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Abstract

Modifiable factors, such as environmental exposures, can impact human fertility. The objective of 

this review is to summarize the potential effects of exposure to important endocrine disrupting 

chemicals on male reproductive health. The vast majority of experimental and animal data 

demonstrates strong evidence for negative effects of exposure to phenols, phthalates, pesticides 

and per- and poly-fluoroalkyl substances (PFAS) on male reproductive health. While evidence 

of negative associations in humans was overall strong for phthalates and pesticides, limited and 

inconclusive relationships were found for the other examined chemical biomarkers. Reasons for 

the discrepancies in results include, but are not limited to, differences in study populations, 

exposure concentrations, number of sample collected, sample sizes, study design and residual 

confounding. Additional studies are needed, particularly for newer phenols and PFAS, given the 

scarce literature on the topic and increasing exposures over time.
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Introduction

Infertility, a disease characterized by the inability to achieve a pregnancy after more than 

12 months of attempted conception, is estimated to affect about 10–15% of all couples 

worldwide.(1, 2) Male factor infertility, defined according to World Health Organization 

(WHO) reference values for semen quality, is the most prevalent cause accounting for 40% 

of infertility cases.(3) Poor testicular function has been also associated with higher risk of 

common chronic diseases and mortality, highlighting their public health importance beyond 

fertility and reproduction.(4–8) Attention to modifiable factors, such as environmental 

exposures, has emerged since they can impact human fertility.(9–12) In this review, we 

summarize available literature on exposure to important endocrine disrupting chemicals and 

male reproductive health.

Phenols

Environmental phenols include a wide range of chemicals such as bisphenols, parabens, 

and triclosan. Bisphenol A (BPA) is one of the most widely utilized and studied phenols, 

present in synthetic polymers (13, 14) building materials, thermal paper (15), toys, dental 

products (13, 16) and food packaging (17, 18). Given the endocrine disrupting activities 

associated with BPA (19–23), the replacement chemicals bisphenol S (BPS) and bisphenol F 

(BPF) were introduced in the market as potentially safer alternatives. Parabens — such 

as methylparaben, butylparaben, propylparaben, and ethylparaben — are used as food 

preservatives and shelf stabilizers (24, 25) and within personal care products such as 

shampoos, creams (26) and pharmaceutical products (27, 28). Triclosan and triclocarban 

are antimicrobial agents (29) used in personal hygiene products such as soaps, mouthwashes, 

toothpastes, and hand sanitizers (30). Benzophenone-3 is widely used in a variety of 

cosmetic products as a sunscreen agent that absorbs and dissipates ultraviolet (UV) radiation 

(31). Given their uses, phenols are most commonly absorbed through ingestion, dermal 

contact (32, 33), inhalation (34–38) or mucosal absorption (39–41) through the use of 

personal care and household products (42–45). Urine is the optimal matrix for quantifying 

phenols biomarkers because of their short half-lives (<24 hours), their metabolism and 

excretion, as well as being a non-invasive and convenient medium for biological monitoring 

(46).

These phenols have demonstrated endocrine disruption mechanisms. For example, aglycone 

(unconjugated) BPA has weak estrogenic activity through binding with different estrogen 

receptors (23, 47–50). BPA has also been shown in experimental animal studies to bind to 

the androgen receptor, peroxisome proliferator–activated receptor γ, and thyroid hormone 

receptor (51). In male rodents, the majority of studies on exposure to BPA and reproductive 

outcomes have confirmed these endocrine-disrupting activities leading to altered sperm 

counts, DNA damage and testosterone levels (52). Given their chemical structure, BPS and 

BPF have not surprisingly a similar toxicological profile to BPA based on in vivo and 

in vitro models (53). Specifically, animal models have demonstrated that BPS has similar 

endocrine disruption mechanisms to BPA, and can affect for example testosterone levels 

(54). Mechanisms of BPA analogues’ effects have been found to be similar to those of 

BPA, including oxidative stress, anti-androgenic activity, genotoxicity, and mutagenicity 

