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Abstract

Background and Objectives: Reproducibility is a major challenge in developing machine 

learning (ML)-based solutions in computational pathology (CompPath). The NCI Imaging Data 

Commons (IDC) provides >120 cancer image collections according to the FAIR principles and 

is designed to be used with cloud ML services. Here, we explore its potential to facilitate 

reproducibility in CompPath research.

Methods: Using the IDC, we implemented two experiments in which a representative ML-based 

method for classifying lung tumor tissue was trained and/or evaluated on different datasets. To 

assess reproducibility, the experiments were run multiple times with separate but identically 

configured instances of common ML services.
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Results: The results of different runs of the same experiment were reproducible to a large extent. 

However, we observed occasional, small variations in AUC values, indicating a practical limit to 

reproducibility.

Conclusions: We conclude that the IDC facilitates approaching the reproducibility limit of 

CompPath research (i) by enabling researchers to reuse exactly the same datasets and (ii) by 

integrating with cloud ML services so that experiments can be run in identically configured 

computing environments.

Keywords

reproducibility; computational pathology; FAIR; cloud computing; machine learning; artificial 
intelligence

1 Introduction

Computational pathology (CompPath) is a new discipline that investigates the use of 

computational methods for the interpretation of heterogeneous data in clinical and 

anatomical pathology to improve health care in pathology practice. A major focus area 

of CompPath is the computerized analysis of digital tissue images [1]. These images show 

thin sections of surgical specimens or biopsies that are stained to highlight relevant tissue 

structures. To cope with the high level of complexity and variability of tissue images, 

virtually all state-of-the-art methods use sophisticated machine learning (ML) algorithms 

such as Convolutional Neural Networks (CNN) [2].

Because CompPath is applicable in a wide variety of use cases, there has been an explosion 

of research on ML-based tissue analysis methods [3, 4]. Many methods are intended to 

assist pathologists in routine diagnostic tasks such as the recognition of tissue patterns for 

disease classification [5–9]. Beyond that, CompPath methods have also shown promise for 

deriving novel biomarkers from tissue patterns that can predict outcome, genetic mutations, 

or therapy response [3].

1.1 Reproducibility challenges

In recent years, it has become increasingly clear that reproducing the results of published 

ML studies is challenging [10–13]. Reproducibility is commonly defined as the ability to 

obtain “consistent results using the same input data, computational steps, methods, and 

conditions of analysis” [14]. Difficulties related to reproducibility prevent other researchers 

from verifying and reusing published results and are a critical barrier to translating solutions 

into clinical practice [15]. In most cases, reproducibility problems seem to stem not from 

a lack of scientific rigor, but from challenges to convey all details and set-up of complex 

ML methods [12, 15, 16]. In the following, we provide an overview of the main challenges 

related to ML reproducibility and the existing approaches to address them.

The first challenge is the specification of the analysis method itself. ML algorithms have 

many variables, such as the network architecture, hyperparameters, and performance metrics 

[16–18]. ML workflows usually consist of multiple processing steps, e.g., data selection, 

preprocessing, training, evaluation [18]. Small variations in these implementation details can 
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have significant effects on performance. To make all these details transparent, it is crucial 

to publish the underlying source code [15]. Workflows should be automated as much as 

possible to avoid errors when performing steps manually. Particular care must be taken 

to ensure that all operations are deterministic, e.g., by seeding pseudo-random operations, 

fixing initial network weights and controlling parallelism [13]. Jupyter notebooks have 

emerged as the de facto standard to implement and communicate ML workflows [19]. By 

combining software code, intermediate results and explanatory texts into “computational 

narratives” [20] that can be interactively run and validated, notebooks make it easier for 

researchers to reproduce and understand the work of others [19].

