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Abstract

Background: Understanding the efficacy and relative effectiveness of a brief alcohol 

intervention (BAI) relies on obtaining a credible intervention effect estimate. Outcomes in 

BAI trials are often count variables, such as the number of drinks consumed, which may be 

overdispersed (i.e., greater variability than expected based on a given model) and zero-inflated 

(i.e., greater probability of zeros than expected based on a given model). Ignoring such distribution 

characteristics can lead to biased estimates and invalid statistical conclusions.

Methods: In this critical review, we identified and reviewed 64 papers that reported count 

outcomes from a systematic review of BAI trials for adolescents and young adults from 2013 to 

2018. Given many statistical models to choose from when analyzing count outcomes, we reviewed 

the models used and reporting practices in the BAI trial literature.

Results: A majority (61.3%) of analyses with count outcomes used linear models 

despite violations of normality assumptions; 75.6% of outcome variables demonstrated clear 

overdispersion. We provided an overview of available count models (Poisson, negative binomial, 

zero-inflated or hurdle, and marginalized zero-inflated Poisson regression) and formulated 

practical guidelines for reporting outcomes of BAIs. We developed a visual step-by-step decision 

guide for selecting appropriate statistical models and reporting results for count outcomes. We 

listed accessible resources to help researchers select an appropriate model for their data.

Conclusions: Recent advances in count-distribution-based models hold promise for evaluating 

count outcomes to gauge the efficacy and effectiveness of BAIs and identify critical covariates in 

alcohol epidemiologic research. We recommend researchers report the distributional properties of 

count outcomes, such as the proportion of zero counts, and select an appropriate statistical analysis 
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for count outcomes using the provided decision tree. By following these recommendations, future 

research may improve the accuracy, transparency, and reproducibility of their results.
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alcohol consumption; brief alcohol intervention; count data models; statistical reporting; young 
adults; Project INTEGRATE

Introduction

Over 300 clinical trials have examined the efficacy and effectiveness of brief alcohol 

interventions (BAIs) for adolescents and young adults since the 1980s (see Larimer et 

al., 2022; Mun et al., 2015, 2022b; Murphy et al., 2022; Tanner-Smith and Lipsey, 2015). 

Although significant variability exists in outcome measures (see Shorter et al., 2019 for a 

systematic review), the primary outcomes in BAI trials are typically count outcomes, such as 

the number of standard drinks consumed in a typical week in the past month (derived from 

the Daily Drinking Questionnaire [DDQ; Collins et al., 1985], the Timeline Followback 

[Sobell and Sobell, 1995]), or the number of alcohol-related problems experienced in the 

past one to three months (e.g., the summed score of dichotomized, binary responses to the 

Rutgers Alcohol Problems Index; White and Labouvie, 1989). Such outcomes are often 

bounded at zero (i.e., a non-negative integer; see Atkins et al., 2013; Huh et al., 2015). As 

discussed by Mun et al. (2022b), BAIs for adolescents and young adults often target diverse 

populations (e.g., universal, selective, or indicated approaches), which can produce count 

outcomes with distinct distributions, including both heavy positive skewness/overdispersion 

(e.g., some respondents reporting extremely high alcohol consumption so that the variability 

is greater than expected under a particular distribution) and zero inflation (e.g., a large 

proportion of respondents reporting zero drinks that exceed the expected zero proportion 

under a certain distribution). Therefore, conventional linear models, such as ordinary least 

squares (OLS) regression, that model the outcome as a continuous variable and assume 

normally distributed residuals may provide poor fit to data from BAI trials. This mismatch 

between linear regression and count data can lead to inaccurate estimation of intervention 

effects, incorrect standard errors, and potentially incorrect conclusions about the efficacy or 

effectiveness of a BAI.

Selecting an appropriate statistical model and estimating accurate BAI effect sizes 

are crucial for individual trials, systematic reviews, meta-analyses, and critical decision-

making for clinical care. For example, the US Preventive Services Task Force (USPSTF) 

recommended screening and behavioral counseling interventions for unhealthy alcohol use 

in adults 18 or older within primary care settings because trials suggest the interventions 

are beneficial (USPSTF, 2018). This recommendation holds significant weight as it enables 

the provision of screening and behavioral counseling interventions to adults with alcohol 

misuse in primary care at no cost under the Patient Protection and Affordable Care Act 

enacted in 2010. However, if there are doubts about the evidence the USPSTF used to 

reach that decision because some of the effect sizes in primary trials were biased, it could 

create unnecessary confusion and erode public trust in the USPSTF’s recommendation and 
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screening and behavioral counseling interventions. Therefore, identifying and disseminating 

best practices for analyzing and reporting outcomes of BAI trials is warranted.

