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Abstract

INTRODUCTION: The secreted phosphoprotein 1 (SPP1) gene expressed by CD11c+

cells is known to be associated with microglia activation and neuroinflammatory dis-

eases. Asmost studies rely onmousemodels, we investigated these genes and proteins

in the cortical brain tissue of older adults and their role in Alzheimer’s disease (AD) and

related disorders.

METHODS: We leveraged protein measurements, single-nuclei, and RNASeq data

from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP) of

over 1200 samples for association analysis.

RESULTS: Expression of SPP1 and its encoded protein osteopontin were associ-

ated with faster cognitive decline and greater odds of common neuropathologies.

At single-cell resolution, integrin subunit alpha X (ITGAX) was highly expressed

in microglia, where specific subpopulations were associated with AD and cerebral

amyloid angiopathy.
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DISCUSSION: The study provides evidence of SPP1 and ITGAX association with cogni-

tive decline and common neuropathologies identifying a microglial subset associated

with disease.

KEYWORDS

CD11c, cognition, ITGAX, microglia, neuropathologies, OPN, osteopontin, RNASeq, SPP1, snR-
NASeq

1 BACKGROUND

An estimated 55 million people worldwide have dementia, and the

social and economic impact is substantial. In 2019, the estimated global

cost of dementia was US$1.3 trillion, and these costs are expected to

surpass US$2.8 trillion by 2030 (WHO*). Dementia can be attributable

to several neuropathologies that are common in the aging brain,

among which Alzheimer’s disease (AD) is regarded as the most com-

mon contributor to this condition.1,2 AD causes brain atrophy and

cell death, and it is characterized by the accumulation of β-amyloid

(Aβ) plaques and neurofibrillary tangles caused by hyperphosphory-

lated tau.3–5 Genetic studies have revealed distinct cell-type pathways

that are implicated in the disease, suggesting potential cell-specific

prognostic/diagnostic markers and therapeutic targets for AD.6–8

Microglia, the innate immune cells of the central nervous system

(CNS), have been directly involved in different brain responses to AD

pathology.9–11 Specifically, the microglial production of osteopontin

(OPN) in mice has been implicated in various CNS disorders including

AD.12

The secreted phosphoprotein 1 (SPP1) gene encodes the OPN pro-

tein and has been implicated in several AD-related pathways. The

CD11c protein encoded by the integrin subunit alpha X (ITGAX) gene

is a dendritic cell marker, also expressed in microglial cells in the CNS,

which are involved in phagocytosis mediation, as detected by multi-

ple single cell (scRNASeq) studies.13,14 We have previously described a

subset of OPN-producing CD11c+ microglia that regulates the engulf-

ment of synaptic proteins, and the proliferation and development of

a proinflammatory phenotype in a mouse model of AD,15 and more

recently reported that this CD11c+OPN+ microglial subset drives

pathology in a mouse model of AD.16 The extent to which human

cortical SPP1 and ITGAX are associated with the clinical and neu-

ropathological manifestations of AD and related disorders (ADRD)

is unknown. Here, we extend these findings leveraging multi-omics

data of the human brain. We investigated the SPP1 and ITGAX gene

expressions and their encoded proteins (OPN and CD11c) in corti-

cal brain tissue of community-dwelling older adults and their role in

ADRD. First, we examined the association of these genes and pro-

teins measured in bulk brain tissue with cognitive decline and common

neuropathologies. Next, we explored the cell-type specific expres-

* World Health Organization. https://www.who.int/news-room/fact-sheets/detail/dementia

accessed onOct 21st, 2022.

sion profiles of targeted genes by leveraging single-nuclei RNASeq

(snRNASeq). Finally, we investigated specificmicroglial subpopulations

that potentially drive the results. Figure 1 shows an overview of the

work.

2 METHODS

2.1 Participants

Participants came from two prospective studies of aging, the Religious

Orders Study (ROS) and the Rush Memory and Aging Project (MAP),

commonly referred to as ROSMAP. The enrollment began in 1994 for

ROS and in 1997 for MAP.17 Both are cohort studies of risk factors

for cognitive decline, AD, and other aging-related outcomes. The ROS

enrolls older Catholic priests, nuns, and monks across the USA. The

MAP enrolls older laypersons from the greater metropolitan area of

Chicago, Illinois. The participants agreed to annual detailed clinical and

cognitive evaluations and organ donation at the time of death. The

participants enrolled without known dementia and provided written

informed consent, and signed the Anatomical Gift Act. Each study was

approved by a Rush University Medical Center Institutional Review

Board.

At the time of these analyses, bulk RNASeq data were available

from 1206 participants who had completed clinical, neuropatholog-

ical, and cognitive evaluations. Tandem mass tag (TMT) proteomics

and snRNASeq data were available from 580 and 424 participants,

respectively.

2.2 Clinical evaluations

Uniform structured clinical evaluations are administered each year

by examiners blinded to data from prior years. The cognitive bat-

tery examination contains 21 tests, 19 of which were used to

construct a global composite measure of cognitive function and

separated summary measures of five cognitive domains (episodic,

working, and semantic memory; perceptual speed; and visuospa-

tial ability). Raw scores for individual tests were standardized

using the baseline means and standard deviations of the entire

cohorts, and then averaged across the tests to obtain the composite

score.18,19

https://www.who.int/news-room/fact-sheets/detail/dementia
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2.3 Neuropathologic evaluations