Mínguez-Alarcón et al. Page 2

Fertil Steril. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(54, 55). Parabens are suspected endocrine disrupting chemicals that are estrogenic (24, 

56, 57), and have been shown to bind to both estrogen receptor (ER)α and (ER)β (58, 

59). The estrogenic activity of parabens increases with increasing length and branching of 

the alkyl chain (e.g. BP > PP > MP) (57, 60, 61). Animal studies have found evidence 

between triclosan exposure with reproductive and developmental changes (62). In-vitro 

studies have demonstrated that triclosan could bind with estrogen and androgen receptors 

(with low affinity) to act as an agonist, antagonist, or to result in no action (63), altering 

testosterone production and overall leading to testicular damage (64–66) and even lower 

semen production (66). However, these results were not reproducible in two in-vivo 

studies in the same animal species (67, 68). Several benzophenones show estrogenic and 

antiandrogenic properties in vitro (69). These endocrine-disrupting properties appeared to 

lead to adverse reproductive outcomes in animal models (70, 71). For example, dermal and 

oral exposure to benzophenone-3 in rodents was associated with decreased sperm density 

and increased cycle length.

While the vast majority of in vitro and animal studies have confirmed endocrine-disrupting 

properties of the examined phenols on male reproductive outcomes, human studies have 

found mixed results. For example, three reviews found heterogeneous results on the 

relationship between exposure to BPA in men in relation to fertility, semen quality and 

reproductive hormone levels (52, 72, 73). Although the epidemiologic literature is growing, 

there is a stronger evidence supporting associations between urinary concentrations of BPA 

replacements (e.g. BPS and BPF) and male reproductive health in men (74–77). Only a 

handful of studies have evaluated male exposure to parabens in relation to semen quality 

and DNA fragmentation and results were also mixed and inconclusive (72, 78). Inconsistent 

results on environmental exposure to triclosan and semen quality/testosterone levels were 

also found in an overview of the epidemiological evidence (79) as well as in other individual 

studies (80, 81). However, other studies found that higher concentrations of triclosan were 

associated a few semen parameters or reproductive hormones (82–84). Only a handful of 

epidemiological studies have evaluated exposure to benzophenones in relation to semen 

quality and reproductive hormones and although suggestive associations were found, it was 

unclear whether these are of clinical importance (85, 86). The inconsistent results in the 

epidemiologic literature on environmental phenol biomarkers and male reproductive health 

may be due to different methodological aspects such as dose, exposure route, timing, and 

outcomes. Therefore, further studies in men are needed to clarify the role of these phenol 

biomarkers on male reproductive health. In addition, studies evaluating other phenols (e.g. 

other benzophenones, triclorocarban) are warranted given the scarce literature on the topic.

Phthalates

Phthalates are a group of chemicals that are used in a wide variety of products, including 

plastics, personal care products, and food packaging. High molecular weight phthalates, 

such as di-2-ethylhexyl phthalate (DEHP), diisononyl phthalate (DINP), diisodecyl phthalate 

(DIDP), and benzylbutyl phthalate (BzBP), have been used as plasticizers in flexible 

PVC commonly found in consumer products, food packaging, home furnishings, and 

other building materials, while low molecular weight phthalates (e.g., di-n-butyl phthalate 

[DnBP], diisobutyl phthalate [DiBP], and diethyl phthalate [DEP]) are used in personal care 
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products, certain dietary supplements and medications, and other consumer goods.(87, 88) 

These common and widespread uses result in ubiquitous exposure to phthalates. Ingestion, 

inhalation, and dermal contacts are possible routes of exposure for the general population, 

and that extends to in utero exposure to the developing fetus through the mother.(89) 

There is evidence that exposure levels of some commonly used phthalates for which health 

concerns have arisen, such as DEHP and DnBP, have been declining in the U.S. and in other 

populations.(88, 90–93) However, biomarkers of exposure to these phthalates can still be 

detected in most people.(88) On the other hand, for some common non-phthalate chemicals 

being used as phthalate replacements (e.g., DINCH, DEHTP), exposure has increased in 

recent years but health research remains limited.(88, 90–92, 94–97)

