761). Data files were calibrated using the following settings: precursor mass 

tolerance of 15 ppm, product mass tolerance of 25 ppm with Carbamidomethyl as fixed 

modification, and oxidation of methionine as variable modification. Trypsin was selected as 

protease with 2 maximum mixed cleavages and the calibrated data files were converted to 

mzML format. Post calibration data was searched using G-PTM-D task for incorporation 

of common biological, metal or artifact PTMs into the search database. A final search was 

done using the augmented search database with incorporated G-PTM-D based modifications 

at precursor and product mass tolerance of 5 and 20 ppm respectively. Peptide and protein 

quantification were done using the FlashLFQ approach and the Match between runs option 

was enabled. Protein intensities were normalized using global intensity normalization. In 

the final normalized data missing values were imputed using Random forest imputation 

workflow (Hamid et al., 2022; Stekhoven and Buhlmann 2012).

2.7 Metabolomics

2.7.1 Sample Processing—Extraction of metabolites from brain samples was 

performed following a protocol adopted from a previously described study (Misra et 

al., 2019). Briefly, aliquots (15 μL) of brain homogenates were subjected to sequential 

solvent extraction, once each with 1 mL of acetonitrile:isopropanol:water (3:3:2) and 500 

μL of acetonitrile:water (1:1) mixtures at 4°C (Fiehn et al., 2008). Adonitol (2 μL from 

10 mg/ml stock) was added to each aliquot prior to the extraction as internal standard. 

The extracts were then dried under vacuum at 4°C prior to chemical derivatization 

(silylation reactions). Tubes without samples (blanks) were treated similarly as sample 

tubes to account for background noise and other sources of contamination. Samples 

and blanks were sequentially derivatized with methoxyamine hydrochloride (MeOX) and 

1% TMCS (2,2,2-Trifluoro-N-methyl-N-(trimethylsilyl)-acetamide, Chlorotrimethylsilane) 

in N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) or 1% TMCS containing N-(t-

butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) as described (Misra et al., 

2019). This involved addition of 20 μL of MeOX (20 mg/mL) in pyridine to the dry extracts 
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and incubation at 55°C for 1 h followed by addition of 80 μL MTBSTFA and incubation at 

60°C for 1 h.

2.7.2 GC/MS Data Acquisition and Analysis—Data were generated with a high-

resolution (HR) Orbitrap Mass Spectrometer (Q Exactive Orbitrap MS, Thermo Fisher) 

coupled to gas chromatography (GC). In all cases, 1 μL of derivatized sample was injected 

into the TRACE 1310 GC (Thermo Scientific, Austin, TX) in a splitless (SSL) mode at 

220°C. Helium was used as a carrier gas and the flow rate was set to 1 mL/min for 

separation on a Thermo Scientific Trace GOLD TG-5SIL-MS (30 m length × 0.25 mm 

i.d. × 0.25 μm film thickness) column with an initial oven temperature of 50°C for 0.5 

min, followed by an initial gradient of 20°C/min ramp rate. The final temperature of 300°C 

was held for 10 min. All eluting peaks were transferred through an auxiliary transfer line 

into a Q Exactive-GC-MS (Thermo Scientific, Bremen, Germany). The total run time was 

25 min. Data were generated in an electron ionization (EI) mode at the standard 70 eV 

energy, emission current of 50 μA, and an ion source temperature of 250°C. A filament 

delay of 5.7 min was set to prevent excess reagents from being ionized. High resolution 

EI spectra were acquired at 60,000 resolution (fwhm at m/z 200) with a mass range of 

50 – 650 m/z. The transfer line was set to 230°C. Data acquisition and instrument control 

were carried out using Xcalibur 4.3 and TraceFinder 4.1 software (Thermo Scientific). 