Over the past two decades, numerous methodological papers have introduced appropriate 

count data analysis approaches to researchers in the field of substance use prevention and 

intervention (e.g., Atkins et al., 2013; Baggio et al., 2018; Buu et al., 2012; Horton et 

al., 2007; Huh et al., 2015, 2019a; Mun et al., 2022b). Furthermore, the emergent use 

of marginalized models for count outcomes (Long et al., 2014; Mun et al., 2022b) holds 

major promise for outcome evaluation in alcohol intervention and treatment trials. When 

appropriately used, marginalized models have greater power to detect an effect, compared 

with hurdle or zero-inflated models (Zhou et al., 2023a) and provide a straightforward 

interpretation of the efficacy and effectiveness of BAI trials (Mun et al., 2022b), because 

they can be used to estimate the “overall effect” on the entire population. Despite their 

advantages, uptake of count models in the BAI literature has been slow, and these novel 

models and available computing tools remain underutilized and/or inaccessible to clinical 

researchers. This may be due partly to the numerous possible distributions that count alcohol 

outcomes can assume, which has rarely been recognized or discussed in depth in the BAI 

literature.

Consequently, we need an explicit data reporting and model selection guide. To address this 

need, we aim to guide the analysis and reporting of count outcomes in the BAI and other 

similar alcohol intervention literature. The current paper builds upon the suggestions of 

Witkiewitz and colleagues (2015a, 2015b), which aimed to strengthen the design, analysis, 

and report of treatment trials for alcohol use disorders. More globally, there are major 

guidelines to improve trial design and reporting, such as the Consolidated Standards of 

Reporting Trials (CONSORT) 2010 (Schulz et al., 2010), additional CONSORT guidelines 

for multi-arm parallel-group randomized trials (Juszczak et al., 2019; Moher et al., 2010), 

and the recommendations by the American Psychological Association for journal article 

reporting standards known as the JARS (Appelbaum et al., 2018). These guidelines have 

been regularly updated, including a forthcoming update to CONSORT 2010 (Hopewell 

et al., 2022). The current paper extends the existing body of work to strengthen the 

methodological rigor of BAI trials in the context of various count outcome measures in 

the field. We provide an overview followed by concrete recommendations tailored for count 

outcomes in the BAI trials.

The goals of the current critical review are threefold. First, we review outcome reporting 

practices among papers included in a systematic review of the recent BAI trial literature 

to summarize the current landscape of evaluating the efficacy and effectiveness of BAIs. 

Second, we outline practical recommendations for checking and reporting data. Third, we 

provide user-friendly analytical guidance on when to use various statistical models for count 

outcomes and a list of available software programs, data and codes, and references for these 

methods.
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Current Landscape: Review of Count Outcome Reporting and Analysis

Two Ph.D.-level investigators (the first two authors) independently reviewed 78 randomized 

and controlled quasi-experimental design studies that met the inclusion criteria of a 

systematic review and meta-analysis (Tanner-Smith et al., 2018; PROSPERO registration 

#CRD42018092348) focusing on BAIs for adolescents and young adults (ages 11–25) 

published between 2013 and 2018 (Tanner-Smith et al., 2023). The 78 studies had 192 

reports (i.e., articles).

First, we excluded trial registrations, posters, and reports that did not examine the efficacy 

and effectiveness of the BAIs (e.g., protocols and cost-effective analysis reports) and reports 

with no count outcome variables (e.g., those reporting only binary or truly continuous 

outcomes), resulting in 64 reports from 54 trials with 119 count outcome variables (see 

Figure 1). Each report had one or more count alcohol consumption variables, such as the 

number of drinks consumed in a typical week. Second, we reviewed whether descriptive 

statistics (e.g., mean/median and standard deviation/percentile scores) and proportion of 

zero counts were reported for each count outcome variable. Next, we examined whether 

the variance was greater than two times the mean score of the outcome variable as an 

“approximate check of overdispersion.” Note that we adopted this arbitrary but convenient 

rule for the current study. Under the Poisson distribution, the variance should be equal to 

the mean; for example, a mean of five and a standard deviation of eight (i.e., a variance 

of 64) represent an overdispersion since 5 < 64. Finally, we categorized the statistical 

models used to assess the effectiveness of the BAI relative to the comparison group as 

follows: (1) analysis assuming normally distributed residuals, such as OLS regression, (2) 

conventional count distribution based models, such as Poisson and negative binomial (NB) 

regression, (3) other count distribution based models that also account for zero-inflation, 

such as zero-inflated and hurdle models, and (4) non-parametric models (e.g., Wilcoxon 

signed-rank test). Twenty percent of the reports were coded independently by the two first 

authors to assess interrater reliability. Cohen’s kappa for all coding ranged from 0.81 to 

0.87. Cohen’s kappa estimates exceeding 0.8 indicate almost perfect agreement (Landis and 

Koch, 1977). When there was disagreement between two raters, disagreement was discussed 

with the corresponding author and resolved in meetings.