The second challenge to reproducibility is the specification and setup of the computing 

environment. ML workflows require significant computational resources including, e.g., 

graphics or tensor processing units (GPUs or TPUs). In addition, they often have many 

dependencies on specific software or library versions. Minor variations in the computing 

environment can significantly affect the results [13]. Setting up a consistent computational 

environment can be very expensive and time consuming. This challenge can be partially 

solved by embedding ML workflows in virtual machines or software containers like 

Docker [21]. Both include all required software dependencies so that ML workflows can 

be shared and run without additional installation effort. Cloud ML services, like Google 

Vertex AI, Amazon SageMaker, or Microsoft Azure Machine Learning, provide an even 

more comprehensive solution. By offering preconfigured computing environments for ML 

research in combination with the required highperformance hardware, such services can 

further reduce the setup effort and enable the reproduction of computationally intensive ML 

workflows even if one does not own the required hardware. They also typically provide 

web-based graphical user interfaces through which Jupyter notebooks can be run and shared 

directly in the cloud, making it easy for others to reproduce, verify, and reuse ML workflows 

[21].

The third challenge related to ML reproducibility is the specification of data and its 

accessibility. The performance of ML methods depends heavily on the composition of their 

training, validation and test sets [13, 22]. For current ML studies, it is rarely possible to 

reproduce this composition exactly as studies are commonly based on specific, hand-curated 

datasets which are only roughly described rather than explicitly defined [17, 23]. Also, 

the datasets are often not made publicly available [15], or the criteria/identifiers used to 

select subsets from publicly available datasets are missing. Stakeholders from academia 

and industry have defined the Findability, Accessibility, Interoperability, and Reusability 

(FAIR) principles [24], a set of requirements to facilitate discovery and reuse of data. FAIR 

data provision is now considered a “must” to make ML studies reproducible and the FAIR 

principles are adopted by more and more public data infrastructure initiatives and scientific 

journals [25].

Reproducing CompPath studies is particularly challenging. To reveal fine cellular details, 

tissue sections are imaged at microscopic resolution, resulting in gigapixel whole-slide 

images (WSI) [26]. Due to the complexity and variability of tissue images [27], it 

takes many—often thousands—of example WSI to develop and test reliable ML models. 

Processing and managing such large amounts of data requires extensive computing power, 
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storage resources, and network bandwidth. Reproduction of CompPath studies is further 

complicated by the large number of proprietary and incompatible WSI file formats that 

often impede data access and make it difficult to combine heterogeneous data from different 

studies or sites. The Digital Imaging and Communications in Medicine (DICOM) standard 

[28] is an internationally accepted standard for storage and communication of medical 

images. It is universally used in radiology and other medical disciplines, and has great 

potential to become the uniform standard for pathology images as well [29]. However, until 

now, there have been few pathology data collections provided in DICOM format.

1.2 NCI Imaging Data Commons

The National Cancer Institute (NCI) Imaging Data Commons (IDC) is a new cloud-based 

repository within the US national Cancer Research Data Commons (CRDC) [30]. A central 

goal of the IDC is to improve the reproducibility of data-driven cancer imaging research. For 

this purpose, the IDC provides large public cancer image collections according to the FAIR 

principles.

Besides pathology images (brightfield and fluorescence) and their metadata, the IDC 

includes radiology images (e.g., CT, MR, and PET) together with associated image analysis 

results, image annotations, and clinical data providing context about the images. At the time 

of writing this article, the IDC contained 128 data collections with more than 63,000 cases 

and more than 38,000 WSI from different projects and sites. The collections cover common 

tumor types, including carcinomas of the breast, colon, kidney, lung, and prostate, as well 

as rarer cancers such as sarcomas or lymphomas. Most of the WSI collections originate 

from The Cancer Genome Atlas (TCGA) [31] and Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) [32] projects and were curated by The Cancer Imaging Archive 

(TCIA) [33]. These collections are commonly used in the development of CompPath 

methods [7, 34–36].

The IDC implements the FAIR principles as follows:

Interoperability: While the original WSIs were provided in proprietary, vendor-specific 

formats, the IDC harmonized the data and converted them into the open, standard DICOM 

format [29]. DICOM defines data models and services for storage and communication of 

medical image data and metadata, as well as attributes for different real-world entities (e.g., 

patient, study) and controlled terminologies for their values. In DICOM, a WSI corresponds 

to a “series” of DICOM image objects that represent the digital slide at different resolutions. 