At autopsy, the brain was removed, weighed, and cut coronally into

1 cm slabs. One hemisphere was frozen in a −80◦C freezer for bio-

chemical studies, and the other was fixed in 4% paraformaldehyde for

neuropathologic evaluations.20,21 The average post-mortem interval

was 8.4 h (SD = 6.0). The evaluations were conducted by examiners

blinded to all clinical data, allowing for an unbiased examination. The

post-mortem evaluations assessed neuropathologies of AD, non-AD

degeneration (ie, Lewy bodies [LB], hippocampal sclerosis [HS], and

limbic-predominant age-related TDP-43 encephalopathy [LATE]), and

cerebrovascular conditions (ie, macroscopic infarcts, microinfarcts,

cerebral amyloid angiopathy [CAA], atherosclerosis, and arterioloscle-

rosis) with a standard protocol.22

For the pathologic diagnosis of AD, Bielschowsky silver stain was

used to visualize neuritic plaques, diffuse plaques, and neurofibril-

lary tangles in five areas of the brain: frontal, temporal, parietal,

entorhinal, and hippocampal cortices.21 A pathologic diagnosis of AD

was based on the National Institute on Aging-Reagan Institute crite-

ria. Overall burden of AD was created from 15 counts of modified

Bielschowsky stained tissue.23 Unbiased methods were employed to

quantify the accumulation of Aβ plaques and paired helical filaments

(PHF)-tau tangles, enabling access to specific indices of AD pathol-

ogy. Immunohistochemistry was conducted using three monoclonal

antibodies targeting Aβ, namely 4G8 (1:9000; Covance Labs, Madi-

son, WI, USA), 6F/3D (1:50; Dako North America, Inc, Carpinteria, CA,

USA), and10D5 (1:600; ElanPharmaceuticals, SanFrancisco, CA,USA).

Images were captured at each grid, and the Image J software was

employed to calculate the percentage of Aβ detection. For the assess-
ment of PHF-tau tangle pathology, the antibody AT8 was used. Skilled

specialists outlined the tissues, and imageswere captured, utilizing the

Stereo Investigator software version 9 (MicroBrightfield, Colchester,

VT, USA) and an Olympus (Tokyo, Japan) BX-51 microscope with an

attached motorized stage. A grid was randomly placed over the out-

lined area, and approximately 25% to 50% of the brain region was

sampled. Following camera and illumination calibration, images at each

sampling site were obtained with a motorized stage. Quantification of

Aβ loadwas accomplished by image processing in an automated, multi-

stage computational image analysis protocol; this was based on about

90 images from the cortex (relatively larger brain regions) and about

20 from smaller brain regions (eg, hippocampus). Mean fraction (per-

centage area positive for Aβ) per brain region and per subject was

computed. Details about the Aβ estimates and tangle density were

previously described.24,25

Brain sections (6 μm) were stained with α-synuclein for assess-

ment of LB. Depending on the morphology and region, distinct types

of LB were identified and classified according to a modified McK-

eith criteria.26 Nigral LB were identified as round, intracytoplasmic

structures with a darker halo, being present only in the substantia

nigra without evidence of LB in other regions. The limbic-type disease

included cases with positive staining for anterior cingulate or entorhi-

nal (typically with nigral pathology) but negative in the neocortical.

Neocortical-type LB pathology classification was assigned when the

RESEARCH INCONTEXT

1. Systematic review: Microglia has been implicated in

different brain responses to AD pathology. Specifically,

we have described a subset of OPN-producing CD11c+

microglia cells involved in a proinflammatory pheno-

type and also driving pathology in a mouse model of

Alzheimer’s disease (AD). Still, the extent of these findings

translating into the clinical and neuropathological man-

ifestations of AD and related disorders (ADRD) in the

human brain are unknown.

2. Interpretation: Here, we investigated SPP1, ITGAX, and

their encoded proteins (OPN, CD11c) in the cortical brain

tissue of community-dwelling older adults and their role

in ADRD. Multiple analysis shows their associations with

cognitive decline and common neuropathologies. Also,

there is evidence of an OPN+ CD11c+ microglial subset

associated with AD and cerebral amyloid angiopathy.

3. Future directions: Futureworkwith additional single-cell

analysis focused on brain vasculature, genetics, spatial

transcriptomics, and in vitro experiments is necessary for

causal inferences.

staining was positive in either midfrontal, temporal, or inferior parietal

cortex. Then, each case could be categorized as 0 = no LB, 1 = nigral

predominant, 2= limbic-type or 3= neocortical-type pathology.27 The

presence of neocortical LBwas used in the analyses.

HS was evaluated unilaterally in a coronal section of the mid-

hippocampus using hematoxylin and eosin (H&E) stain. A grade of

absent or present was based on severe neuronal loss and astroglio-

sis in CA1 and/or subiculum regions.28 LATE neuropathology changes

were accessed by immunohistochemistry using a monoclonal antibody

to phosphorylated TDP-43. TDP-43 staining was performed on six

brain regions: amygdala, hippocampus, dentate gyrus, entorhinal cor-

tex, and midfrontal and middle temporal cortices. Semiquantitative

measures of pathogenic TDP-43 were analyzed for neurons and glia

in a 0.25 mm2 area of most density. Then, four stages were created

based on the pathologic distribution of TDP-43: 0= no TDP-43 lesions

created, 1 = TDP-43 localized to the amygdala, 2 = extension of TDP-

43 to the hippocampus or entorhinal cortex, 3 = extension into the

neocortex.29

CAA pathology was assessed in four regions: midfrontal, midtem-

poral, angular, and calcarine cortices. For each region, meningeal and

parenchymal vessels were assessed for amyloid deposition and scored

from 0 to 4 based on the Aβ spread.30 A four-level semi-quantitative

measure (none, mild, moderate, severe) was used for analysis. Macro-

scopic infarctions were identified during gross examination. Number,

volume, and region distribution were recorded and summarized as a

binary variable (ie, presence vs absence). Microinfarcts were detected

usingH&E stained sections from at least nine brain regions.31 Cerebral
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F IGURE 1 Schematic of the study.We analyzed three distinct layers of omics data from the dorsolateral prefrontal cortex brain region: bulk
RNASeq (N= 1206), TMT proteinmeasurements (N= 580), and snRNASeq (N= 424), plus a replication analysis with external datasets. Figure
created with Biorender. ITGAX, integrin subunit alpha X;MSBB,Mount Sinai Brain Bank; ROSMAP, Religious Orders Study and RushMemory and
Aging Project; SPP1, secreted phosphoprotein 1; TMT, tandemmass tag