Review Findings

Out of the 119 outcome variables in the 64 reports, means and standard deviations were 

reported in most (90.8%) cases, but the proportions of zero counts were rarely reported 

(9.2%). This omission makes it difficult for readers to assess the distributional property of 

the outcome variables and whether zero inflation is present.

Upon further examining the means and standard deviations of the outcomes, we found 

evidence of overdispersion (i.e., defined as variance greater than two times the mean in 

the current study) in 75.6% of the outcome variables. A majority (61.3%) of the alcohol 

outcomes were analyzed using linear models such as linear regression or ANOVA. Only 

31.1% of the outcome variables were analyzed using conventional count distribution based 

models, such as Poisson or NB regressions, with 5% analyzed by other count distribution 
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based models, such as zero-inflated or hurdle models that account for zero inflation. Finally, 

2.5% were analyzed using non-parametric models.

The widespread use of linear regression for count outcomes may be driven by researchers’ 

(1) unfamiliarity with and, thus, lack of checking for (and reporting of) overdispersion 

and zero inflation and (2) familiarity with applying conventional linear models. Linear 

models are generally the first and most comprehensively covered topic in introductory 

statistics courses and are available in nearly all statistical software packages. But as 

count distribution-based models have become widely available in open-source (e.g., R) 

and commercial (e.g., SPSS, SAS, and Stata) statistical software programs, there is a need 

for better guidelines for checking and reporting the outcome distribution and selecting an 

appropriate analytic model when analyzing count outcomes.

Data Reporting Recommendations

A consistent reporting standard can help inform how the characteristics of data (i.e., 

key summary statistics) are reported, increase transparency of results, and facilitate meta-

analyses of trials. Although established guidelines exist for reporting data from randomized 

controlled trials (Butcher et al., 2022; Moher et al., 2010; Schulz et al., 2010), Table 1 

presents a six-item checklist of what we recommend in BAI trial reports. Note that these 

recommendations can also be relevant for other intervention trials involving count outcomes. 

Our six recommendations are as follows:

(1) Provide a comprehensive description of the randomization process for the 
intervention/control groups. This valuable information, in addition to trial registration 

information, can enhance the understanding of research design and results, as suggested 

in the CONSORT statements (see Moher et al., 2010 for more details). However, we 

observed that it was sometimes unclear in BAI trial reports when randomization occurred 

(i.e., during screening vs. after meeting the study inclusion criteria) and whether random 

allocation achieved a balance between groups at baseline. If groups appear unbalanced in 

baseline levels of the primary outcome variables, it would be helpful to report adjusted 

means and standard errors of outcomes after accounting for those baseline differences. 

Moreover, because sample sizes can vary due to randomization and participant attrition 

differences, it is important to provide the total number of participants allocated to each 

treatment/intervention arm (i.e., sample size per group at allocation) and the number of 

participants included in the analysis (i.e., sample size per group in analysis). These numbers 

are essential for appropriately calculating effect sizes. Finally, we recommend presenting 

descriptive statistics for demographic and relevant study variables for each randomized 

group at baseline. This allows readers to examine these characteristics both within and 

across groups. Moreover, group-level data is important to report so that meta-analysts can 

evaluate risk of bias in trial results (e.g., GRADE guidelines; Guyatt et al., 2011).

(2) Provide descriptive statistics for each outcome variable, including minimum, 
maximum, mean, standard deviation, and number of observed sample size (n) for 
each randomized group at every assessment time point. As shown in our review findings 

described in the previous section, about 9% of outcomes lacked descriptive statistics. The 
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descriptive statistics of outcomes are crucial for estimating effect sizes based on reported 

statistics, especially when effect sizes are not included in primary trials. Furthermore, 

descriptive statistics help gauge the presence of overdispersion in outcome variables.

(3) To better understand the outcome distribution, report percent zeros of all count 
outcomes for each randomized group. In the context of BAIs, it is common for a sizable 

number of participants to report consuming zero drinks, zero drinking days, or zero alcohol-

related problems, which may indicate zero inflation (see Figure 2). Additionally, providing 

the proportion of zeroes may permit adjustment for the effects of zero inflation on treatment 

effect estimates in future meta-analytic reviews, in cases where zero-inflated outcomes were 

analyzed using traditional count approaches, such as the Poisson model (Zhou et al., 2021).