Experimental animal and in vitro studies have demonstrated that several phthalates possess 

anti-androgenic activity, and in rodents phthalate exposure causes reduced circulating 

testosterone and male reproductive tract abnormalities.(98) In fact, the collection of 

adverse reproductive effects that have been observed in male rats, including reduced testis 

weight, impaired spermatogenesis, and external genital malformations (shortened anogenital 

distance, hypospadias, and cryptorchidism), has been termed “phthalate syndrome” and 

has been hypothesized to manifest as testicular dysgenesis syndrome (TDS) in humans 

following phthalate-induced androgen deficiency in utero.(99, 100) However, variability 

in the presence and severity of these effects have been reported across specific phthalate 

chemicals and test species.(101, 102) In addition to endocrine disruption and decreased 

testosterone levels, oxidative stress is another biological pathway that has been associated 

with phthalate exposure and could have subsequent adverse impacts on male reproduction.

(72, 103)

Numerous human studies have been conducted on exposure to phthalates in relation 

to male reproductive endpoints over the past couple of decades. However, studies 

have varied in design, study population, life stage, and reproductive health endpoints 

being studied, including time to pregnancy, semen quality parameters, sperm DNA 

damage, circulating hormone levels, anogenital distance, reproductive tract abnormalities 

(hypospadias/cryptorchidism), and pubertal development.

The largest number of studies have been conducted for relationships of phthalate exposure 

with semen quality and/or circulating hormone levels among adult men. Among studies of 

semen quality parameters, a systematic review of the human epidemiological data concluded 

that there was moderate to robust evidence for reductions in semen quality in relation 

to DEHP, DnBP, BzBP, and DINP exposure levels based on generally consistent findings 

across up to 14 different studies (depending on the specific phthalate).(102) The authors of 

that review also reported a moderate level of evidence for associations between exposure 

to DEHP, DINP, and DiBP and reduced testosterone levels based on results from up to 13 

different studies of adult men. Overall conclusions for other phthalates in relation to semen 

quality or testosterone levels were less clear due to inconsistent results across studies. For 

other reproductive endpoints in adult men, such as delayed time to pregnancy in relation 

to male phthalate exposure or sperm DNA damage and sperm aneuploidy, there is some 

evidence for associations with certain phthalates but studies have been more limited in 

number.(72, 102, 104)
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Among studies investigating early life (e.g., gestational) exposure to phthalates and male 

reproductive health, several studies have reported associations with decreased anogenital 

distance (AGD), developmental anomalies of the reproductive tract, and altered circulating 

hormone levels during infancy. A recent systematic review and meta-analysis of 19 studies 

involving phthalate exposures during pregnancy and male reproductive disorders concluded 

that in utero exposures to DEHP, DnBP, BzBP, and DEP were associated with reductions 

in AGD, whereas DEHP and DIDP were associated with increased risk of cryptorchidism 

and hypospadias.(105) Exposure to phthalates during pregnancy or in childhood may also be 

associated with impacts on pubertal development in boys, with several studies reporting later 

onset or slower pubertal development in association with phthalate exposure which may be 

consistent with their anti-androgenic activity.(106–111) However, not all studies of phthalate 

exposure and pubertal development have reported similar associations.(112, 113)

Taken together, there is substantial evidence from both animal and human studies that 

multiple phthalates adversely impact male reproduction. Inconsistencies in specific results 

between human studies could be due to a wide range of factors including differences in 

underlying study populations related to demographics, susceptibility, exposure levels, and 

other risk factors, varying approaches to assessing exposure, differences in the ages at 

which exposure and endpoints are being assessed, or numerous other reasons. Additional 

well-designed studies, particularly those focused on early life exposure and later impacts on 

reproductive health, would further aid in risk assessment, as would studies offering robust 

insight into dose-response relationships and detailed investigations of other phthalates or 

non-phthalate chemicals being increasingly used as replacements.