Image metadata are stored as attributes directly within the DICOM objects.

Accessibility: The IDC is implemented on the Google Cloud Platform (GCP), enabling 

cohort selection and analysis directly in the cloud. Since IDC data are provided as part 

of the Google Public Datasets Program, it can be freely accessed from cloud or local 

computing environments. In the IDC, DICOM objects are stored as individual DICOM 

files in Google Cloud Storage (GCS) buckets and can be retrieved using open, free, and 

universally implementable tools.

Schacherer et al. Page 4

Comput Methods Programs Biomed. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Findability: Each DICOM file in the IDC has a persistent universally unique identifier 

(UUID) [37]. DICOM files in storage buckets are referenced through GCS URLs, consisting 

of the bucket URL and the UUID of the file. Images in the IDC are described with 

rich metadata, including patient (e.g., age, sex), disease (e.g., subtype, stage), study 

(e.g., therapy, outcome), and imaging-related data (e.g., specimen handling, scanning). All 

DICOM and non-DICOM metadata are indexed in a BigQuery database [38] that can be 

queried programmatically using standard Structured Query Language (SQL) statements (see 

section “IDC data access”), allowing for an exact and persistent definition of cohorts for 

subsequent analysis.

Reusability: All image collections are associated with detailed provenance information but 

stripped of patient-identifiable information. Most collections are released under data usage 

licenses that allow unrestricted use in research studies.

1.3 Objective

This paper explores how the IDC and cloud ML services can be used in combination for 

CompPath studies and how this can facilitate reproducibility. This paper is also intended as 

an introduction to how the IDC can be used for reproducible CompPath research. Therefore, 

important aspects such as data access are described in more detail in the Methods section.

2 Methods

2.1 Overview

We implemented two CompPath experiments using data collections from the IDC and 

common ML services (Figure 1). Since the computing environments provided by cloud 

ML services are all virtualized, two identically configured instances may run different 

host hardware and software (e.g., system software versions, compiler settings) [13]. To 

investigate if and how this affects reproducibility, both experiments were executed multiple 

times, each in a new instance of the respective ML service.

The experiments are based on a basic CompPath analysis method that addresses a use 

case representative of common CompPath tasks [5–9]: the automatic classification of entire 

WSI of hematoxylin and eosin (H&E)-stained lung tissue sections into either non-neoplastic 

(normal), lung adenocarcinoma (LUAD), or lung squamous cell carcinoma (LSCC/LUSC).

Experiment 1 replays the entire development process of the method, including model 

training and validation. Experiment 2 performs inference with a trained model on 

independent data. The model trained in Experiment 1 was used as the basis for Experiment 

2. The two experiments were conducted with different collections in the IDC: TCGA-

LUAD/LUSC [39, 40] and CPTAC-LUAD/LSCC [41, 42], respectively. While both the 

TCGA and the CPTAC collections cover H&E-stained lung tissue sections of the three 

classes considered (Figure 2), they were created by different clinical institutions using 

different slide preparation techniques.
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2.2 Implementation

Both experiments were implemented as standalone Jupyter notebooks that are available 

open source [43]. We followed best practices to make operations deterministic [44], e.g., by 

seeding pseudo-random operations, fixing initial network weights between runs, requesting 

the use of deterministic algorithms within the TensorFlow framework, and by iterating over 

unordered container types in a defined order. Library versions were specified as part of the 

Cloud ML service configuration or explicitly specified in the notebooks. Utility functionality 

was designed as generic classes and functions that can be reused for similar use cases.

As the analysis method itself is not the focus of this paper, we adopted the algorithmic 

steps and evaluation design of a lung tumor classification method described in a widely cited 

study by Coudray et al. [7]. Although more modern approaches exist [45], this method was 

chosen because it is representative of proven CompPath applications and easy to understand. 

Our implementation processed images at a lower resolution, which is significantly less 

computationally expensive.