(4) Visually inspect the distributional properties of the count outcome variables. One 

way to do this is by creating a histogram, which provides insight into the shape and spread 

of the data, allowing for the detection of overdispersion and/or zero inflation. Figure 2 

offers typical examples of count distribution visualizations commonly seen in BAI studies, 

including normal, Poisson, NB, zero-inflated Poisson, and zero-inflated NB distributions. 

The actual data distribution may differ from the examples in Figure 2 if descriptive statistics 

(e.g., means, standard deviations, and zero proportions) differ from those we used. Whether 

the observed rate of zeros is inflated may require a judgment call. Due to a lack of available 

empirical guidance, we previously chose zero-inflated models over NB models when the 

observed zero rate exceeded the expected zero rate by at least 10% (Mun et al., 2022b). 

Since most journals allow supplemental materials online, we encourage a histogram or 

density plot to be reported along with all descriptive data when reporting count outcomes.

(5) Because missing data can reduce statistical power and introduce bias into estimates, 
report potential mechanisms of missing data and assumptions of missing data (e.g., 

missing completely at random, missing at random, and missing not at random). We 

recommend that researchers report any methods employed to handle missing data in analysis 

(e.g., maximum likelihood estimation and multiple imputations) and how the estimated 

model accounts for the missing data mechanism. In addition, report the number of imputed 

data sets, a list of auxiliary variables used in imputation, and state whether imputations were 

conducted separately for groups/conditions in the trial.

(6) Report the software programs employed for the analyses, including the specific 
packages and versions used. This information is particularly important because the form of 

certain parameters (e.g., dispersion parameter of NB distribution) can vary across different 

software program packages and versions. By providing these details, other researchers 

can accurately replicate and understand the analyses. Additionally, it is worth noting that 

statistical software program packages are regularly updated, which can potentially influence 

the estimates produced by the program.

By following this checklist and providing all relevant information, researchers can promote 

transparency, accuracy, and reproducibility of their findings. The improved analysis and 

reporting, in turn, contribute to the advancement and refinement of BAIs.
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Analytic Guidance: Selecting and Implementing an Appropriate Model

The appropriate choice of a model may not be immediately clear even after visualizing and 

summarizing alcohol outcomes. Thus, we have summarized some guiding principles to help 

determine an appropriate choice in a flowchart presented in Figure 3. As a starting point, 

using an appropriate count-distribution based model for count outcomes is always preferred 

to implementing an OLS linear model assuming normally distributed residuals. Figure 2A 

depicts how a normal distribution of drinks per week data would typically look with an 

average of five drinks per week and a standard deviation of three. The red curve depicts 

the expected density of the distribution. The red shaded area in the left tail depicts negative 

values that would be expected under the normal distribution, which are impossible for a 

count variable such as the number of drinks.

The generalized linear model (GLM) uses a link function to model data that do not follow 

a normal distribution. OLS regression is a special case of GLM with an identity link. Other 

link functions include logit or log. For more information on how to interpret coefficients 

from GLMs and categorical data analysis, please see tutorial papers (Halverson et al., 

2022; von Eye and Mun, 2003) and advanced textbooks (Agresti, 2013; von Eye and Mun, 

2013). Rather than modeling the raw outcome (i.e., through an identity link) as a linear 

function of predictors and associated regression parameters, the GLM uses the link function 

to transform the expectation of the outcome variable and regresses it on a linear function 

of predictors. A log link is typically used for the outcome with a Poisson distribution or 

an NB distribution. The key characteristics of the Poisson distribution are that the values 

are integers that cannot go below 0, with the mean equal to the variance. The Poisson 

distribution may be appropriate for count outcomes, such as the number of drinks consumed 

per week, when the mean is roughly the same as the variance. Figure 2B depicts drinks per 

week data simulated from a Poisson distribution with a λ parameter (for both mean and 

variance) of five drinks per week. Note a slight positive skew because values are bounded at 

zero.