Pesticides

Pesticides - which include herbicides, insecticides and fungicides - are defined as any 

substance or mixture of substances intended for preventing, destroying, repelling or 

mitigating any pest.(114) Pesticide use in agriculture accounts for approximately 90% of 

the total pesticide usage.(115) This utilization pattern would suggest that any health effects 

of exposure to pesticides would be primarily an occupational health concern limited to 

individuals directly involved in the manufacture or the application of pesticides. However, 

nationally representative surveillance data shows that nearly all Americans have detectable 

levels of pesticides or pesticides metabolites in urine or blood (116) suggesting ubiquitous 

sources of exposure to pesticides in the general. Although residential use of pesticides 

is one of these sources of exposure, diet, and in particular consumption of fruits and 

vegetables, is the primary source of exposure to pesticides and pesticide metabolites in 

the general population. (117, 118) The Food and Drug Administration’s (FDA) Pesticide 

Residue Monitoring Program has shown that a considerable proportion of domestic fruits 

and vegetables had detectable pesticide residue or had residue levels exceeding the EPA 

standards.(119, 120) Further evidence of the importance of diet to pesticide exposure are 

randomized trials of conventionally grown vs. organically grown produce, which have 

consistently shown that switching from conventionally grown to organically grown diets 

significantly reduces urinary levels of pesticides residues, including cross-over trials where 

urinary levels increase again after the intervention ends. (121–124) Although the ubiquity of 

exposure to pesticides in the general population and the importance of diet in determining 
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exposure are settled matters, an important question is the extent to which exposure to 

pesticides, whether it be at high occupational exposure levels or at background general 

population levels, carries any risks to men’s reproductive health.

There is strong experimental evidence in animal models that exposure to organophosphate 

(OP) and pyrethroid (PYR) insecticides such as diazinon,(125–128) chlorpyrifos(129–

133) and permethrin,(132, 134–139) as well as the herbicide 2,4-D,(140–146) negatively 

impact men’s reproductive health through a variety of mechanisms including inducing 

oxidative stress, disrupting hormonal pathways and altering the chromatin structure of sperm 

DNA (147–149). For example, oral administration of cis-permethrin,(135) 2,4-D,(143) or 

chlorpyrifos(131) resulted in testicular toxicity by altering Leydig cells and testosterone 

biosynthesis and production in rodent models. Moreover, one study in mice found that 

chlorpyrifos-methyl exposure during the organogenesis period disrupted DNA methylation 

of the imprinted H19 gene in sperm and impaired offspring’s early development.(150) 

Another study found that chlorpyrifos-methyl exposure was associated with bovine sperm 

epigenetic gene methylation patterns affecting fertilization and embryo development.(151)

In humans, pesticides gained attention as potential male reproductive toxicants in the 

late 1970s after linking occupational exposure to 1,2-dibromo-3-chloropropane (DBCP) to 

azoospermia, oligospermia and higher serum levels of FSH and LH among men working in 

a pesticide factory. (152) Subsequent work has documented associations between biomarkers 

of exposure to other pesticides with poor semen quality in non-occupational settings. 

Chlorpyrifos has been associated to lower sperm concentration and motility,(153) reduced 

testosterone(154) and estradiol(155) levels, and increased sperm DNA damage.(156) Other 

biomarkers of exposure to OP, such as TCPY(157) and IMPY,(158) as well as pyrethroids,

(159–161) and 2,4-D,(158) have been also negatively associated with either semen quality 

parameters or sperm DNA damage, as previously reviewed.(162) Since biomarkers of 

exposure cannot differentiate between exposure from dietary sources and exposure from 

non-dietary sources, such as the use of pesticides in home gardening or other residential 

uses, a particularly difficult to answer yet important question is the extent to which exposure 

to pesticides through diet specifically has an impact on men’s fertility. Although data 

addressing this specific issue is scarce, it suggests that exposure to pesticides through intake 

of fruits and vegetables specifically can have a deleterious impact on men’s fertility. Using a 

data from the USDA Pesticide Data Program, Chiu and colleagues developed a classification 

method that distinguishes between produce with low and high presence of pesticide residues 

in the US food supply (163, 164) (Table 1). Using this classification method, they found that 

intake of high-pesticide residue fruits and vegetables is related to lower sperm count and 

normal morphology, whereas intake of low-pesticide residue fruits and vegetables is related 

to higher sperm count (165, 166). Taken together, there is cumulative evidence proving 

associations between occupational and environmental pesticide exposure in relation to male 

reproductive health.