In our analysis workflow, a WSI was subdivided into non-overlapping rectangular tiles, 

each measuring 256 pixels at a resolution of 1 μm/px. Tiles containing less than 50% 

tissue, as determined by pixel value statistics, were discarded. Each tile was assigned 

class probabilities by performing multi-class classification using an InceptionV3 CNN 

[46] pretrained on ImageNet [47]. The per-tile results were finally aggregated to a single 

classification of the entire slide. The workflow is visualized in Figure 3 and a detailed 

description of the approach and hyperparameters is provided in the respective notebooks.

In Experiment 1, the considered slides were divided into training, validation, and test sets 

with proportions of 70%, 15%, and 15%, respectively. The respective subsets were exactly 

the same in each run of the notebook. To keep the sets independent and avoid overoptimistic 

performance estimates [48], slides from a given patient were assigned to only one set, which 

resulted in 705, 151 and 153 patients per subset. The data collections used did not contain 

annotations of tumor regions, but only one reference class value per WSI. Following the 

procedure used by Coudray et al., all tiles were considered to belong to the reference class of 

their respective slide. Training was performed using a categorical cross-entropy loss between 

the true class labels and the predicted class probabilities, and the RMSProp optimizer with 

minimal adjustments to the default hyperparameter values [49]. The epoch with the highest 

area under the receiver operating characteristic (ROC) curve (AUC) on the validation set was 

chosen for the final model.

2.3 IDC data access

For most CompPath studies, one of the first steps is to select relevant slides using 

appropriate metadata. In the original data collections, parts of the metadata were stored 

in the image files and other parts in separate files of different formats (e.g., CSV, JSON 

files). In order to select relevant slides, the image and metadata first had to be downloaded 

in their entirety and then the metadata had to be processed using custom tools. With the 

IDC, data selection can be done by filtering a rich set of DICOM attributes with standard 

BigQuery SQL statements (Figure 4). The results are tables in which rows represent DICOM 
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files and columns represent selected metadata attributes. As this facilitates the accurate 

and reproducible definition of the data subsets used in the analysis, these statements are 

described in more detail below.

An SQL query for selecting WSI in the IDC generally consists of at least a SELECT, 

a FROM and a WHERE clause. The SELECT clause specifies the metadata attributes to 

be returned. The IDC provides a wealth of metadata attributes, including image-, patient-, 

disease-, and study-level properties. The attribute “gcs_url” is usually selected because it 

stores the GCS URL needed to access the DICOM file. The FROM clause refers to a 

central table “dicom_all” which summarizes all DICOM attributes of all DICOM files. 

This table can be joined with other tables containing additional project-specific metadata. 

Crucial to reproducibility is that all IDC data are versioned: Each new release of the 

IDC is represented as a new BigQuery dataset, keeping the metadata for the previous 

release and the corresponding DICOM files accessible even if they are modified in the 

new release. The version to use is specified via the dataset specifier in fully qualified table 

names. All experiments in this manuscript were conducted against IDC data version 11, i.e., 

the BigQuery table “bigquery-public-data.idc_v11.dicom_all”. The WHERE clause defines 

which DICOM files are returned by imposing constraints for certain metadata attributes. To 

guarantee reproducibility, it is essential to not use SQL statements that are non-deterministic 

(e.g., those that utilize ANY_VALUE) and conclude the statement with an ORDER BY 

clause, which ensures that results are returned in a sorted order.

The two experiments considered in this paper also begin with the execution of a BigQuery 

SQL statement to select appropriate slides and required metadata from the IDC. A detailed 

description of the statements is given in the respective notebooks. Experiment 1 queries 

specific H&E-stained tissue slides from the TCGA-LUAD/LUSC collections, resulting 

in 2163 slides (591 normal, 819 LUAD, 753 LSCC). Experiment 2 uses a very similar 

statement to query the slides from the CPTAC-LUAD/LSCC collections, resulting in 2086 

slides (743 normal, 681 LUAD, 662 LSCC).

Once their GCS URLs are known, the selected DICOM files in the IDC can be accessed 

efficiently using the open source tool “gsutil” [50] or any other tool that supports the Simple 

Storage Service (S3) API. During training in Experiment 1, image tiles of different WSI had 

to be accessed repeatedly in random order. To speed up this process, all considered slides 

were preprocessed and the resulting tiles were extracted from the DICOM files and cached 

as individual PNG files on disk before training. In contrast, simply applying the ML method 

in Experiment 2 required only a single pass over the tiles of each WSI in sequential order. 