More typically, study samples include low-risk participants who occasionally drink and also 

those who engage in heavy episodic drinking and/or high-intensity drinking. This results 

in a small mean number of weekly drinks with a large variance and skewness due to a 

small proportion of those reporting large numbers of drinks, creating overdispersion (i.e., 

a count outcome with a variance greater than its mean). In such a case, NB regression is 

more appropriate than Poisson regression. NB regression introduces an additional dispersion 

parameter to account for the larger variance of the distribution. Figure 2C depicts a 

distribution of drinks per week data simulated under the NB distribution with a λ mean 

parameter of five and an overdispersion parameter of three. Compared to the Poisson 

distribution in Figure 2B, the NB distribution has more observations at or near zero, as 

well as more observations reporting many more drinks per week than average, creating a 

distribution with notable positive skewness. NB regression is often preferred over Poisson 

regression if a count outcome has a variance greater than the mean. Another straightforward 

approach to deciding which model to use is to fit both regression models and perform a χ2 

difference test based on the difference in the log-likelihoods of the two models (Cameron 

and Trivedi, 2013). This test indicates whether model fit statistically significantly improves 
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with the additional dispersion parameter. The statistical significance of the dispersion 

parameter can also be evaluated with a Wald test (i.e., the value of the dispersion parameter 

divided by its standard error; Agresti, 2013; Cameron and Trivedi, 2013), which tests the 

null hypothesis that the dispersion parameter equals zero.

NB is often recommended over Poisson regression because overdispersion is typically 

present in real-world data; this is certainly true for many alcohol outcomes. If overdispersion 

is not present, the NB dispersion parameter will be small, and the results will be very 

similar to those from Poisson regression (although, in this scenario, the NB model 

may face estimation challenges such as non-convergence in our experience). However, 

if overdispersion is present but ignored in a Poisson model, the standard errors will be 

underestimated, and type I errors are likely inflated (Cameron and Trivedi, 2013; Pittman et 

al., 2020). For additional technical details on equations and practical interpretation of NB 

and Poisson regression, see Atkins et al. (2013) and Mun et al. (2022b).

Next, it is imperative that researchers check for a preponderance of zeros in the count 

outcome. BAI trials with alcohol use outcomes may include study participants who do not 

drink at all and people who drink very infrequently. In this case, count outcomes related 

to alcohol use may have a large proportion of zero outcomes (e.g., no drinks consumed 

in a given week, zero episodes of heavy episodic drinking), displaying overdispersion in 

which the observed zero observations far exceed the expected number of zero observations 

(i.e., zero inflation) under a Poisson or NB distribution. One can calculate the proportion of 

participants with zero count responses and graphically view a histogram of the data to check 

for zero inflation. More formally, one can calculate the expected proportion of zeros under a 

Poisson or NB distribution and compare that to the observed proportion of zeros. This is also 

implemented in some statistical programs, such as the “check_zeroinflation” function of the 

glmmTMB package in R (Brooks et al., 2017; R Core Team, 2023). According to a recent 

simulation study, if zero inflation is present, Poisson regression tends to produce higher rates 

of false positive results than the nominal type I error rate of 0.05 or 5% (Zhou et al., 2023a). 

Two related model extensions can be applied to Poisson or NB regression to address zero 

inflation: zero-inflated models and hurdle models.

Zero-inflated Poisson (ZIP) or zero-inflated NB (ZINB) models posit that the data follow a 

mixture distribution of a point mass at zero (zero part) and a Poisson or NB distribution 

(count part). The zero and count parts of the zero-inflated models correspond to two 

underlying groups: one that produces zero outcomes and one that produces outcomes 

following a standard count distribution (which can include zero; Atkins and Gallop, 2007), 

respectively. Conceptually, zero outcomes are reported by individuals who do not drink 

(predictably zero; included in the “always zero” part) and by those who occasionally 

drink but did not drink in the measured time span (situational zero; included in the count 

distribution). As a result, two submodels are constructed: (1) a logistic regression submodel 

evaluating the probability of belonging to the “always zero” group in the zero part and (2) a 

Poisson or NB regression submodel evaluating the mean parameter in the count part. Panels 

D and E of Figure 2 depict prototypical distributions of ZIP and ZINB count data simulated 

under assumptions of an average of five drinks per week in the non-zero submodel and 

15% zero observations. Histograms of reported drinking frequencies effectively reveal zero-
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inflated data because the mass of zero observations will be one of the largest frequencies of 

the distribution. In the ZIP distribution in Figure 2D, the zeros are the second most frequent 

response, and in the ZINB of Figure 2E, zeros are by far the most frequent response. This is 

characteristic of zero-inflated data.

Hurdle models are similar to zero-inflated models, except that the count part uses a zero-

truncated Poisson or NB distribution. Thus, hurdle models strictly differentiate zero and 

non-zero observations from two sources (i.e., point mass at zero and a truncated count 

distribution). Hurdle models are formally presented in Huh et al. (2019, 2023). Because 

of the mixture distribution nature of the zero-inflated and hurdle models, the effects of 

predictors or covariates, such as a main treatment effect, are evaluated on the zero part and 

count part separately, introducing a challenge in interpreting the combined overall effect for 

the entire population.