vessel disease has been documented in large vessels (atherosclero-

sis) and small vessels (arteriolosclerosis). During gross examination,

lipid plasma proteins, and plaque deposition formed by calcium, were

assessed through visual inspection. Severity of atherosclerosis was

graded from0 (no atherosclerosis) to 6 (severe atherosclerosis, with all

visualized arteries affected or one artery completely occluded). Arte-

riolosclerosis was detected histologically by H&E staining sections of

the anterior basal ganglia (caudate, putamen, globus pallidus, and inter-

nal capsule). The severity of arteriolosclerosis was graded from 0 (no

arteriolosclerosis) to 7 (complete small vessel occlusion).32 A four-level

semi-quantitativemeasure (none, mild, moderate, severe) was used for

the statistical analysis.

2.4 Protein expression

Frozen DLPFC tissue was used for TMT proteomics analysis. First, the

samples were homogenized, and the protein concentration measured.

Isobaric TMTpeptide labelswere added, and high pH fractionationwas

performed. The fractions were analyzed by liquid chromatography-

mass spectrometry, and the spectra generated by the mass spectrom-

etry experiment were matched with the UniProt database. Technical

confounders were removed from the data, and a total of 8425 proteins

in 580 persons passed the final quality control. The method was pre-

viously published in detail.33–35 The protein abundance of OPN and

CD11cwere pulled for downstream analyses.

2.5 Bulk RNASeq expression

RNA was extracted using the Chemagic RNA tissue kit (Perkin Elmer,

CMG-1212). RNA was concentrated (Zymo, R1080) and RNA quality

number (RQN) calculatedusingFragmentAnalyzer (Agilent,DNF-471).

RNA concentration was determined using Qubit broad range RNA

assay (Invitrogen, Q10211) according to the manufacturer’s instruc-

tions. Totally, 500 ng total RNA was used for RNASeq library gen-

eration and rRNA was depleted with RiboGold (Illumina, 20020599).

A Zephyr G3 NGS workstation (Perkin Elmer) was utilized to gener-

ate TruSeq stranded sequencing libraries (Illumina, 20020599) with

custom unique dual indexes according to the manufacturer’s instruc-

tions. Libraries were normalized for molarity and sequenced on a

NovaSeq 6000 (Illumina) at 40 to 50 million reads, 2 × 150 bp paired-

end. The RNASeq data processing involves three parallel pipelines, an

RNASeq quality control (QC) pipeline, a gene/transcripts quantifica-

tion pipeline, and a3ʹ-UTRquantification pipeline. First, the paired-end

sequences were aligned by STAR v2.6 to a human reference genome

and annotated with GENCODE (Release 27 GRCh38). To check for

quality of RNASeq data, the metrics from Picard tools were ana-

lyzed. For quantification, the transcript raw counts were calculated by

Kallisto (v0.46) and the transcript counts were aggregated at the gene

level. Samples with less than 5 million reads mapped to the reference

were excluded. A total of 17,294 geneswere expressed in> 50%of the

samples with at least 10 counts in each. For normalization, conditional

quantile normalization (CQN)wasapplied toadjust for guanin-cytosine
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content and gene length. The gene countsmatrixwas converted to log2

counts per million (CPM), followed by quantile normalization using the

voom lima function.36 Finally, the data were adjusted to remove tech-

nical confounders and the linear regression model included variables

of post-mortem interval, sequencing batch, RQN, total spliced reads

reported by STAR aligner, and quality metrics reported by Picard and

Kallisto.37

2.6 snRNASeq dataset

Previous publications have extensively described the snRNASeq

dataset used in this work.38,39 Briefly, nuclei were isolated from 479

DLPFC tissues of ROSMAP. Tissues were processed as 60 batches,

and each batch consisted of eight donors. In each batch, nuclei sus-

pension of eight donors were mixed together, and a single-nucleus

RNASeq library was prepared using the 10x Genomics 3 Gene Expres-

sionkit (v3 chemistry). The librarieswere sequenced, and readmapping

and number of unique molecular identifier (UMI) counting were per-

formedusingCell Ranger v6.0.0withGENCODEv32andGRCh38.p13.

Original donors of droplets in each batch were inferred by comparing

single nucleotide polymorphisms in RNA reads with ROSMAP whole

genome sequencing (WGS) VCF files using genetic demultiplexing soft-

ware demuxlet. Over 1.64 million high-quality nuclei profiles from

465 participants were retained to annotate major and subpopulations

of cells. The nuclei were classified into eight major cell types. Each

was analyzed separately, generating 96 subpopulations or cell clusters.

Here, we selected the cell types with at least 1% of cells, encom-

passing six major cell types: astrocytes (ast), excitatory neurons (ext),

inhibitory neurons (inh), microglia (mic), oligodendrocytes (oli), and

oligodendrocyte precursor cell (OPCs). Doublets were removed using

DoubletFinder, and cells were clustered using Seurat.40 As aQC, geno-

type concordance of RNA and WGS, sex check, duplicated donors,

WGSQC, and sequencing depthwere assessed, and424donors passed

theQC.