Capillary voltage was 3500V with a scan rate of 1 scan/s. Finally, raw data (.raw files) 

obtained from data acquired by GC/MS were converted to .mzML formats using the open 

source ProteoWizard’s msConvert software prior to data preprocessing with MS-DIAL 4.6 

software (Riken, Japan, and Fiehn Lab, UC Davis, Davis, CA, USA). The MS-DIAL 4.6 

open software was used for raw peak extraction and data baseline filtering and baseline 

calibration, peak alignment, deconvolution analysis, peak annotation, and peak height 

integration as described (Tsugawa et al., 2015). Key parameters included peak width of 

20 scan, a minimum peak height of 10,000 amplitudes was applied for peak detection, 

sigma window value of 0.5, and EI spectra cutoff of 50,000 amplitudes for deconvolution. 

For annotation settings, the retention time tolerance was 0.5 min, the m/z tolerance was 

0.5 Da, the EI similarity cutoff was 60%, and the annotation score cutoff was 60%. In the 

alignment parameters setting process, the retention time tolerance was 0.5 min, and retention 

time factor was 0.5. Spectral library matching for metabolite identification was performed 

using an in-house and public library consisting of pool EI spectra from MassBank, GNPS, 

RIKEN, MoNA. Data were further normalized by QC-based-loess normalization prior to 

log10 transformation and missing values were imputed based on random forest imputation 

method (Ampong et al., 2022; Dunn et al., 2011; Stekhoven and Buhlmann 2012).

2.8 Statistical Analysis of Integrated Omics Data

2.8.1 Weighted Gene Co-expression Network Analysis (WGCNA)—WGCNA 

was performed with the WGCNA package (Langfelder and Horvath 2008) in R 

software according to the R package WGCNA protocol (https://horvath.genetics.ucla.edu/

html/CoexpressionNetwork/Rpackages/WGCNA/). We used sample clustering to identify 

potential outliers and found one sample with significantly greater low abundance RNA 

Seq transcript values, which was removed from all three omics datasets (Animal ID 26392)

(Langfelder and Horvath 2008). Subsequent analyses included 33 female baboons. A total of 
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26,622 omics molecules were included in WGCNA. Brain omics data from female baboons 

were used to generate a correlation-matrix for all pair-wise omics data. Next, the threshold 

function was used to obtain soft threshold (power-12) to construct an adjacency matrix in 

accordance with a scale-free network (Zhang and Horvath 2005). This adjacency matrix 

was then transformed into a topological overlap matrix (TOM) to measure relative gene 

interconnectedness and proximity. The TOM was then used to calculate the corresponding 

dissimilarity (1 – TOM). Average linkage hierarchical clustering coupled with the TOM-

based dissimilarity was used to group correlated omics data into modules (Zhang and 

Horvath 2005). More specifically, modules were generated from the Dynamic Tree Cut 

method for Branch Cutting. The major parameters were set with a deep-split value of 2 

to branch splitting and a minimum size cutoff of 50 (minimum cluster size = 50) to avoid 

abnormal modules in the dendrogram; highly similar modules were merged together with a 

height cutoff of 0.25. Modules were considered significant if the correlation was ≥ 0.30 and 

p-value < 0.05. In the resulting network, as neighbors in a cluster shared high topological 

overlap, the resulting modules likely indicated a common functional class. WGCNA has the 

advantage of allowing analysis of continuous traits without binning the data for arbitrary 

phenotypic cutoffs in an analysis because binning data into categories typically translates 

into loss of power.

2.8.2 Construction of Module-Trait Relationships—The omics modules summarize 

the main patterns of variation. The first principal component represents the summary 

of each module and is referred to as the module eigengene (Langfelder and Horvath 

2007). The relationship between module eigengenes and clinical traits was assessed by 

Pearson correlation; if p-value < 0.05, then the module and clinical trait were regarded as 

significant. The modules and clinical traits that showed significant (p-value < 0.05) and 

high correlations (≥ 0.30) were selected for further investigation. A heat map was used for 

visualization of the correlations of each module-trait relationship.

2.8.3 Proteomics and Metabolomics Correlation with Age—The central question 

of our study was whether modules of brain omics data correlated with age. The identified 

modules negatively correlated with age contained few proteins and no metabolites. WGCNA 

is designed to alleviate the multiple testing burden in transcriptomic data, which is less of 

an issue for proteomic and metabolomic data due to their smaller numbers of molecules. 

