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Abstract

Proteins exist as dynamic conformational ensembles. Here we suggest that the propensities of the 

conformations can be predictors of cell function. The conformational states that the molecules 

preferentially visit can be viewed as phenotypic determinants, and their mutations work by 

altering the relative propensities, thus the cell phenotype. Our examples include (i) inactive 

state variants harboring cancer driver mutations that present active state-like conformational 

features, as in K-Ras4BG12V compared to other K-Ras4BG12X mutations; (ii) mutants of the same 

protein presenting vastly different phenotypic and clinical profiles: cancer and neurodevelopmental 

disorders; and (iii), alterations in the occupancies of the conformational (sub)states influencing 

enzyme reactivity. Thus, protein conformational propensities can determine cell fate. They can 

also suggest the allosteric drugs efficiency.
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Introduction

Recently, we called for a revision of the decades-old sequence-structure-function paradigm 

and replacing it by a modern sequence-conformational ensemble-function paradigm. We 

argued that such a revised outlook more accurately encapsulates the linkage between 
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sequence and function, and especially, is required by the updated dynamic energy landscape 

[1].

Proteins are not rigid, neither in vitro nor in the cell. They fluctuate. They sample an 

ensemble of states, triggering conformational heterogeneity. The states are visited with 

different frequencies. High energy states are visited rarely, low energy states frequently. 

The smaller conformational fluctuations of stable folded proteins sample states around 

the average structure yielding more homogeneous ensembles. Unstable, or intrinsically 

disordered proteins that interconvert between a broad range of conformations with relatively 

low barriers between them, can present high conformational heterogeneity [2]. Clustering 

of the conformations [3], or describing the ensembles by their associated thermodynamic 

weights [4], can describe the proteins’ structural heterogeneity. The input can come 

from biophysical experiments, such as crystallography, single-molecule fluorescence (or 

Förster) resonance energy transfer (smFRET) experiments that measure distances at the 

1-10 nM range, single-particle cryo-electron microscopy (cryo-EM), which can capture 

conformational transitions by observing single conformer in each condition, cryo-X-ray 

structural snapshots from multiple related structures [5], quantitative backbone structural 

dynamics by solution nuclear magnetic resonance (NMR) spectroscopy [6], computational 

models obtained from explicit solvent long time scales molecular dynamics (MD) 

simulations [7], and especially, MD/NMR combination [8,9]. As we and others have shown, 

this combination is powerful in clarifying the mechanism of autoinhibition [10] and in 

showing how oncogenic mutations can alter the dynamic nature of the K-Ras/calmodulin 

complex [8]. The frequencies of visits of close conformations can provide the propensities 

of the conformational states. Here we suggest that propensities of different states can express 

distinct protein and cell phenotypes (Figure 1 depicts the concept). High propensity of 

active state-like conformations of a mutational variant obtained from an inactive structure 

can point to a strong mutation with a consequent high chance of a transformed cell 

phenotype [7]. In a protein that can act in two vastly different phenotypes, cancer and 

neurodevelopmental disorders (NDDs), a stronger mutation with an active state profile may 

point to cancer. Our premise is that a strong mutation elicits strong signaling ([7] and 

references therein). However, on their own, single proteins, and single mutations do not 

determine cell phenotype. Homeostatic mechanisms, the types and locations of additional 

mutations, expression levels, cell type, timing, and chromatin structure, all play key roles 

[11,12].

The heterogeneity of conformational ensembles is important since distinct conformations 

may define functional specificities. Nuclear receptors that act as transcription factors 

through ligand-linked conformational changes provide one example [13]. Substitutions at 

a key position resulted in altered ligand specificities for multiple ligands through distinct 

favored conformations. The conformers’ populations are specifically allosterically shifted 

by the different mutations, altering their propensities. Atomistic MD simulations with 

enhanced sampling captured the resulting allosteric population shifts in the ensembles and 

correlated them with ligand-specific transcriptional activation. Mechanistically, pairwise 

cooperativities, where binding at the ‘receiving end’ is modulated solely by binding 

at the ‘initiating end’ is not an accurate representation [14]. Multiple steps are 

involved along the favored allosteric propagation pathways [15]. These binding events 
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reflect multiple conformational selection steps including collectively modulated additional 

binding events involving concurrent regulation in the cell. Resolving the local energetic 

conflicts experienced during binding induces allosteric effects [16,17]. The dynamically 

interchanging conformations transform the propensities of the conformers in the ensemble. 