Therefore, it was feasible to access the respective DICOM files and iterate over individual 

tiles at the time they were needed for the application of the ML method.

2.4 Cloud ML services

The two experiments were conducted with two different cloud ML services of the 

GCP—Vertex AI and Google Colaboratory. Both services offer virtual machines (VMs) 

preconfigured with common ML libraries and a JupyterLab-like interface that allows editing 

and running notebooks from the browser. They are both backed with extensive computing 

resources including state-of-the-art GPUs or TPUs. The costs of both services scale with the 
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type and duration of use for the utilized compute and storage resources. To use any of them 

with the IDC, a custom Google Cloud project must be in place for secure authentication and 

billing, if applicable.

Since training an ML model is much more computationally intensive than performing 

inference, we conducted Experiment 1 with Vertex AI and Experiment 2 with Google 

Colaboratory. Vertex AI can be attached to efficient disks for storage of large amounts 

of input and output data, making it more suitable for memory-intensive and long-running 

experiments. Colaboratory, on the other hand, offers several less expensive payment plans, 

with limitations in the provided computing resources and guaranteed continuous usage 

times. Colaboratory can even be used completely free of charge, with a significantly limited 

guaranteed GPU usage time (12 hours at the time of writing). This makes Colaboratory 

better suited for smaller experiments or exploratory research.

2.5 Evaluation

Experiment 1 was performed using a common Vertex AI VM configuration (8 vCPU, 

30 GB memory, NVIDIA T4 GPU, Tensorflow Enterprise 2.8 distribution). Experiment 2 

was performed with Colaboratory runtimes (2–8 vCPU, 12–30 GB memory). When using 

Google Colaboratory for Experiment 2, we were able to choose between different GPU 

types, including NVIDIA T4 and NVIDIA P100 GPUs. Since it has been suggested that the 

particular type of GPU can affect results [51], all runs of Experiment 2 were repeated on 

both GPUs, respectively. Runs with NVIDIA T4 were performed with the free version of 

Colaboratory, while runs with NVIDIA P100 were performed in combination with a paid 

GCE Marketplace VM, which was necessary for guaranteed use of this GPU.

For each run of an experiment, classification accuracy was assessed in terms of class-

specific, one vs. rest AUC values based on the slide-level results. In addition, 95% 

confidence intervals (CI) of the AUC values were computed by 1000-fold bootstrapping 

over the slide-level results.

To speed up Experiment 2, only a random subset of 300 of the selected slides (100 normal, 

100 LUAD, 100 LSCC) was considered in the analysis, which was approximately the size of 

the test set in Experiment 1.

3 Results

The evaluation results of both experiments are summarized in Table 1. In Experiment 1, 9 

out of 10 runs produced identical results. However, in one run, class-specific AUC values 

deviated between 0.004 and 0.061. The results of Experiment 2 were identical in 14 out 

of 20 runs, regardless of the GPU type used. The remaining runs had deviations in AUC 

values of up to 0.001. These deviations occurred more frequently with the free version of 

Colaboratory (T4) than with the GCE Marketplace VM (P100). In both experiments, the CIs 

varied in a similar order of magnitude as the respective class-specific AUC values.

The classification accuracy of the method trained in Experiment 1 appears satisfactory when 

evaluated on the TCGA test set but is somewhat inferior compared to the results of a similar 
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study based on the same TCGA collections [7]. When applied to the CPTAC test set in 

Experiment 2, the same model performed substantially worse (Figure 5).

Experiment 1 took an order of magnitude longer to complete (mean runtime of 2 d 9 h ±13 

h) than Experiment 2 (mean runtime of 1 h 43min ±29 min with NVIDIA T4 and mean 

runtime of 1 h 19 min ±10 min with NVIDIA P100). The ML service usage charges for 

Experiment 1 were approximately US$ 34 per run. With the free version of Colaboratory, 

Experiment 2 was performed at no cost, while runs with the GCE Marketplace VM cost 

approximately US$ 2 per run.