Consequently, we used Pearson correlation to nominate proteins and metabolites that 

correlated with age and age-squared. Although we did not adjust for multiple testing, 

we addressed this within pathway enrichment analysis, i.e., pathway statistical values for 

enrichment plus EOP stringent filtering (Nijland et al., 2007).

2.9 Pathway and Network Enrichment Analysis

To assess directionality of pathways significantly enriched with molecules from WGCNA 

and regression analyses, negatively correlated molecules were converted to negative fold 

change and positive correlations to positive fold change. All molecules from significant 

modules were imported to Ingenuity Pathway Analysis (IPA) software (Qiagen) for core 

analysis where pathways were analyzed for significant enrichment of module genes. Right-

tailed Fisher’s exact test was used to calculate associations between molecules in the dataset 
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and molecules in annotated pathways, and pathways were ranked by −log p-value (Spradling 

et al., 2013). A p-value of < 0.01 was considered significant. We used an EOP approach to 

identify pathways in which activity was biologically consistent between the beginning and 

end of the pathway - we considered that a pathway is biologically relevant if fold changes of 

the molecules at both ends of the pathway were consistent with the overall pathway change, 

i.e., activated or inhibited (Nijland et al., 2007). For key molecules in pathways associated 

with age, we generated plots of molecule abundance with age using ggplot2 (v3.4.2) in R (v 

4.1.1), and the fitted lines were generated using the geom_smooth function.

3 Results

3.1 Morphometric and Clinical Measures

Our study included PFC samples and corresponding blood samples from 34 female baboons 

(Papio) ranging in age from 7.5y to 22.1y (human equivalent ~24y to 88y). PFC samples 

were rapidly collected in a controlled setting from scheduled necropsies providing high 

quality tissues for multi-omic analyses. Morphometry and blood for clinical chemistries 

were collected immediately prior to necropsy (Supplemental Table 1). Regression analysis 

showed body length associated with age (p-value = 0.024) and age-squared (p-value < 

0.001), and BMI was nominally associated with age (p-value = 0.063). Among the clinical 

measures, triglycerides (p-value = 0.004) and glucose (p-value = 0.044) were associated 

with age, and LDL cholesterol was associated with age-squared (p-value = 0.019) (Table 1).

3.2 Integrated Omics to Identify Age-Associated Molecules

We identified 25,381 transcripts (Supplemental Table 2), 917 proteins (Supplemental Table 

3), and 324 metabolites (Supplemental Table 4) that passed quality filters (Table 2). We used 

WGCNA to identify 26 modules of co-correlated omics molecules, and then determined 

whether any of these modules associated with age, age-squared, and morphometric and 

clinical measures.

We identified 2 modules negatively correlated with age (white, p-value = 0.008, correlation 

= −0.45; and light yellow, p-value = 0.020, correlation = −0.40) (Table 2, Supplemental 

Table 5) which included 587 genes, 13 proteins, and 0 metabolites (Supplemental Table 6, 

Table 1). We did not find any significant modules associated with age-squared. However, we 

did identify 27 proteins (23 mappable in IPA) negatively correlated with age, 30 proteins 

associated with age-squared (21 mappable in IPA), and 20 metabolites associated with 

age-squared (Supplemental Table 7).

To determine whether metabolic and/or morphometric measures were associated with 

PFC molecular changes with age, we assessed whether age-associated WGCNA modules 

overlapped with morphometric- and clinical measures-associated WGCNA modules. 

Although triglycerides, LDL cholesterol, leptin, and body length revealed significant 

associations with WGCNA modules, none of these overlapped with age (Figure 1).

Cox et al. Page 9

Neurobiol Aging. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3 Pathway Enrichment Analysis

Pathway analysis of genes, proteins, and metabolites correlated with age revealed 52 

pathways with p-values < 0.01 and z-scores predicting directionality (Supplemental Table 8). 