The number of UMI counts (nUMI) and unique genes (nGene) were

checked during the QC. Since each cell type has different RNA quan-

tities, specific thresholds were optimized based on these parameters.

For the removal of low-quality cells, the median of all nUMI and nGene

parameters was calculated, and a score generated using the harmonic

mean of the precision and recall. Finally, the thresholds by cell type of

nUMI and nGene, respectively, included for downstream analysis were

as follows: for ast, 800 and 616; for ext, 2232 and 1916; for inh, 800

and 100; for mic, 400 and 253; for oli, 400 and 253; for OPCs 695

and 253.

The sub-clustering analysis was performed by cell type. The Seurat

FindAllMarkers function was used for differential gene expression per

cluster, followed by gene set enrichment analysis and comparison with

previously published papers. Each subpopulation was characterized by

the expression profile of marker genes (eg, P2RY12marker of homeo-

staticmicroglia,APOE damage-associatedmicroglia [DAM] stage 1 and

ITGAXDAM stage 2) followed by pathway analysis.38 For downstream

analysis, pseudo-bulk matrices were created by summing counts per

donor. The genes were filtered by each cell type, keeping genes with

CPM>1 in80%of samples.Differentmethodswere tested:CPM, tran-

scripts per million (TPM), CQN, trimmed mean of M values voom, and

quantile-voom. Finally, TPM was applied for the final matrices and we

pulled out the expression of the targeted genes, SPP1 and ITGAX.

2.7 Statistical analysis

We examined the associations of gene, and separately protein, expres-

sion with cognitive decline in a series of linear mixed effects models

with random intercept and random slope. In these models, annual

global cognitive scores were the continuous longitudinal outcome. The

models included a term for time in year before death that estimates the

mean annual rate (slope) of change in global cognition, a term for gene

or protein that estimates the expression association with the level of

cognition proximate to death, and a term for gene or protein interac-

tion with time that estimates the expression association with the slope

of change in cognition. A positive and significant coefficient for the

interaction term would indicate that higher gene or protein level was

associated with slower cognitive decline.

Separately, we examined the gene or protein associations with com-

mon neuropathologic indices in a series of logistic regression models.

The presence or the severity of individual neuropathology was the

binary or ordinal outcome, and the gene or protein expression was the

predictor. The coefficient estimates the odds of having the correspond-

ing neuropathology, or more severe burden of the neuropathology,

with every unit higher in the gene or protein level. All the models were

adjusted for age, sex, and education.

2.8 Replication with external datasets

For replication, we downloaded external RNASeq data from the

Mount Sinai Brain Bank (MSBB) and Mayo Clinic. The MSBB dataset

comprised 1282 samples from 316 unique individuals, while the

Mayo Clinic dataset included 597 samples from 355 unique indi-

viduals. These datasets were accessed through Synapse using the

codes syn27068756 and syn27024965. Additionally, we accessed a

TMT protein dataset from the MSBB (syn21347564) which contained

data for 185 individuals. We selected the expression of the targeted

genes/proteins and tested the associations with the covariates avail-

able, CERAD score, Braak stage, that refers to the AD progression

of neurofibrillary pathology, Clinical Dementia Rating scale (CDR),

and density of neuritic plaques for MSBB,41 and diagnosis, Braak

and Thal for Mayo Clinic.42 For the data with repeated measures,

with multiple brain regions from the same individuals, we ran a lin-

ear mixed model with the individualID as a random effect. For the

TMT data, we ran a linear regressionmodel. Themodels were adjusted

by age at death, sex, and ethnicity, whenever this information was

available.
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3 RESULTS

3.1 Characteristics of study participants

BulkRNASeqdatawere available in1206ROSMAPparticipants. These

participants enrolled at a mean age of 80.8 (SD: 6.9) years, and died

at an average age of 89.6 (SD: 6.6). A majority were female (∼70%).

During an average of 8 years of annual follow-up visits, there was an

overall decline in cognition (estimate of slope was −0.100, SE = 0.003,

p < 0.001). At death, 35% had no cognitive impairment, 25% had mild

cognitive impairment (MCI), and the remaining 40% had dementia. At

autopsy, 61% had a pathologic AD diagnosis. Neocortical LB and HS

were present in 13% and 9%of the brains respectively. TDP-43 pathol-

ogy extending beyond the amygdala (LATE) was detected in 30% of

the brains. Over 32% of individuals showed macroscopic infarcts, and

at least 25% showed microinfarcts. Other cerebrovascular diseases

were also common. CAA, atherosclerosis, and arteriolosclerosis were

detected in 30% of the brains. The characteristics were similar for

individuals with TMT or snRNASeq data (Table 1).

3.2 Associations of SPP1 and ITGAX with
cognitive decline and neuropathologies

First, we investigated the associations of SPP1 and ITGAX at mRNA

and protein levels with cognitive decline. Higher SPP1 gene and, sep-

arately, higher OPN protein expression were associated with faster

decline in cognition (estimate: −0.017, SE: 0.003, p < 0.001, and esti-

mate: −0.013, SE: 0.004, p = 0.003, respectively). The results indicate

that individuals with high expression (90th percentile) of the targeted

gene, and of the respective protein, would have an 18% faster decline

in cognition compared to those with average expression (Figure 2A-B).