4 Discussion

As described in the Introduction section, three challenges need to be addressed in 

combination to maximize the reproducibility of ML studies. To address the first two 

challenges, namely specifying the analysis method and the computing environment, we 

implemented the experiments as open source Jupyter notebooks, ensuring that operations 

were deterministic, and we ran the experiments using identically configured cloud ML 

services. We used the IDC to address the third challenge: specifying and accessing the data.

We found that both experiments were reproducible to a large extent. In 9 out of 10 runs 

of Experiment 1, the results were exactly the same. In all runs of Experiment 2, the AUC 

values were identical when rounded to the second decimal place, which should be sufficient 

for benchmarking ML results. As the individual runs of the experiments were conducted 

in different, newly created instances of ML services, other researchers should be able to 

reproduce them in the same way.

Nevertheless, both experiments were not perfectly reproducible and there were small 

deviations in the results. By calculating checksums, we could verify that image and metadata 

were always successfully retrieved from the IDC and that the respective tiles used for 

training, validation or testing were identical in all runs of the same experiment. Therefore, 

we assume that challenge 3 has been successfully met and that the deviations are due to 

challenge 1 or 2.

We followed best practices to make our code deterministic (see section “Implementation”). 

However, it can be extremely difficult to achieve true determinism [13], and we cannot rule 

out the possibility that there are still non-deterministic operations in our code or the libraries 

used.

Strikingly, the deviations were only occasional. Therefore, we consider it likely that they 

are due to differences in the computing environment. We ensured that the respective ML 

services used in Experiments 1 and 2 were always configured identically. However, their 

environments are all virtualized and the underlying host hardware and software is typically 

not within the user’s control. As this is known to affect results [13], there appears to be a 

practical limit to reproducibility when using cloud-based ML services. The free version of 

Colaboratory offers less control over the computing environment than Vertex AI or GCE 

Marketplace VMs, which may explain why the deviations occurred more frequently there. It 

should be noted that in practice it is rarely possible to use exactly the same host hardware 
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and software as other researchers. Therefore, we expect the reproducibility limit to also 

apply to other computing environments, both in the cloud and locally.

4.1 Advantages of the IDC

The IDC helped us overcome the third reproducibility challenge with regard to the special 

requirements of CompPath. By providing imaging data collections according to the FAIR 

principles, the IDC supported the precise definition of the datasets used in the analysis and 

ensured that the exact same data can be reused in follow-up studies. The IDC also facilitated 

the use of cloud ML services by making terabytes of WSI data efficiently accessible in the 

cloud. We consider our experiments to be representative of common CompPath applications 

and believe that the IDC can similarly support the reproducibility of other CompPath 

studies.

While other repositories provide whole-slide images in vendor proprietary file formats, all 

data collections in the IDC are uniformly represented in the open DICOM format. This 

greatly simplifies data access using open software tools. When using images from other 

repositories, important metadata on image acquisition and processing is often represented in 

some textual or structured form and managed separately from the images, if it is available 

at all. For the data collections in the IDC, such metadata can be included as standardized 

DICOM attributes alongside the pixel data, so that the risk of data confusion is greatly 

reduced.

It is common practice to define the datasets used in ML studies as a set of image references 

stored, for example, as CSV files. To enable the reuse of the datasets, it must be ensured 

that the references remain valid in the long term. As described in section “IDC data access”, 

the IDC makes it possible to define datasets as BigQuery statements. The returned image 

references are always guaranteed to be valid, and by specifying an IDC version identifier, 

it can be ensured that the result set remains the same. BigQuery statements also make it 

clear what criteria or constraints were used to compile a dataset and can be easily adapted to 

newer versions of the IDC, for instance to assess reproducibility on extended datasets.

The results of Experiment 2 also reveal the transferability of the model trained in 

Experiment 1 to independent data. Although the majority of slides were correctly classified, 

AUC values were significantly lower, indicating that the model is only transferable to a 

limited extent and additional training is needed. Since all IDC data collections (both the 

image pixel data and the associated metadata) are harmonized into a standardized DICOM 

representation, testing transferability to a different dataset required only minor adjustments 

to our BigQuery SQL statement. In the same way, the IDC makes it straightforward to 

use multiple datasets in one experiment or to transfer an experimental design to other 

applications.