As an extension of zero-inflated models, marginalized zero-inflated models, such as the 

marginalized zero-inflated Poisson (MZIP) model, are designed to estimate the effects of 

predictors on the overall mean for the entire distribution under the existence of excessive 

zeros (Long et al., 2014; Mun et al., 2022b; Zhou et al., 2023a). The MZIP model is based 

on the formulation of a ZIP model and can account for the zero inflation of the outcomes. 

Unlike a ZIP model, which relates predictors to the zero part and count part separately 

in the mixture distribution, the MZIP model relates predictors to the overall mean of the 

outcome. Therefore, the MZIP model enjoys the straightforward interpretation of predictors’ 

effects on the entire population and the ability to handle excessive zeros. This feature of the 

MZIP is attractive compared with OLS regression, which also estimates predictors’ effects 

on the entire population but is inconsistent with the true data-generating model. A formal 

presentation of Poisson, NB, ZIP, and MZIP models can be seen in Mun et al. (2022b).

If zero inflation is identified, it needs to be accounted for in the data analysis with the 

aforementioned zero-inflated (ZI), hurdle, or marginalized ZI models. When the effects on 

the overall mean of the entire population are of interest, such as the treatment effect on all 

participants, the marginalized ZI models (e.g., MZIP) can be considered, as they provide 

effect estimates on the overall mean, while accounting for zero inflation (Mun et al., 2022b; 

see also Tan et al., 2022a for an application to a single sample). Therefore, MZIP would be 

preferred over hurdle or ZINB under typical BAI effect size estimation settings, especially 

when the overall intervention effect on the entire population is of interest.

In other situations where the intervention effects on one or both of the subpopulations 

are of interest, the ZI or hurdle models can be considered because the zero part and the 

count part are specifically evaluated. However, the intervention effect on the “zero part” 

(i.e., individuals who do not drink) may not always be of clinical interest in primary 

BAI trials. Furthermore, intervention effect estimation in the zero subpopulation can have 

low statistical power (Huh et al., 2023; Kim et al., 2020; Zhou et al., 2023a). Given that 

the intervention effects of BAIs tend to be modest in magnitude, the power to detect an 

intervention effect may not be adequate when the effect is examined separately for the two 

submodels, especially with relatively small to modest samples (N = 200 to 300; see Zhou et 

al., 2023a for simulation results).
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The choice between the ZI and the hurdle model ultimately depends on the researcher’s 

assumption about the source of the excess zeros, but some statistical guidance is also 

available. Typically, the Akaike Information Criterion (AIC) is used to compare model fit, 

and the Vuong test (Vuong, 1989) can be used for pairwise likelihood ratio tests between ZI 

and hurdle models. However, some research indicates that the Vuong test is less reliable than 

model selection based on the lowest AIC (Xu et al., 2015). Regardless, ZI and hurdle models 

tend to produce similar estimates (Xu et al., 2015).

Clinically, researchers should consider whether the preponderance of zeros was caused by 

individuals who predictably do not drink or people who did not drink during the time 

window asked. If researchers assume that zero responses were mostly from those who 

predictably report zero (i.e., those who never drink), then separating all zero responses 

(e.g., those who reported zero drinks) from all non-zero responses (e.g., those who reported 

at least one drink) in a hurdle model may be appropriate with little to no consequences. 

However, suppose zero responses are also from those who usually drink but did not 

drink within the outcome assessment period. In that case, the ZI alternative may be 

preferable because it will allow for zero responses in the regression model portion. For 

example, ZI models may be appropriate for zero drinking outcome responses if a study’s 

inclusion criteria required participants to endorse regular drinking. Despite subtle conceptual 

differences between ZI and Hurdle models, both perform roughly equivalently in data 

settings (Feng, 2021) that are typical for BAI trials.