Among these, the top 25 pathways all passed EOP filtering and all shared 5 or more genes in 

common, indicating extensive molecular coordination among the age-associated molecules 

in the PFC. Neurotransmitter signaling and other nervous system signaling pathways were 

the most statistically significant with the greatest numbers of molecules (Figure 2).

The top 5 pathways highlight our findings for signaling pathways previously associated with 

age in PFC, and novel pathways in PFC not previously associated with age. Consistent with 

previous studies (Kelly et al., 2014; Garcia et al., 2014), we found decreased abundance 

with age for VEGFA (vascular endothelial growth factor A) and PDE1B (phosphodiesterase 

1B) genes and in dopamine signaling. In addition, two metabolites, γ-aminobutyric-acid 

(GABA) and 1,10-phenanthroline, in the dopamine signaling pathway were positively 

correlated with age (Figure 3), consistent with previous reports (Kiemes et al., 2021; 

Gao et al., 2013; Maitra et al., 2021). Also consistent with previous work was decreased 

activity of estrogen signaling with age (reviewed in (Friedman and Robbins 2022), including 

downregulation of IGF1 (insulin like growth factor 1), IGFR (insulin like growth factor 

1 receptor), VEGFA, and EIF4EBP2 (eukaryotic translation initiation factor 4E binding 

protein 2) gene expression, and EIF4EBP1 (eukaryotic translation initiation factor 4E 

binding protein 1) and PRKAR1A protein expression (Supplemental Figure 1).

Novel PFC pathways associated with age included nitric oxide signaling (Figure 4), 

synaptogenesis (Supplemental Figure 2), and synaptic long-term depression (Supplemental 

Figure 3). The nitric oxide signaling pathway was significantly enhanced by including 

proteomic data, an example of proteomic data enriching the pathway beyond transcript 

data alone, and with proteins found in key signaling steps such as calmodulin processing. 

In addition, multiple metabolites from the metabolomic dataset were associated with this 

pathway as regulators (1,10-phenanthroline and physostigmine) and by-products (GABA). 

Increased abundance of these metabolites in the PFC with age was inverse to decreased 

activity of the signaling pathway with age, consistent with previous studies (Kiemes et al., 

2021; Gao et al., 2013; Maitra et al., 2021). Synaptogenesis signaling also included proteins 

in key signaling steps such as cadherin (CDH13) and EIF4EBP1. Identification of GABA 

and 1,10-phenanthroline inhibiting the novel PFC pathway synaptic long-term depression 

signaling was also consistent with decreased PFC neuron activity with age in this cohort. 

Taken together, pathway enrichment analysis revealed coordinated decreased activity of 

neuronal signaling pathways with age in the female primate PFC.

4 Discussion

The overall goal of this study was to use unbiased multi-omics analysis methods and 

data integration to identify molecular pathways associated with age in the female primate 

PFC. Previous studies have established the importance of the PFC in cognition (Miller and 

Cohen 2001) and shown commonalities in cognitive decline with age among humans and 

multiple NHP species (Lacreuse et al., 2020). Although ongoing studies have used RNA-Seq 

in human (Miller et al., 2017) and NHP (Wei et al., 2015; Li et al., 2013; Shao et al., 
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2010; Yuan et al., 2012; Somel et al., 2011; Li et al., 2019; Yin et al., 2020) brain region 

samples to quantify age-associated molecular changes, no studies to date have systematically 

characterized the broad adult age span in females included in this study, approximating a 

human age range of ~24y to 88y. In addition, the size of our study cohort, which averages 

almost 3 animals per year of age, is far larger than any previous NHP study related to 

cognition and aging (reviewed in (Lacreuse et al., 2020; Upright and Baxter 2021). This 

study is unique in that animals were maintained on a healthy, low cholesterol, low fat 

“chow” diet throughout life, housed under the same conditions, and neural tissues were 

collected on a defined schedule with short PMIs (~30 min), which allowed us to assess PFC 

molecular changes associated with normal aging across multiple omics domains.