Per- and Polyfluoroalkyl Substance Exposure

Per- and polyfluoroalkyl substances (PFAS) include thousands of environmentally persistent 

and bioaccumulative anthropogenic chemicals used in oil and water repellant textiles, 
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food contact materials, cleaning products, firefighting foams, cosmetics, and hundreds 

of other products since the 1950s.(167–169) Human exposure is primarily derived from 

contaminated food and drinking water.(170–175) Experimental studies in animals show 

that exposure to PFAS during gestation or adulthood may adversely affect reproductive 

health by altering sperm membrane permeability, increasing oxidative stress and inducing 

sperm apoptosis, reducing expression of gonadotropin releasing hormone and production 

of testosterone, disrupting or destroying of the blood-testis-barrier, and altering Leydig and 

Sertoli cell gene expression.(176–179)

We identified 14 epidemiological studies examining the association of serum PFAS 

concentrations with semen parameters and reproductive hormone concentrations.(180–193) 

Two papers from one study also quantified PFAS levels in seminal plasma. Sample 

sizes ranged from 105 to 1,041.(194, 195) Notably, most studies were cross-sectional 

and conducted in China or Scandinavian countries. Two prospectively measured PFAS 

concentrations during pregnancy in relation to these outcomes in young adult males. Finally, 

four studies examined associations between PFAS exposure and germ cell cancers diagnosis 

or mortality using prospective cohort, ecological, or nested case-control designs. Nearly all 

of these studies controlled for potential confounding factors related to PFAS exposure or 

reproductive health.

Generally, the associations of serum PFAS with semen parameters in cross-sectional 

studies were inconsistent. In fact, several studies suggested positive associations between 

some PFAS and semen parameters (e.g., higher sperm concentration).(185) A case-control 

study reported that higher serum perfluorooctanoic acid (PFOA) and perfluorosulfonic acid 

(PFOS) concentrations were associated with lower odds of having low sperm motility.(191) 

In a study of 664 Chinese men semen concentrations of five different PFAS, but not 

serum concentrations, were associated with lower sperm progressive motility and higher 

DNA fragmentation; these associations exhibited monotonic dose-response relations.(194) 

Other semen parameters were not monotonically related to semen PFAS levels. There were 

moderate correlations between PFAS in serum and semen (Pearson r=0.58 to 0.83) The 

results of this study, in conjunction with the relatively null associations among studies 

using serum PFAS biomarkers, suggests that PFAS exposure measures at the target tissue of 

interest (i.e., gonads) may be better indicators of the potential reproductive toxicity of PFAS.

Several studies suggest that exposure to some PFAS were associated with reproductive 

hormone levels in young men. In six studies, serum perfluorooctanoic acid (PFOA), 

perfluorosulfonic acid (PFOS), or perfluorohexanoic acid concentrations were associated 

with lower testosterone, higher luteinizing hormone (LH), and higher follicle stimulating 

hormone (FSH); although the specific PFAS-hormone associations were inconsistent.

(180–182, 188, 189, 192) In two nationally representative samples of US boys, PFAS 

concentrations were not associated with lower reproductive hormone levels. In a study 

with both serum and semen PFAS measures, the same PFAS associated with lower 

sperm progressive motility and higher DNA fragmentation were also associated with lower 

testosterone concentrations. In models adjusted for both serum and semen PFAS, the serum 

PFAS associations were attenuated to null, suggesting that associations between PFAS 

exposure and testosterone is mediated by PFAS concentrations in semen.
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Two studies prospectively examined the association of prenatal PFAS exposure with semen 

parameters and reproductive hormones in young men. Vested et al. reported that maternal 

PFOA concentrations during pregnancy were associated with lower sperm count and 

concentrations and higher LH and FSH 164 young Danish men.(193) In a separate cohort 

of 864 Danish men, higher concentrations of a mixture of seven PFAS were associated with 

lower sperm count and concentration, and more nonprogressive and immotile sperm.(190) 

They also observed suggestive positive associations between this mixture and LH. These 

mixture associations were primarily due to perfluoroheptanoic acid (PFHpA, 42–65%) and 

to a lesser extent (PFOS, 6–17%) and perfluoroundecanoic acid (11–15%).