We also evaluated the associations of the SPP1 gene and OPN with

clinical diagnosis at death in a series of ordinal logistic regressionmod-

els. Consistent with the results for cognitive decline, higher level of

SPP1 expression was associated with greater odds of having more

severe diagnosis (odds ratio [OR]=1.363, 95%confidence interval [CI]:

1.207 to 1.539). A similar result was also observed for theOPNprotein

(OR= 1.301, 95%CI: 1.110 to 1.525), Table S01.

We did not observe an association of ITGAX gene expression with

cognitive decline (p = 0.210) (Figure 2C). However, elevated levels of

the CD11c protein encoded by ITGAX were associated with a faster

decline in cognition (estimate: −0.013, SE: 0.004, p = 0.002). Com-

pared to individuals with average CD11c expression, those with high

expression (90th percentile) had 17% faster decline in cognitive func-

tion (Figure 2D). Comparing each gene with its encoded protein, we

observed a high correlation for SPP1 and OPN (r = 0.487, p < 0.0001)

and a low correlation for ITGAX and CD11c (r = 0.166, p < 0.0003).

Figure S1 illustrates the results.

Next, we checked the associations of the targeted genes and neu-

ropathologic evaluations of AD, non-AD degeneration (ie, LB, HS,

and LATE), and cerebrovascular conditions (ie, macroscopic infarcts,

microinfarcts, CAA, atherosclerosis, and arteriolosclerosis) (Figure 3).

Higher SPP1 gene expression was associated with greater odds of

AD (OR = 1.233, 95% CI: 1.076 to 1.413), HS (OR = 1.437, 95% CI:

1.168 to 1.768), LATE (OR = 1.196, 95% CI: 1.059 to 1.35), and CAA

(OR = 1.151, 95% CI: 1.025 to 1.292) (Figure 3A). The result for the

OPN protein was similar, such that higher protein level was associ-

ated with greater odds of AD, LATE, and CAA (Figure 3B). Similarly,

both ITGAX gene and protein expressions were associated with AD

(OR = 1.429, 95% CI: 1.203 to 1.697 for gene and OR = 1.74, 95%

CI: 1.415 to 2.14 for protein), LATE (OR = 1.204, 95% CI: 1.025 to

1.414 for gene andOR= 1.195, 95%CI: 1.01 to 1.414 for protein), and

CAA (OR = 1.322, 95% CI: 1.138 to 1.535 for gene and OR = 1.438,

95% CI: 1.218 to 1.698 for protein) (Figure 3C,D). Notably, the associ-

ations with neuropathologies were almost restricted to degeneration,

as opposed to vascular indices.

We next conducted replication analyses using bulk RNASeq data

from the MSBB (n = 1282 samples from 316 individuals) and Mayo

Clinic (n= 597 samples from 355 individuals), and separately, the TMT

protein from the MSBB (n = 185 individuals). Consistent with the

results from ROSMAP, data from both the MSBB and Mayo Clinic

showed that higher SPP1 and ITGAX levels were associatedwith higher

burdens of AD pathologies as well as cognitive impairment. Both SPP1

and ITGAX genes were associated with Braak stage (SPP1 p = 0.001;

ITGAX p < 0.001), CDR (SPP1 p < 0.001; ITGAX p < 0.001), and plaques

(SPP1 p = 0.031; ITGAX p < 0.001) in the MSBB RNASeq dataset.

In the Mayo RNASeq dataset, SPP1 was associated with Braak stage

(p = 0.016) and Thal (p = 0.040) with a suggestive association for AD

(p = 0.098). The ITGAX gene was associated with the same covariates,

plus the diagnosis of progressive supranuclear palsy (p= 0.002). At the

protein level, OPN and CD11c were associated with Braak stage (OPN

p = 0.002; CD11c p < 0.001), CDR (OPN p= 0.031; CD11c p < 0.001),

and plaques (OPN p= 0.015; CD11c p< 0.001) (Tables S2–S4).

3.3 SPP1 and ITGAX expression by cell type

Further, we examined the expression of SPP1 and ITGAX and their

associations with cognitive decline and with neuropathologic indices

with snRNASeq from 424 individuals and six major cell types (ast, ext,

inh, mic, oli, and OPCs) plus 81 subpopulations from over 1.6 million

nuclear transcriptomes.38,39 We found that ITGAX is expressed only in

microglia, and SPP1 is expressed in all major cell types of the DLPFC,

highest in microglial and oligodendrocytes populations (Figure 4A).

Our results indicate that individuals with higher SPP1 expression

in excitatory neurons, inhibitory neurons, and oligodendrocytes had

faster cognitive decline. Specifically, individuals exhibiting elevated

SPP1 expression in excitatory neurons had a decline that was 18%

faster compared to those with average expression. In inhibitory neu-

rons, the decline was 22% faster, and in oligodendrocytes, it reached

35%. Consistent with the result for bulk gene expression, the associ-

ation of ITGAX in microglia with cognitive decline was not significant

(Table 2).
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TABLE 1 Description of study participants

Characteristics Bulk (N=1206) TMT (N=580)

snRNASeq

(N=424)

Age at baseline, mean (SD), years 80.8 (6.9) 81.3 (6.8) 81.3 (7.1)

Age at death, mean (SD), years 89.6 (6.6) 89.6 (6.4) 89.2 (6.8)

Male sex, No. (%) 386 (32.0) 181 (31.2) 136 (32.1)

Educational level, mean (SD), years 16.2 (3.5) 15.4 (3.4) 16.3 (3.5)

Length of follow-up, mean (SD), years 8.7 (5.1) 8.3 (4.6) 7.9 (4.5)

MMSE score, median (IQR)—at baseline 28 (26.9 to 29) 29 (27 to 29) 28 (27 to 29)

MMSE score, median (IQR)—proximate to death 25 (16 to 28) 26 (19.8 to 28) 25 (16 to 28)