Available empirical evidence on statistical performance of these models in alcohol trial 

research is limited. However, recent simulation work comparing the relative performance 

of linear models and count distribution based models – Poisson, NB, ZIP, and MZIP – 

indicated that under zero inflation, (1) the MZIP model had the highest statistical power, 

followed by the linear model with outcomes on the raw scale, NB, and ZIP model; (2) a 

sample size of N = 300 or greater is necessary for the MZIP and linear models in most 

simulation conditions with zero rate (i.e., the greater the zero rates, the less power) and 

effect size (i.e., the larger the effect size, the greater power) playing major determining 

factors; (3) the Poisson model was invalid (i.e., excessive type 1 error rate); and (4) the 

performance of the linear model with a log-transformed outcome variable was unsatisfactory 

(Zhou et al., 2023a). Although more work on statistical comparison of competing models is 

needed, the results cautiously suggest that lack of power is a concern for typical individual 

BAI trials with zero inflation and overdispersion. Though sample sizes cannot be increased 

or data characteristics cannot be changed by the time of analysis, researchers can select 

the best model for their data appropriately and report data sufficiently clearly for a meta-

analysis.

In sum, several factors should be considered when selecting a statistical model to analyze 

count outcomes. These factors are (1) overdispersion, which is when the variance is higher 

than the mean; (2) zero inflation, which occurs when there is an excessive number of zero 

counts in the data compared to what is expected under a given distribution; (3) both zero 

inflation and overdispersion if both characteristics are present in the data; (4) theoretical 

considerations for choosing between hurdle models and ZI models when there is zero 

inflation; and (5) relative statistical performance and other data characteristics (e.g., sample 
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size, effect sizes). The estimates derived from inappropriate statistical models can result 

in biased estimates, invalid statistical inferences, and erroneous conclusions. Once in the 

literature, biased estimates can also affect the conclusions of subsequent systematic reviews 

and meta-analyses in the field, underscoring a need to improve the evidence base from the 

upstream and onward.

On a related issue, the effect sizes from NB, ZIP, or MZIP models can be described 

using Odds Ratios (OR), Log Odds Ratios (LOR), Rate Ratios (RR), Log Rate Ratios 

(LRR), or in terms of % reductions in the “overall” means or OR. Examples of how effect 

sizes can be derived and interpreted from count and normal models can be seen in other 

recently published articles (Mun et al., 2022a; 2022b; Tan et al., 2023). For example, we 

interpreted that young adult participants allocated to a BAI (vs. control) had an average 8% 

reduction in standard drinks consumed in a week, an effect observed through six months 

post intervention. A recent tutorial (Halvorson et al., 2022) on interpreting OR and LOR 

may be informative for readers interested in better understanding effect sizes from these 

models.

Note that the recommendations in this article apply to count outcomes and not necessarily 

other endpoints of BAI trials (e.g., continuous measures, such as quality of life). Shorter et 

al. (2021) suggested that BAI trials include a core outcome set of ten measures across four 

distinct outcome domains, including typical frequency and quantity of alcohol consumption, 

frequency of heavy episodic drinking, hazardous or harmful drinking, the number of 

standard drinks consumed in a week, alcohol-related consequences, alcohol-related injury, 

use of emergency healthcare services, and quality of life. A decision tree shown in Figure 

3 should help navigate analytical decisions. For example, ordinal response measures for 

typical frequency or quantity of alcohol use (e.g., the Alcohol Use Disorders Identification 

Test [AUDIT; Saunders et al., 1993] questions): “How often do you have a drink containing 

alcohol?” with ordinal response options ranging from 0 = “Never” to 4 = “4 or more times 

a week” or “How many drinks containing alcohol do you have on a typical day when 

drinking?” with response options ranging from 0 = “1 or 2” to 4 = “10 or more” may 

be appropriately analyzed using the multinomial or ordinal logistic regression model. If 

deriving a combined risk or severity of alcohol consumption is necessary, latent variable 

modeling may be adopted using indicator variables.

Available Software Packages and Implementation

Once a model is selected, researchers can apply the model using one of many statistical 

software programs. Recent years have seen the proliferation of user-friendly software and 

published tutorials for implementing regression for count outcomes (e.g., Atkins et al., 2013; 

Beaujean and Grant, 2016; Fávero et al., 2021). Table 2 provides an overview of available 

functions and arguments for popular statistical software programs, including R (version 

4.3.2), SAS (version 9.4), Stata (version 18.0), SPSS (version 29), and Mplus (version 

8.10). In all programs, the response variable is specified as part of the fitted model, with 

an additional step identifying its underlying distribution. In addition, most of these models 

can also be fitted with the Bayesian routines available in R, SAS, and Stata. SPSS tends 

to have more limited functionality than the other programs of the five. For instance, SPSS 
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only offers conventional Poisson and NB regression as part of the standard offering; custom 

syntax modifications and macros would be required to fit zero-inflated models in SPSS.