4.2 Limitations

Using cloud ML services comes with certain trade-offs. Conducting computationally 

intensive experiments requires setting up a payment account and paying a fee based on 

the type and duration of the computing resources used. Furthermore, although the ML 

services are widely used and likely to be supported for at least the next few years, there is no 
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guarantee that they will be supported in the long term and support the specific configuration 

of the computing environment used (e.g., software version, libraries). Those who do not 

want to make these compromises can also access IDC data collections without using ML 

services, both in the cloud and locally. Even if this means losing the previously mentioned 

advantages with regard to the first two reproducibility challenges, the IDC can still help to 

specify the data used in a clear and reproducible manner.

Independent of the implementation, a major obstacle to the reproducibility of CompPath 

methods remains their high computational cost. A full training run can take up to several 

days, making reproduction by other scientists tedious. Performing model inference is 

generally faster and less resource intensive when compared to model training. Therefore, 

Experiment 2 runs well even with the free version of Google Colaboratory, enabling others 

to reproduce it without spending money. The notebook also provides a demo mode, which 

completes in a few minutes, so anyone can easily experiment with applying the inference 

workflow to arbitrary images from IDC.

At the moment, the IDC exclusively hosts public data collections. New data must undergo 

rigorous curation to de-identify (done by TCIA or data submitter) and harmonize images 

into standard representation (done by IDC), which can require a significant effort. Therefore, 

only data collections that are of general relevance and high quality are included in the IDC. 

As a result, the data in the IDC were usually acquired for other purposes than a particular 

CompPath application and cannot be guaranteed to be representative and free of bias [52]. 

Compiling truly representative CompPath datasets is very challenging [48]. Nevertheless, 

the data collections in the IDC can provide a reasonable basis for exploring and prototyping 

CompPath methods.

4.3 Outlook

The IDC is under continuous development and its technical basis is constantly being refined, 

e.g., to support new data types or to facilitate data selection and access. Currently, DICOM 

files in the IDC can only be accessed as a whole from their respective storage buckets. This 

introduces unnecessary overhead when only certain regions of a slide need to be processed, 

and it may make it necessary to temporarily cache slides to efficiently access multiple 

image regions (see section “IDC data access”). Future work should therefore aim to provide 

efficient random access to individual regions within a WSI. For maximum portability, 

such access should ideally be possible via standard DICOM network protocols such as 

DICOMweb [29, 53].

The IDC is continuously being expanded to support even more diverse CompPath 

applications. For instance, images collected by the Human Tumor Atlas Network (HTAN) 

that provide rich, multispectral information on subcellular processes [54] have recently been 

added. The IDC is integrated with other components of the CRDC, such as the Genomic 

Data Commons [55] or the Proteomic Data Commons [56]. This opens up many more 

potential CompPath applications involving tissue images and different types of molecular 

cancer data [57].
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4.4 Conclusion

We demonstrated how the IDC can facilitate the reproducibility of CompPath studies. 

Implementing future studies in a similar way can help other researchers and peer reviewers 

to understand, validate and advance the analysis approach.
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Highlights

• The Imaging Data Commons (IDC) is a new repository of FAIR cancer image 

collections.

• Introduction to using the IDC for reproducible research in computational 

pathology.

• The IDC and cloud-based machine learning services facilitate reproducibility 

in complementary ways.

• Evaluation results indicate a practical reproducibility limit.

• Categorization of key reproducibility challenges of computational pathology 

studies.
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Figure 1: 
Overview of the workflows of both experiments and their interactions with the IDC.
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Figure 2: 
Example tiles of the three classes considered from the TCGA and CPTAC datasets. The 

width of each tile is 256 μm. The black boxes marked with arrows in the whole slide images 

on top show the boundaries of the upper left tiles of the TCGA data set.
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Figure 3: 
Illustration of the CompPath analysis method. Slides were subdivided into non-overlapping 

rectangular tiles discarding those with more background than tissue. Each tile was assigned 

class probabilities using a neural network performing multi-class classification. Slide-based 

class values were determined by aggregating the tile-based results.