Allosteric population shifts in the ensembles promoted by covalent events are not limited 

to mutations, but also include posttranslational modifications, which can also alter function 

[18]. Finally, chaperones, the nanoscale molecular machines that recognize incompletely 

or incorrectly folded protein clients, arrest and assist in refolding them are a remarkable 

example of the link between changes in conformations and phenotypes [19,20].

We define propensities as the number of active molecules and suggest that determination 

of this number is significant for several reasons. Not only does it help in dissecting the 

relationships between the ensemble and protein (or RNA [21]) function. As we discuss 

below, it can help in determining, and predicting, the phenotype associated with the higher 

(lower) propensities. Within this framework, we recall the community effort of predicting 

protein function from its sequence [22] or structural features [23,24]. The relationship, and 

significance of heterogeneous conformational ensembles for function has increasingly been 

considered (e.g., [25–32]).

Here we underscore the significance and feasibility of predicting function from 

conformational propensities. In line with this, the effectiveness of allosteric drugs can be 

measured, and thus predicted, by the changes in propensities of the relevant conformations 

that they elicit.

Definitions and model overview

First, what is a “protein state” and what is a “protein conformation”? Both terms relate 

to protein ensembles with structures that are interconverting along time and conditions. 

Protein disorder is commonly referred to as the “disordered state”. Yet, when relating to 

protein shapes within an ensemble of “ordered” proteins, “state” and “conformation” are 

often used interchangeably. Here our definitions are based on the free energy landscape, 

and in line with the multiple interconverting molecules in the disordered state. In our 

definition, multiple shapes [(sub)states] located around the bottom of a minimum with 

minor differences in energy, which are separated by low kinetic barriers, constitute a 

conformational state (Figure 2), whereas conformational states are separated by higher 

barriers. An allosteric mutation can alter the relative stabilities of the states, and of the 

substates that they embody. Since a conformational state is described by bonded and 

nonbonded intramolecular interactions, different conformational states of the molecules 

would be impacted in different ways.

The propensities of the conformational states relate to their relative energies. Apart from 

repressors, under physiological conditions, the number of molecules populating the active 

conformational state is lower than that in the inactive states. The enhanced sampling 

of a variant harboring a driver mutation temporally increases the number of molecules 

with active conformational state features; in enzymes, making it predisposed for catalysis, 

in small GTPases, making it predisposed for effector activation. The number of active 
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molecules decides signaling strength, thus cell function. Effective allosteric drugs reduce the 

number active molecules. Cellular processes depend on interactions, which are mediated 

by intermolecular contacts. In turn, these depend on binding affinity and the number 

of available, binding-competent conformations, that is, the propensities of the relevant 

conformational states [33–35]. Mapped occupancies of active conformational states can help 

foretell cell fate by harnessing the free energy landscapes and conformational dynamics.

Prediction of functional cell states and cell fates

The functions of a large number of proteins remain unknown, lacking experimental and 

manual annotation [36]. Computational methods have been exploiting the data, developing, 

and applying functional prediction algorithms most commonly from sequences, using 

global and local (multiple) sequence alignments searching for, and interrogating homologs. 

‘Function association matrices’ have also been used to annotate even remote homologs, 

and recently, sequence-based protein language models have been developed as well. 

Experimentally determined structural information was not used as much for protein function 

prediction largely due to its paucity as compared to known sequences. AlphaFold2 [37] and 

other recent machine language-based structural prediction methods, such as the fast Meta 

AI ESMFold [38], which are filling in the ‘dark matter’ of the protein universe, will likely 

alter this landscape. AlphaFold2 has been used in large-scale prediction of protein functions 

through heterogeneous feature fusion [36]. Protein 3D structural data are advantageous since 

structure is better conserved than sequence. Amino acid contact maps have been successfully 

exploited as well [24]. However, none of these directly capture conformational mechanisms 

like allostery, which are rooted in ensembles, and controlled by their dynamic distributions 

[39]. Allostery and signaling are properties of populations, whereas these methods predict 

structural snapshots ranked by a scoring function. To obtain conformational data they can 

be applied multiple times with different parameters; however, they will still not provide 

propensities which are influenced by kinetic barrier heights that separate the states.