We quantified morphometry and clinical chemistries for measures previously positively 

associated with age-related co-morbidities and found measures of body length associated 

with age, as well as plasma LDL cholesterol, triglyceride concentrations, and glucose. 

Interestingly, we did not find significant associations between either HDL cholesterol or 

total serum cholesterol with age in this cohort of female baboons.

Using unbiased WGCNA, we identified 2 modules of omics molecules that were 

significantly correlated with age. Neither of these age-associated modules overlapped with 

triglycerides, or morphometric measures correlated with age, suggesting that molecular 

pathways influencing age-associated variation in these morphometric and clinical measures 

differ from molecular pathways influencing PFC age-associated changes. Overall, the 

number of molecules in the two age-correlated WGCNA modules was small, including 

only 2.3% of transcripts and 1.4% of proteins that passed quality filters. Although few 

metabolites correlated with age, 5/20 (25%) were remarkably informative and consistent 

with gene/protein pathway directionality. Furthermore, pathway enrichment analysis showed 

extensive overlap and coordination based on molecules common among the top 25 pathways 

and consistent with decreased age-associated activity. Taken together, these results provide 

a detailed molecular picture in which few molecules were associated with age, but those 

few were highly interconnected, suggesting coordinated functional changes with age in the 

primate PFC.

Our unbiased integrated omics approach identified both known and novel pathways 

associated with PFC aging in primates, and provides evidence for molecular mechanisms 

mediating age-related cognitive decline and reduced PFC function. Known pathways include 

PFC dopaminergic circuits, which are essential for cortical connectivity and cognition 

(Arnsten et al., 2012; Dehaene and Changeux 2000), and have been shown in imaging 

studies to decrease with age, consistent with decreased dopamine signaling reported here 

(Berry et al., 2016). GABA-mediated inhibition is critical to the function of neural circuits 

that support memory in the PFC (Deco and Rolls 2003; McQuail et al., 2015). Here, 

GABA was positively correlated with age. GABA and dopamine signaling act together to 

support spatial working memory in the primate dorsolateral PFC (Arnsten et al., 2015; 

Goldman-Rakic 1995). Also, GABA is negatively correlated with human neural activity in 

functional MRI (Kiemes et al., 2021; Gao et al., 2013) which is consistent with our findings 

of increased GABA abundance in PFC with increased age. We also observed decreased 

estrogen signaling with age, which has been associated with cognitive decline (reviewed in 
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(Friedman and Robbins 2022) and modulates dopamine (Shanmugan and Epperson 2014) 

and GABA (Gilfarb and Leuner 2022) function. Proteins and metabolites in these pathways 

were of particular interest, providing multi-level molecular data on key signaling steps and 

pathway read outs, respectively.

The top ranked pathways for primate PFC included decreased nitric oxide signaling with 

age. Our results differ from a study in male rats showing increased eNOS with age 

(Liu et al., 2004). It is possible this difference is based on significant differences in 

PFC cell composition and function between rodents and primates (Seamans et al., 2008) 

or may be due to sex-specific signaling, i.e., female NHP versus male rodents. Indeed, 

estrogen induces synaptogenesis in the primate PFC (Hara et al., 2015). GABA and 1,10-

phenanthroline may contribute to synaptic long-term depression by inhibition of glutamate 

at the synaptic vesicle and protein kinase C, respectively, key molecules in the signaling 

pathway. Not only is GABA negatively correlated with neural activity, 1,10-phenanthroline 

has been shown to promote apoptosis (Maitra et al., 2021). Increased abundance in these 

metabolites with age are consistent with decreased signaling activity in the synaptic 

long-term depression signaling pathway. Decreased signaling with age in these pathways 

combined with decreased dopamine, GABA, and estrogen signaling indicate decreased PFC 

neuronal activity, even in healthy primate aging, which are likely involved in common 

declines in cognitive function observed with aging.

Also noteworthy is that previous human studies of molecular changes in PFC with age have 

reported changes related to inflammation and immune function (Zhang and Wong 2022; 

Tennakoon et al., 2022; Wruck and Adjaye 2020), and reported evidence of age-associated 

differences in immune function in PFC. However, the analyzed tissue samples were derived 

from seven studies with high heterogeneity in patient populations, cause of death, and PMI. 