Global cognition score, mean (SD)—at baseline −0.13 (0.65) −0.01 (0.5) −0.1 (0.6)

Global cognition score, mean (SD)—proximate to death −0.96 (1.16) −0.79 (1.07) −0.9 (1.1)

MCI, No. (%) 285 (23.6) 169 (29.1) 110 (25.9)

Dementia, No. (%) 526 (43.6) 204 (35.2) 171 (40.3)

NIA-Reagan AD, No. (%)a 769 (63.8) 356 (61.4) 266 (62.7)

Aβ load, median (IQR) 3.11 (0.58 to 6.73) 3.69 (0.58 to 7.83) 3.01 (0.51 to 7.41)

PHF-tau tangle density, median (IQR) 4.20 (1.62 to 8.76) 3.78 (1.63 to 7.62) 3.82 (1.49 to 7.80)

Global AD pathologic score, median (IQR) 0.63 (0.18 to 1.13) 0.53 (0.16 to 1.08) 0.6 (0.2 to 1.1)

Post-mortem interval, mean (SD) 8.4 h (6.0) 8.1 h (5.3) 7.7 h (5.1)

Neuritic plaques score, median (IQR) 0.70 (0.04 to 1.34) 0.64 (0.03 to 1.23) 0.6 (0.0 to 1.3)

Diffuse plaques score, median (IQR) 0.52 (0.06 to 1.12) 0.5 (0.05 to 1.06) 0.5 (0.0 to 1.3)

Neurofibrillary tangles score, median (IQR) 4.2 (1.61 to 8.75) 3.78 (1.63 to 7.62) 3.8 (1.5 to 7.8)

Macroscopic infarcts, No. (%) 425 (35.2) 188 (32.4) 158 (37.2)

Microinfarcts, No. (%) 347 (28.8) 159 (27.4) 109 (25.7)

Neocortical Lewy bodies, No. (%) 159 (13.2) 69 (11.9) 33 (7.8)

TDP-43, No. (%)b 365 (31.8) 168 (29.21) 124 (30.9)

Hippocampal sclerosis, No. (%) 109 (9.1) 45 (7.8) 38 (9.03)

Amyloid angiopathy, No. (%)c 412 (34.8) 177 (30.6) 141 (33.8)

Atherosclerosis, No. (%)c 399 (33.2) 184 (31.7) 173 (40.9)

Arteriolosclerosis, No. (%)c 406 (33.9) 188 (32.6) 161 (38.2)

Abbreviations: AD, Alzheimer disease; IQR, interquartile range; MCI, mild cognitive impairment; MMSE, mini-mental state examination; NIA, national

institute on aging; PHF, paired helical filaments; TDP-43, transactive response DNA-binding protein 43; TMT, tandemmass tag.
aIntermediate or high likelihood.
bInclusion beyond the amygdala.
cModerate or severe.

We found that the associations between gene expression and neu-

ropathologies are cell type dependent. Figure 4B shows that SPP1 in

oligodendrocytes and microglial cells were associated with pathologi-

cal AD diagnosis (OR= 1.367, 95%CI= 1.103 to 1.694 andOR= 1.57,

95% CI = 1.214 to 2.031, respectively). Separately, we observed that

SPP1 in microglia was also associated with CAA, SPP1 in inhibitory

neurons and OPCs were associated with atherosclerosis, and SPP1

in oligodendrocytes was associated with arteriolosclerosis. ITGAX in

microglia was not associated with neuropathologies (Figure 4B).

An in situ analysis of CD11c+OPN+ microglia at the protein level

usingbrain tissues froma small cohort ofADpatients and controls from

the MSBB revealed that the percentage of CD11c+OPN+ microglia

strongly correlates with cognitive impairment and neuropathology

(neuritic plaques and tau tangles) of AD patients.16 To extend these

findings of a clinical correlation between OPN/CD11c and AD pathol-

ogy, we investigated cell subpopulations, especially ITGAX+ SPP1+

microglial sub-clusters, using a much larger ROSMAP cohort to pro-

vide a more comprehensive understanding. We found that ITGAX is

expressed in seven of 16 microglia subpopulations (mic.2, mic.3, mic.4,

mic.5, mic.7, mic.12, mic.13) (Figure S2A). SPP1 is also expressed in the

same cells plus another eightmicroglia subtypes, being expressed in all

but themic.14 cluster (Figure S2B). This gene is also expressed in all 13

oligodendrocytes subpopulations annotated (Figure S2C).

Because OPN-producing CD11c+ microglia is involved in phago-

cytosis mediation15 and this subset is implicated in various CNS

disorders,12 we focused on this cell population for downstream anal-

ysis (Figure S3). The SPP1 microglial subpopulations of mic.3, mic.12,

and mic.13 were associated with pathologic AD (OR = 1.308, 95%
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F IGURE 2 The associations of secreted phosphoprotein 1 (SPP1) and integrin subunit alpha X (ITGAX) genes and their encoded proteins with
cognitive decline. (A,B) Associations of SPP1 and osteopontin (OPN) with cognitive decline. (C,D) Associations of ITGAX and CD11cwith cognitive
decline. Red: high gene/protein expression; black: average gene/protein expression; blue: low gene/protein expression.

CI = 1.093 to 1.566, OR = 1.615, 95% CI = 1.393 to 1.873, and

OR = 1.437, 95% CI = 1.242 to 1.661, respectively). The subpopu-

lations mic.12 and mic.13 were also positively associated with CAA

(OR= 1.209, 95%CI= 1.082 to 1.352 andOR= 1.204, 95%CI= 1.076

to 1.346, respectively) (Figure 5A). These subpopulations or cell states

were previously annotated as homeostatic/tau-associated (mic.3) and

lipid-associated/disease-elevated (mic.12 and mic.13)38 (Table S05).