The quintessential nature of predictions derived from propensities of conformational states 

differ from predictions of function from sequences in a number of ways. First, they 

provide a conformational profile of a protein, whose function is already known. Second, 

that conformational profile, which epitomizes conformations that have been preferentially 

visited, and their associated propensities, can be viewed as key phenotypic determinants of 

the cell. Conformational profiles provide a phenotypic resolution which neither sequences 

nor 3D structures are able to attain. Beyond the known function of the protein, through 

their propensities, they may describe protein action across time. Since they point to the 

number of molecules that exist in the active conformational state, this may allow us 
to consider questions such as, what is the extent of the protein activity. Further, if the 

protein can contribute to multiple diseases, as in the case of phosphoinositide 3-kinase 

(PI3K) lipid kinase and Src homology 2 (SH2) domain-containing tyrosine phosphatase-2 

(SHP2) phosphatase acting in cancer and NDDs, the propensities may suggest which of 

these diseases is the one that is more likely to emerge from certain mutations or their 

combinations. The extent of protein activity and the related disease can provide a signature 

of the cell phenotype. Taken together, this posits the methodological challenge of how to 
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obtain propensities, which could integrate with algorithms for prediction of function, for a 

more complete and relevant functional description.

Methods for observing and predicting propensities

Acquiring temporal, high resolution atomic-level ensemble models that accurately represent 

conformational heterogeneity is vital to understanding of how proteins and cells work 

[40]. Several experimental techniques, including time-resolved X-ray crystallography and 

cryo-EM [41–45], and spectroscopic methods [46,47], can trap conformations. However, 

their usefulness may fall short. The conformations need to be generated which is technically 

complex [47]. Modeling conformational variability at ambient temperatures directly from 

X-ray diffraction data has been challenging [40]. Recent advances in refinement of 

multiconformer ensemble models from multitemperature X-ray diffraction data have made 

the collection of high-quality heterogeneous diffraction data possible. Integrating automated 

sampling with manual refinement of diffraction datasets at different temperatures (313 

to 363 K) resulted in multiconformer models, including their relative occupancies, and 

interconnections.

High resolution atomistic, long time scales conformational sampling by MD simulations, or 

Monte Carlo, can usefully predict and capture temporal propensities, as well as the kinetic 

barriers for conformational switching [41,48–50]. However, high barriers require lengthy 

time scales for exhaustive sampling of the conformational space, unless a priori constrained 

by experimental measurements [51,52]. Emerging integrated machine learning–MD methods 

may help in large scale systems, as well as enhanced sampling techniques [31,53–56]. MD 

simulations can describe molecular mechanisms by exploiting empirical potentials, which 

can be improved by machine learning approaches. As we discuss below, in our hands, 

conformational behavior of protein variants observed in explicit solvent MD simulations 

could distinguish between disease outcomes even though the differences may be moderate, 

pointing to the challenges in sampling and the requirements for longer time scales, or 

emerging superior sampling approaches, as the above methods aim to accomplish.

The K-Ras4B mutational variants, cancer and NDDs, and enzyme examples

Sampling of conformational space in vivo is influenced by the cellular environment, 

which is challenging to capture. However, conformational studies in solution may still 

unravel puzzling in vivo consequences. We surmised that the differences in the propensities 

of conformational states of K-Ras4B variants could be a key factor in the differences 

in the rates of GTP hydrolysis, nucleotide exchange rates, and selectivity for plasma 

membrane phospholipids, thus in oncogenic aggressiveness [57]. KRAS is the most highly 

mutated RAS gene in human cancer, causing various cancer phenotypes in different organs 

(Figure 3a). Among the oncogenic mutations at the active site, G12 is the most highly 

populated, followed by G13 and Q61. To test our conjecture, we considered two strong 