We did not find these pathways enriched in our dataset which was derived from NHPs that 

consumed a healthy, low-fat, low-cholesterol, largely plant-based diet throughout life, and 

in which PFC was collected rapidly, using the same protocol for all subjects. Thus, it is 

difficult to untangle lifetime diet effects, the use of tissues from healthy subjects, and PMI as 

factors accounting for these differences.

4.1 Limitations

Although this study is the first of its kind for cohort size, age span, and integrated omics, 

there are limitations that should be addressed in future work. First, this study included only 

females, due to the difficulty of maintaining large numbers of males in NHP colonies, as 

non-breeders are typically culled prior to aging. Thus, the extent to which the observations 

reported here are sex-specific remains to be determined. Second, all omics methods were 

“bulk” methods for this heterogeneous brain region – we likely were not able to identify all 

pathways associated with age as molecular signaling in less abundant cell types would likely 

be undetected. We also did not characterize in more detail post-translational modifications 

in proteins, a future analysis that may be of interest given the key role of several proteins 

in the identified signaling pathways where alterations in phosphorylation may further impact 

activity of key protein regulators identified in our study. Behavioral function was not 

assessed in the baboons in this study, in part owing to the challenges of accessing the 
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animals for intensive neurocognitive testing without compromising the social welfare of the 

groups. Although we would expect, on average, declines in PFC-mediated functions with 

aging, it is likely that in baboons as in other primate species there would be individual 

differences in PFC function in older adult individuals. We are not able to analyze the 

extent to which molecular changes identified in our analysis are associated with disturbance 

versus preservation of PFC function with aging (Morrison and Baxter 2012; Baxter et al., 

2023). Finally, although reproductive status was not characterized, previous studies show 

that baboon females may become peri- or post-menopausal as early as 20 years of age, 

consistent with the decline in estrogen signaling with age (Macrini et al., 2013).

5 Conclusions

Nonetheless, our unbiased integrated omics analysis of the female primate PFC revealed 

novel neural signaling pathways in which activities decrease with age. Analysis of PFC 

samples collected from animals maintained on a healthy diet in social groups throughout 

lifespan provides a framework for normal healthy aging in the PFC at the molecular 

level. As mentioned previously, integration of metabolomic data provides useful inputs and 

readouts from signaling pathways. In addition, because GABA can be quantified by current 

imaging modalities (Kiemes et al., 2021; Gao et al., 2013), the association of GABA with 

these known and novel age-associated signaling pathways provides one potential biomarker 

to assess PFC changes with age and in response to stressors. These signaling pathways, 

and their changes with aging, are likely to represent critical molecular contributors to age-

related cognitive decline and overall PFC function, even prior to overt clinical symptoms, 

and as such may provide novel insights into age-related disease processes. Future work is 

required to identify master regulators that mediate the decreased activity of these highly 

interconnected neuronal signaling pathways, and to identify sex differences.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Integrated multiomics identified age-related molecular changes in female 

primates

• Highly interconnected molecular pathways are associated with age-related 

decline

• Results provide potential molecular targets to deter prefrontal cortex decline 

with age
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Figure 1: WGCNA of omic data
A) Modules associated with age and age-correlated traits. Each row corresponds to a 

module, the bottom column labels indicate each quantitative trait correlated with omic 

modules. Numbers in each box indicate correlations with p-values in parentheses. Positive 

correlations are indicated with red fill, negative with green fill, and significant modules 

are outlined blue. B) Plots of eigengenes versus age for the age-associated modules 

MElightyellow and MEwhite.

Cox et al. Page 19

Neurobiol Aging. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Pathway Classification
Bubble chart of significantly enriched, overlapping pathways with ≥ 5 genes in common. 