Results for ITGAXwere inconclusive (Figure 5B).

4 DISCUSSION

We systematically investigated the SPP1 and ITGAX gene expressions

and their encoded proteins in cortical brain tissue of community-

dwelling older adults and their role in ADRD. We showed that SPP1

and OPN in bulk brain tissue are associated with faster cognitive

decline, while CD11c, but not ITGAX, is associated with faster decline

in cognition, consistent with the preclinical murinemodel.15

The neuropathologic analyses showed that the signals are almost

restricted to neurodegenerative as opposed to vascular pathologies.

Further, by leveraging a snRNASeq dataset, we found that ITGAX

is expressed only in microglia, while SPP1 is expressed in all major

cell types of the DLPFC region with higher levels in microglia and

oligodendrocytes. These two cell types are also the main drivers of

the association with AD, with a stronger association found in three

microglial cell subpopulations.

In a dataset of over 1200 samples for bulk RNASeq and 580 samples

for proteins, we examined the associations of SPP1, ITGAX, and their
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F IGURE 3 Associations of secreted phosphoprotein 1 (SPP1) and integrin subunit alpha X (ITGAX) expression with neuropathologies. (A,B)
SPP1 gene and its protein, osteopontin (OPN). (C-D) ITGAX gene and its protein, CD11c. For each neuropathologic index tested, the horizontal line
represents the odds ratio (OR) and 95% confidence interval (CI). Dashed vertical line highlights the cutoff for significant association. AD,
Alzheimer’s disease; Arterio, arteriolosclerosis; CAA, cerebral amyloid angiopathy; CVDA, atherosclerosis; HS, hippocampal sclerosis; LATE,
limbic-predominant age-related TDP-43 encephalopathy

F IGURE 4 Expression level of secreted phosphoprotein 1 (SPP1) and integrin subunit alpha X (ITGAX) and neuropathologies association
analysis by cell type. (A) Expression level of the ITGAX and SPP1 genes by cell type (cell types: ast= astrocytes, ext= excitatory neurons, inh=
inhibitory neurons, mic=microglia, oli= oligodendrocytes, andOPCs= oligodendrocyte precursor cells). (B) The associations of gene expression
and neuropathologies, by cell type. Red represents a positive association. AD, Alzheimer’s disease; CAA, cerebral amyloid angiopathy; Est,
estimate; HS, hippocampal sclerosis; LATE, limbic-predominant age-related TDP-43 encephalopathy; LB, Lewy bodies

encoded proteins with cognitive decline and common neuropathologi-

cal indices. We found that higher cortical SPP1 levels were associated

with a faster cognitive decline over time. Our results are consistent

with those of prior studies that reported plasma OPN being upreg-

ulated in vascular diseases as well as in AD.43 In cerebrospinal fluid,

SPP1 and OPN were correlated with cognitive decline in early AD and

HIV-infected individuals.44–47

While previous studies focused only on AD,16 here we define the

association of SPP1 and ITGAXwith broader neuropathologies, includ-

ing AD, LATE, LB, HS, and CAA.We observed that SPP1was associated

with higher odds of AD, LATE, HS, and CAA, with similar results at

the protein level. SPP1 has been extensively described as associated

with activatedmicroglia andneuroinflammatory disorders. InAD, SPP1

is involved in maintaining the DAM and human Alzheimer’s microglia
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F IGURE 5 Neuropathologies association analysis for themicroglia sub-clusters. (A) Association of secreted phosphoprotein 1 (SPP1) gene
expression and neuropathologic indexes for themicroglial subpopulations. (B) Association of integrin subunit alpha X (ITGAX) gene expression and
neuropathologic indexes for themicroglial subpopulations. Red represents a positive association (ie, higher expression is associated withmore or
higher odds of the pathology). AD, Alzheimer’s disease; CAA, cerebral amyloid angiopathy; Est, estimate; HS, hippocampal sclerosis; LATE,
limbic-predominant age-related TDP-43 encephalopathy; LB, Lewy bodies; mic, microglia

TABLE 2 Associations of cell-type specific SPP1 and ITGAXwith
cognitive decline

Cell type SPP1 ITGAX

Astrocytes −0.0066 (0.0054, 0.2261) NA

Excitatory neurons −0.0159 (0.0057, 0.0052) NA

Inhibitory neurons −0.0183 (0.0056, 0.0011) NA

Microglia −0.0093 (0.0056,0.0971) 0.0101 (0.0055,

0.0641)

Oligodendrocytes −0.0277 (0.0054,0.0000) NA

Oligodendrocyte

precursor cells

−0.0105 (0.0056, 0.0611) NA

Note: In each cell, the three numbers are point estimate (slope of change

with one unit increase in expression), standard error, and p-value. NA=Not

available, meaning the gene is not expressed in that particular cell type.

ITGAX, integrin subunit alpha X; SPP1, secreted phosphoprotein 1.