There is consistent evidence that exposure to PFOA or PFOS is associated with testicular 

cancer in men. Two studies of Ohio and West Virginia residents living in communities with 

PFOA-contaminated drinking found that serum PFOA concentrations were associated with 

elevated risk of testicular cell cancer,(196, 197) with evidence of a monotonic dose-response 

relation in one study.(196) In an ecological study, the risk of testicular cancer mortality was 

elevated among male Italians residing in 24 municipalities with PFOA/PFOS-contaminated 

drinking compared to residents in 56 uncontaminated municipalities.(198) In a study of 

530 case-control pairs of US Air Force servicemen, PFOS concentrations before cancer 

diagnosis were monotonically associated with elevated odds of testicular cancer (OR for 4th 

vs. 1st quartile: 4.6, 95% CI: 1.4, 15.1).(199)

The results of epidemiological studies to date suggest that young adulthood exposure to 

some PFAS may be associated with increased risk of testicular cancer and subtle alterations 

in reproductive hormones, but the impact of PFAS on semen parameters is less conclusive. 

There is emerging evidence that prenatal exposure to individual PFAS and their mixture 

is associated with altered reproductive hormones and reduced semen quality. Additional 

prospective studies using semen PFAS biomarkers are needed to determine if and when 

exposure to PFAS impacts semen parameters and risk of testicular cancer, if alterations in 

reproductive hormones mediate this association, and estimate the aggregate impact of PFAS 

mixtures on reproductive health.

Air Pollution

Several animal studies have demonstrated that air pollution, particularly due to diesel 

exhaust, has harmful effects on sperm quality including decreased production of 

spermatozoa and increased sperm DNA damage (200, 201). Other animal studies have 

also observed structural changes in Leydig cells, a reduction in the number of Sertoli 

cells, decreases in testosterone concentrations, and increases in luteinizing hormone (LH) 

concentrations after exposure to diesel exhaust (202–204).

A systematic review published in 2023 identified 22 studies on the association between 

air pollution and semen quality.(205) After excluding studies who reported data in an 

incongruent fashion and who examined exposure time windows outside of the 90 days 

prior to semen collection, 11 studies including over 60,000 men and 80,000 semen samples 

were retained for the meta-analysis. These 11 studies were diverse in their geographic 

region of origin (15 from Asia, 3 from North America, 3 from Europe, and 1 from South 

America), study design (13 longitudinal and 9 cross-sectional), and patient populations 
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(13 from the general population and 9 from men attending fertility clinics). After pooling 

data from the eligible studies, the authors concluded that a 10 μg/m3 increase in ambient 

exposure to PM10 and SO2 during the 90 days prior to semen analysis was associated with 

a 2.2% (95% CI 0.1, 4.2%) and 8.6% (95% CI 1.0–15.6%) lower sperm concentration, 

respectively. No associations were identified for PM2.5, NO2, CO, or O3. Similar results 

were observed for total sperm count. Regarding motility, the meta-analyses showed that 

a 10 μg/m3 increase in ambient exposure to PM2.5 and PM10 was associated with a 

1.1% (95% CI 0.3, 1.8%) and 0.8% (0.4, 1.1%) lower total motility, respectively. Results 

were similar, albeit slightly attenuated for progressive motility. There were no associations 

between the gaseous pollutants and total or progressive sperm motility. Although beyond 

the scope of this meta-analysis, several studies have also pointed to an inverse association 

between exposure to ambient air pollutants, especially PM10, PM2.5, and SO2, and decreased 

testosterone levels,(206–208) further suggesting that air pollution might be disrupting the 

function of hypothalamus pituitary gonadal axis.