K-Ras4B mutations, K-Ras4BG12V and K-Ras4BG12D (Figure 3b). The first is the strongest 

K-Ras4B mutation. It is the most aggressive and chemotherapy resistant. The second is 

the most frequent and the key mutation in pancreatic adenocarcinoma. Both single residue 

substitutions decelerate intrinsic and catalyzed GTP hydrolysis, retaining the protein in a 
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constitutively active state, promoting strong cell proliferation. The crystal structures of both 

mutants are similar, providing no clue to their differential oncogenic behavior. To discern 

why the difference in the aggressiveness of the mutations, we collected NMR data and 

performed explicit solvent MD simulations of the active and inactive conformations, aiming 

to explore its conformational sampling, thus occupancies [7]. We observed that the two 

mutational variants exhibit distinct conformational dynamics in their GDP-bound states, 

which in the wild-type protein is the inactive state. As expected from constitutive activating 

mutations, even in this state, they often visit active-like conformations, resembling that of 

the active GTP-bound state. However, their conformational profiles differed. K-Ras4BG12V 

visited active-like conformations much more frequently than the K-Ras4BG12D did. 

Inspection of the conformational details explained the reason: The fluctuating interactions of 

the aliphatic sidechain of the Val12 with the Switch II region of K-Ras4BG12V-GDP differ 

from those of Asp12 in GDP-bound state, which is not observed in the crystal structure, 

where the contacts in the crystalline state constrain the dynamics by stabilizing the Switch 

I region of the protein. Thus, the differences in the G12 mutants’ conformations can be 

explained by the contacts with the Switch II region which stabilize the active-like state, 

resolving the differential oncogenic aggressiveness conundrum.

In the second example, same protein single mutation variants can encode the vastly different 

phenotypic and clinical profiles of cancer and NDDs, leading us to query how [12,58]? 

To resolve this mystery, we selected key cancer mutations (E76K and D61Y/V) in SHP2 

phosphatase (Figure 4) which regulates MAPK, and compared them with Noonan syndrome 

(NS, a RASopathy, a group of NDDs [59–62]) mutations of the same residues (E76D and 

D61G). We observed that the cancer drivers could induce a shift in the SHP2 ensemble 

toward the active state. As to the RASopathy mutations, they presented only limited 

conformational transitions, thus are less likely to promote proliferation. Thus, again, as 

the K-Ras4B variants above, conformational behavior and propensities of occupying active 

states-like conformations can predict not only mutation strength and clinical relevance, but 

are also capable in distinguishing, thus forecasting, disease outcome.

Our third example [5] involves substituting a tyrosine in the ketosteroid isomerase (KSI) 

enzyme with phenylalanine, changing the bound and the reactive ensemble, but with 

the ninefold rate decrease arising from a weakened hydrogen bond, thus conformational 

dynamics, which impacts protein function and enzyme catalysis. Finally, conformational 

variants can influence aggregation [63,64].

Conclusions

Structures captured in crystals cannot point to the cell phenotype. Despite their vast merit, 

crystal structures capture static structural snapshots that are populated under the conditions 

of the experiments. As to single cell transcriptomics, if followed and measured at different 

cell states and time frames, it can point to the cell’s phenotype [65], including our example 

when differentiating between cancer cells and NDDS, where we observed different levels at 

different cell states [66].
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Here we suggested that propensities of conformational states obtained by detailed MD 

simulations can do this too. Each method has its pluses and drawbacks. Single cell 

transcriptomics require time, laboratory set-up, tools and are costly. Simulations are 

handicapped by hurdles too. Still, they are more affordable and with recent developments in 

machine language/AI assistance, they get faster, increasingly accomplishing their aims [67].