Pathways with enrichment −log (p-value) > 3.2 and absolute z-score >1.0 are shown. The 

x-axis shows the −log (p-value) and y-axis shows the pathways. Blue fill indicates pathways 

decreasing with age, orange indicates pathways increasing with age, and size of the circle 

denotes the number of omic molecules in the pathway.

Cox et al. Page 20

Neurobiol Aging. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Dopamine DARPP32 Feedback in Camp Sig; p-val 2.0−06

Dopamine DARPP32 Feedback in cAMP Signaling. Genes are indicated by green outline, 

proteins by purple outline, metabolites by gold outline, red fill indicates increased 

abundance with age, green fill decreased abundance with age, and gray fill indicates no 

change in abundance. Pathway enrichment p-value = 2.0−06. Inserts of example correlation 

plots for molecule abundance and age are shown for GABA, PKG, and PKC.
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Figure 4: Nitric Oxide Signaling; p-val 4.0−06

Nitric Oxide Signaling. Genes are indicated by green outline, proteins by purple outline, 

metabolites by gold outline, red fill indicates increased abundance with age, green fill 

decreased abundance with age, and gray fill indicates no change in abundance. Pathway 

enrichment p-value = 4.0−06. Inserts of example correlation plots for molecule abundance 

and age are shown for VEGF and PKA.
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Table 1.

Correlations between age and morphometric and clinical measures

Trait Age Correlation Age p-value Age2 Correlation Age2 p-value

Total cholesterol −0.0023 0.9892 −0.3070 0.0773

HDL cholesterol −0.2113 0.2301 −0.1195 0.5006

LDL cholesterol 0.0548 0.7578 0.4061 0.0171

Triglycerides 0.4830 0.0038 0.0025 0.9884

Glucose 0.3479 0.0437 −0.3129 0.0715

Leptin 0.0387 0.8276 −0.1048 0.5551

Body Weight 0.1024 0.5640 −0.1609 0.3633

Body length −0.3874 0.0235 −0.6358 5.32E-05

BMI 0.3224 0.0628 0.1468 0.4014

Brain Weight −0.2226 0.2056 −0.2386 0.1741
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Table 2.

Summary of Genes, Proteins and Metabolites Associated with Age

Molecule Quality WGCNA Age WGCNA Age2 Corr. Age Corr. Age2

Genes 25,381 587 0 - -

Proteins 917 13 0 27 30

Metabolites 324 0 0 0 20
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Table 3.

Number of genes, proteins, and metabolites in the top 20 WGCNA modules with statistical results for age and 

age2

Module colors Age Age-squared
No. genes per 

module
No. proteins 
per module

No. metabolites 
per module

Pearson 
correlation p-value

Pearson 
correlation p-value

Light yellow −0.456 0.0077 0.065 0.7199 170 4 -

White −0.404 0.0197 −0.120 0.5053 417 9 -

Magenta −0.321 0.0684 0.215 0.2304 1159 32 -

Turquoise 0.298 0.0915 0.213 0.2329 4043 38 -

Dark red −0.267 0.1329 0.187 0.2970 966 11 -

Royal blue −0.264 0.1379 0.215 0.2295 392 4 -

Dark orange −0.259 0.1461 −0.117 0.5164 175 4 -

Purple −0.250 0.1612 0.087 0.6296 989 15 -

Yellow −0.234 0.1907 0.052 0.7728 1978 73 -

Orange 0.222 0.2146 −0.026 0.8857 327 8 -

Brown −0.210 0.2412 −0.206 0.2500 2473 63 -

Dark green −0.203 0.2575 0.169 0.3481 50 262 -

Cyan −0.177 0.3257 −0.069 0.7009 468 19 -

Light cyan −0.154 0.3916 −0.170 0.3454 1145 15 -

Steel blue 0.149 0.4085 −0.032 0.8589 162 - -

Pink 0.113 0.5308 0.264 0.1376 815 72 323

Light green −0.100 0.5790 −0.082 0.6514 415 17 -

Red −0.077 0.6709 −0.174 0.3324 1646 53 -

Grey60 0.076 0.6762 −0.032 0.8604 441 1 -
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