Despite these consistent observations of a negative association between ambient air pollution 

and semen quality parameters, it still remains to be determined whether this translates into 

effects on couple-based fertility endpoints. Conducting epidemiologic studies on paternal air 

pollution exposure and fecundability is challenging because the majority of couples trying 

to conceive (with or without medical assistance) reside at the same address and are assigned 

the same air pollution exposures. This makes differentiating the influence of maternal versus 

paternal exposures virtually impossible in the absence of personal or occupational exposure 

assessment. A single study found a higher risk of spontaneous abortion, stillbirth, and 

neonatal death in wives of traffic policemen versus matched controls.(209) These findings, 

along with data linking DNA fragmentation to higher rates of miscarriage,(210, 211) suggest 

that paternal air pollution could have an independent, detrimental effect on couple fertility, 

yet studies directly addressing this hypothesis are limited. Future studies could also focus on 

wildfire smoke and personal exposure reduction techniques (e.g. use of masks or personal 

home filters) in relation to male reproductive health given increasing the importance of these 

exposures and the lack of studies directly evaluating them.

Conclusions

We have reviewed the available literature on the association of exposure to selected 

endocrine disrupting chemicals with male reproductive health (Table 2). The vast majority of 

experimental and animal data demonstrated strong evidence for negative effects of exposure 

to phenols, phthalates, pesticides and PFAS on male reproductive health. While the human 

evidence supporting associations with male exposure to phthalates and pesticide biomarkers 

is strong, associations with several phenols, PFAS and air pollution remains limited and 

inconclusive. Additional studies are needed, particularly for newer phenols and PFAS, given 

the scarce literature on the topic and increasing exposures over time.
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Table 1.

Fruits and vegetables monitored by the USDA Pesticide Data Program between 2010 and 2018, classified 

according to pesticide residue status using the Pesticide Residue Burden Score* (PRBS; 162,163).

Low pesticide residue fruits and vegetables (PRBS: 0 to 3) High pesticide residue fruits and vegetables (PRBS: 4 to 6)

Food PRBS Food PRBS

Avocados 0 Strawberry 6

Beets 0 Spinach, fresh or frozen 6

Corn, fresh or frozen 0 Bell peppers 6

Beans 0 Potato, fresh 6

Garbanzo beans 0 Peaches 6

Cranberries 0 Nectarines 6

Pineapple 0 Grapes or raisins 6

Orange juice 0 Kale 6

Olives 0 Cucumber 6

Dried plum 0 Cilantro 6

Sweet pea 0 Blueberry 6

Papaya 0 Apple 5

Apple juice 1 Pear 5

Cauliflower 1 Summer squash 5

Cabbage 1 Eggplant 5

Cantaloupe 1 Tomato, fresh 5

Kiwi 1 Cherry tomato 5

Mushrooms 1 Collard greens 5

Onions 1 Cherries, fresh 5

Tomato, paste or canned 1 Celery 5

Asparagus 2 Winter squash 4

Carrot 2 Snap peas 4

Green beans, canned 2 Hot peppers 4

Grape juice 2 Green beans, fresh 4

Mango 2 Cherries, frozen 4

Potato, frozen 2 Apple sauce 4

Raspberry, frozen 2

Watermelon 2

Green beans, frozen 3

Cranberry 3

Banana 3

Broccoli 3

Green onion 3

Lettuce 3

Orange or grapefruit 3
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Low pesticide residue fruits and vegetables (PRBS: 0 to 3) High pesticide residue fruits and vegetables (PRBS: 4 to 6)

Food PRBS Food PRBS

Raspberry, fresh 3

Sweet potato 3

Soybeans (edamame) 3

Tangerine 3

*
Low pesticide residue foods are listed in increasing PRBS score (least contaminated first) and high pesticide residue foods are listed in decreasing 

PRBS score (most contaminated first).
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