Here our linchpin theory is that propensities of protein conformational states may powerfully 

predict cell phenotypes [1], and we believe that constructions of such software tools are 

feasible, albeit challenging. Data of mutation outcomes are available, and MD simulations 

are becoming increasingly routine. We further note that since effective allosteric drugs 

can also bias ensembles, their action may be captured as well. We offer that eventually, 

prediction of cell function from conformational ensembles can extend prediction of protein 

function and is worth considering.
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Figure 1. 
Free energy profiles of different conformational states expressing different phenotypic cell 

traits. For example, strong hotspot mutations alter the conformational states of the protein, 

generating a cancer disease phenotype, while weak/moderate mutations express a NDD 

disease phenotype.
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Figure 2. 
Illustration of the conformational states and substates of wild-type B-Raf, B-RafV600E, 

and allosterically inhibited B-RafV600E. Dynamic free energy landscapes and structures 

of B-Raf, B-RafV600E, and ponatinib bound B-RafV600E (top panels). The free energy 

shows the distribution and population of protein states. Each well represents a distinct 

conformational state (active or inactive), with the depth of the well indicating the stability 

of the state. Within each well, multiple dots indicate the population of substates that a 

protein can adopt. The barriers between these substates are lower than the barriers separating 
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different conformational states. In the left column, wide type B-Raf primarily adopts an 

inactive state; in the middle column, B-RafV600E primarily shows an active state; in the 

right column, B-RafV600E bound to an allosteric drug ponatinib which disrupts its ability 

to phosphorylate, resulting in population shift towards the inactive state. Their predominant 

structures are shown below their respective free energy landscape plots (middle panels). 

Note that the V600E mutation shifts the relative stability of the protein from favoring the 

inactive state to the active state. We annotate the PDB code in each panel for reference. 

Within each conformational state, the protein can adopt a range of substates (bottom panels). 

For example, active B-RafV600E shows structural variations in the position of the αC helix. 

The important salt bridge between K483-E501 represents a key feature of the active protein 

kinase conformation.
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Figure 3. 
(a) K-Ras mutations can drive cancers. Analysis of the AACR cancer cohort (GENIE 

Cohort v13.1-public) reveals that K-Ras mutations have high associations with pancreatic, 

ampullary, appendiceal, small bowel, colorectal, non-small cell lung, and endometrial 

cancers. The most prevalent K-Ras mutation sites are at codon 12, 13, and 61, with G12 

mutations being the most frequent, accounting for ~75% of all K-Ras mutations. Among 

these mutations, G12D is the most common (~28%), followed by G12V (~23%) and 

G12C (~15%). (b) K-Ras4B encompasses two critical regions, Switch I (SI) and Switch 

II (SII). In the inactive GDP-bound state, the two regions are separated (referred as the 

open SI-SII conformation), which prevents the K-Ras interactions with its effectors. In 

the active GTP-bound state, these two regions come into closer proximity (referred as the 

closed SI-SII conformation), favorable for the effector binding. Oncogenic mutations in 

K-Ras4B can shift the equilibrium towards the active state. The G12V and G12D mutants 

have a high population in the GTP-bound state with the closed SI-SII conformation, and 

a low population in the GDP-bound state with the open SI-SII conformation. The G12V 
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mutation induces a more potent activation of K-Ras compared to the G12D mutation. This 

difference in activation strength may arise from the distinct dynamic ensembles of the two 

mutants. In the GDP-bound state, K-Ras carrying the most aggressive G12V mutation visits 

frequently the active-like conformation, featuring instances of SI and SII separation. This 

further amplifies the likelihood of downstream effectors binding, thereby intensifying the 

signal transduction.
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Figure 4. 
SHP2, a tyrosine phosphatase, consists of the nSH2, cSH2, and PTP domains. In its 

autoinhibited state, the nSH2 domain tightly binds to the catalytic cleft of the PTP domain, 

with D61 and E76/A72 orienting towards the active and allosteric sites, respectively. 

Analysis of the TCGA and GENIE databases identifies hotspot mutation sites as G60, D61, 

E69, A72, and E76 in the nSH2 domain, and G503 in the PTP domain. Mutations at these 

sites can drive various cancers, including juvenile myelomonocytic leukemia (JMML), acute 

myeloid leukemia (AML), B lymphoblastic leukemia/lymphoma (B-ALL/LBL), glioma, and 

melanoma, as well as neurodevelopmental disorders (NDD) like Noonan syndrome (NS). 

Interestingly, some mutations are shared between cancer and NS, but they are significantly 

rare in cancer cases. Some mutations at the hotspot mutation sites for several representative 

cancers and NS are listed.
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