Schacherer et al. Page 18

Comput Methods Programs Biomed. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Generic example of a BigQuery SQL statement for compiling slide metadata. The result 

set is limited to slide microscopy images, as indicated by the value “SM” of the DICOM 

attribute “Modality”, from the collections “TCGA-LUAD” and “TCGA-LUSC”.
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Figure 5: 
One-vs-rest ROC curves for the multi-class classification as obtained in (a) the first run of 

Experiment 1 using Vertex AI and (b) the second run of Experiment 2 using Colaboratory 

(T4).
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Table 1:

Class-specific, slide-based AUC values and 95% confidence intervals (CI) obtained through multiple runs of 

both experiments. Deviations are indicated in bold.

Experiment ML Service (GPU) Run normal AUC [CI] LUAD AUC [CI] LSCC AUC [CI]

Experiment 1 Vertex AI (T4) 1 0.99014 [ 0.98125 , 0.99651 ] 0.87259 [ 0.82324 , 0.91476 ] 0.90489 [ 0.85869 , 0.94591 ]

2 0.99014 [ 0.98125 , 0.99651 ] 0 87259 [ 0.82324 , 0.91476 ] 0.90489 [ 0.85869 , 0.94591 ]

3 0.99014 [ 0.98125 , 0.99651 ] 0.87259 [ 0.82324 , 0.91476 ] 0.90489 [ 0.85869 , 0.94591 ]

4 0.99014 [ 0.98125 , 0.99651 ] 0.87259 [ 0.82324 , 0.91476 ] 0.90489 [ 0.85869 , 0.94591 ]

5 0.99014 [ 0.98125 , 0.99651 ] 0.87259 [ 0.82324 , 0.91476 ] 0.90489 [ 0.85869 , 0.94591 ]

6 0.99442 [0.98841, 0.99876] 0.93344 [0.90058, 0.96134] 0.92875 [0.89293, 0.95844]

7 0.99014 [ 0.98125 , 0.99651 ] 0.87259 [ 0.82324 , 0.91476 ] 0.90489 [ 0.85869 , 0.94591 ]

8 0.99014 [ 0.98125 , 0.99651 ] 0.87259 [ 0.82324 , 0.91476 ] 0.90489 [ 0.85869 , 0.94591 ]

9 0.99014 [ 0.98125 , 0.99651 ] 0.87259 [ 0.82324 , 0.91476 ] 0.90489 [ 0.85869 , 0.94591 ]

10 0.99014 [ 0.98125 , 0.99651 ] 0.87259 [ 0.82324 , 0.91476 ] 0.90489 [ 0.85869 , 0.94591 ]

Experiment 2 Colaboratory Free 
(T4)

1 0.81100 [0.75148, 0.87246] 0.69780 [0.63447, 0.75574] 0.85050 [0.80244, 0.89452]

2 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

3 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

4 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

5 0.81095 [0.74802, 0.86944] 0.69775 [0.63239, 0.75791] 0.85055 [0.80178, 0.89628]

6 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

7 0.81130 [0.74908, 0.87176] 0.69680 [0.63242, 0.75899] 0.85035 [0.80094, 0.89642]

8 0.81100 [0.75148, 0.87246] 0.69780 [0.63447, 0.75574] 0.85050 [0.80244, 0.89452]

9 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

10 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

Experiment 2 Colaboratory GCE 
(P100)

1 0.81000 [0.74686, 0.86909] 0.69660 [0.63062, 0.76014] 0.85055 [0.80115, 0.89595]

2 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

3 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

4 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

5 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

6 0.81005 [0.74948, 0.87058] 0.69665 [0.63308, 0.75578] 0.85055 [0.80213, 0.89457]

7 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

8 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

9 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]

10 0.81095 [ 0.74732 , 0.87279 ] 0.69795 [ 0.62736 , 0.75974 ] 0.85050 [ 0.80170 , 0.89663 ]
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