(HAM) signature lists, also known for modulating microglial synap-

tic engulfment and phagocytosis.12,48,49 Additionally, SPP1 presents

altered intercellular communications in AD leptomeninges.50 In mul-

tiple sclerosis, subpopulations of microglia secreting OPN serve as

binding partners for several integrin receptors contributing to the infil-

tration of peripheral immune cells in inflamed CNS.51–53 Additionally,

HS is graded based on neuronal loss and astrogliosis in hippocampal

CA1 and subiculum,28 which is out of proportion to AD and strongly

associated with LATE.54,55

Even though microglia are associated with these pathologies, little

is known about the association of SPP1 or ITGAX expression with HS,

LATE, and other TDP-43 related pathologies. Except for CAA, no con-

sistent signalswere found for either SPP1or ITGAX for cerebrovascular

indices. Recently, SPP1was described as upregulated in a specific sub-

groupof stroke-associatedmyeloid cells in theparenchyma.56 Previous

studies found an association between elevated SPP1 expression and

the risk of developing CAA. Van der Weerd and colleagues hypoth-

esize that the calcification of CAA vessels observed in hereditary

cerebral hemorrhage with amyloidosis-Dutch type may be induced by

extracellular OPN.57,58 Also, immunohistochemistry analysis showed

that OPN was present in different patterns of calcium deposition.59

Adding to that, humans expressmultipleOPN isoformswithpotentially

distinct biological functions,60 and further investigation is required

to check for specific isoforms associated with neuropathologic

indices.

Both SPP1 and ITGAX genes are upregulated in DAM cells,12 a sig-

nature list generated from mice AD models. However, ITGAX was not

significantly associated in the signature list generated from human

dataset (HAM).48 In our analysis, we also did not see an association of

ITGAX gene expression with human cognitive decline, but we do see an

association at protein level.

ITGAX/CD11c is extensively described as a cellmarker gene/protein,

widely used as a marker for dendritic cells.61–64 The first report to

explicitly identify CD11c+ cells in the CNS as microglia was pub-

lished in 2006. The authors identified populations of CD11c+ cells

in a mouse model for AD as microglia based on their location and

co-expression of isolectin B4 and CD11b.65 Since then, other groups

have reported ITGAX as highly expressed in microglia and being upreg-

ulated in disease-associated cells,66 and as having a shared effect

between monocytes (blood myeloid cells) and microglia (brain myeloid

cells).67 Both genes were also described in mice models of AD12 and

upregulated in a recent study of amyotrophic lateral sclerosis human

patients.68 Our results showed that ITGAX is associated with higher

odds of CAA, LATE, and AD at the gene and protein levels. Previ-

ously, ITGAX was found to be upregulated in a mouse model study of

CAA, along with other genes enriched in endothelial development of

blood-brain barrier leakage.69
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More than a sole cell marker, CD11c+ cells expressing SPP1 define a

mouse microglial subpopulation that regulates neuronal development

and proinflammatory responses.15,16 Thus, we leveraged a snRNASeq

dataset of 424 DLPFC human brains searching for associations at

single-cell resolution. In our data and in the Human Protein Atlas,

SPP1 is expressed in both glial and neuronal cells, with higher expres-

sion in oligodendrocytes and microglia while ITGAX is expressed only

in microglia.70 By performing analysis with the cell-specific expres-

sion data, we observed a significant association of SPP1with cognitive

decline in excitatory and inhibitory neurons, and in oligodendrocytes.

This is in line with the crescent body of evidence that SPP1 plays

distinct roles in a cell-specific context. It may act as a regulator of

myelination in oligodendrocytes,71 and possibly modulates microglia-

mediated synaptic engulfmentwith a functional role in perivascular cell

crosstalk.49

OPN is already known to play a role in dementia and other

diseases,44,72–74 but to our knowledge, this is the first study to demon-

strate its association with a decline in cognition over the years in the

human brain in specific cell types. It is important to note that neurons

are the most abundant cell in the brain, accounting for 55% of cells

(ext) in our dataset, while oligodendrocytes and microglia account for

20% and 5%, respectively. Separately, ITGAX/CD11c in microglia cells

were not significantly associated with cognition, in line with the bulk

RNASeq results.

The neuropathologic associations revealed that SPP1 in glial cells

was associated with greater odds of arteriolosclerosis, CAA, and AD.

The expression of SPP1 in OPCs and inhibitory neurons was asso-

ciated with atherosclerosis. At the bulk RNA level, we did not see

these associations with cerebrovascular conditions, and in the snR-

NASeq, we did not see associations for LATE and HS. These different

results can be attributed to distinct aspects of the analyzed datasets.

First, the sample size is different, and the bulk RNASeq is almost

three times the size of the single-nuclei. Also, it is important to high-

light that for the snRNASeq experiment, only the RNA from the

nucleus was isolated, so we do not have expression from the cyto-

plasm RNAs.75 In contrast, the bulk experiment captures the RNAs

from the complete cell. Adding to that, disparities are expected when

comparing distinct omics modalities.37 Specifically, microglial subpop-

ulations were associated with CAA (mic.12 and mic.13) and pathologic

AD (mic.3, mic.12, and mic.13). These subpopulations were annotated

in an unsupervised way, potentially representing cell states. Differen-

tially expressed features were used as cluster biomarkers, and these

groups of cells were classified as homeostatic and tau-associated

(mic.3) or lipid-associated (mic.12 and mic.13) states. Of note, mic.3

is also described as surveilling, expressing the CX3CR1 marker gene.

The lipid-associated mic.12 and mic.13 express both the AD risk genes

APOE and GPNMB, with mic.13 also expressing high levels of SPP1 and

TREM2 compared to other subpopulations.38 An interesting pattern

can be emerging here.

The study has strengths and limitations. On the one hand, the

ROSMAP is a community-based cohort study with much less referral

bias, and the participants are free of known dementia at enroll-

ment. Nevertheless, our study has limitations as well. The ROSMAP

participants are typically older, non-Latino White individuals with

high education and are not representative of the general population.

Thus, the results presented here provide evidence of SPP1 and ITGAX

association with neuropathologies, but further analysis and in vitro

experiments are needed for causal inferences.
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