R (R Core Team, 2023) is an open-source statistical software program and, as such, contains 

numerous developed packages that can fit models for count data. Base R includes a function 

for generalized linear models, glm, which can fit Poisson regressions. The package MASS 

(Venables and Ripley, 2002) offers an extension of glm for NB regression, nb.glm. The pscl 

package implements both zero-inflated and hurdle models for Poisson and NB distributions 

(Jackman, 2020; Zeileis et al., 2008). The newly developed package mcount implements the 

MZIP model (Zhou et al., 2022). These options are widely used for count regression. In 

addition, the brms package (Bürkner, 2017) in R can fit Poission, NB, and ZIP models using 

MCMC but not the marginalized model. There may be other packages for R implementation 

that can fit count regression models, which can be searched on the Comprehensive R 

Archive Network (CRAN, http://cran.r-project.org). Note there are simulated or real data 

and annotated R codes that are publicly accessible to run the hurdle NB model (Huh et al., 

2019b), ZIP model (Zhou et al., 2023b), and MZIP model (Mun et al., 2022c; Tan et al., 

2022b).

SAS (SAS Institute Inc., 2023) contains numerous procedures that can implement the 

methods discussed herein as well, such as PROC GENMOD and PROC COUNTREG. 

PROC FMM (short for “finite mixture models”) can also fit zero-inflated and hurdle 

models. Note that selecting the correct distribution or regression model requires the right 

specification of options (following the backslash) in the procedure syntax. See Table 2 

for examples. For the experienced SAS programmer, PROC NLMIXED can be used to 

implement the marginalized ZIP models (Long et al., 2014).

Stata (StataCorp, 2023) is a commercial statistical program that can fit traditional count 

models as well as their zero-inflated and hurdle model counterparts. Traditional count 

models can be fit using dedicated regression commands, such as “poisson” and “mepoisson” 

for fixed-effect and mixed-effect Poisson models, respectively. Hurdle Poisson and Hurdle 

NB models can be fit by dividing the count outcome into two parts (1) a dichotomous 

variable representing non-zero counts (=0) vs. zeroes (=1) and (2) a zero-truncated count 

variable representing counts when non-zero (i.e., values of 1 or higher). These two 

component outcomes can then be analyzed using logistic regression (e.g., logit or melogit) 

and a zero-truncated count regression (e.g., nbreg or menbinomial), respectively. Long and 

Freese (2014) discussed several methods for statistically comparing whether data are more 

in line with Poisson, NB, ZIP, and ZINB, with a Stata routine (i.e., countfit) that automates 

the comparison.

Mplus (Muthén and Muthén, 1998–2023) is another flexible statistical program for 

regression with count data. Mplus requires header information in its scripts about the 

variables and type of analysis to be used before a regression model is specified. In this 

header, one only needs to specify that the dependent variable is a count variable. Poisson is 

implemented by default, but NB can be specified within parentheses following the name of 

the count outcome variable, as can zero-inflated and hurdle models. Note that Mplus allows 

for the NB distribution only in hurdle models.
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Conclusions

Although advanced statistical models appropriate for modeling count data have been 

developed and are available in popular software programs, the prevailing model used 

in the BAI trial research is linear regression, which includes ANOVA and ANCOVA as 

specific cases. The current study provided an accessible overview of alternative models, their 

assumptions, their pros and cons, and available software packages for broad implementation. 

We provided a checklist for reporting data, analysis, and results, and a roadmap and software 

list to select and implement currently available statistical models appropriate for count 

outcomes.

The recommendations from the current review are most relevant for the BAI field and 

other alcohol-related research where both sample sizes and effect sizes tend to be modest 

and the range of count outcomes is not extreme (e.g., 0 to 30 drinks) despite skewness 

and overdispersion. BAI trials, especially for young adults, tend to cover heterogeneous 

populations of individuals on a wide range of alcohol consumption spectrum, even within 

trials. Hence, BAI trials are more likely to exhibit both zero inflation and overdispersion. 

In other fields where primary outcomes of interest are count variables, such as number 

of days in hospital, episodes of unprotected sex, number of days using tobacco or other 

substances, and tracking discrete adverse events, among numerous other outcomes, the 

recommendations presented in the current study would be relevant. However, how critical 

the current recommendations are in other substance use intervention trials or epidemiologic 

research may need to be carefully evaluated depending on the factors (e.g., overdispersion, 

zero inflation, effect size) we discussed.

The current recommendations are based on established and cutting-edge methods that have 

been well characterized and demonstrated. It is important to note that methodological 

advances are ongoing, with possible extensions and automation, which would be meaningful 

clinically and computationally. For example, our group recently proposed a novel 

semiparametric method that can automatically account for different levels of dispersion 

and zero inflation (from no zero value to excessive zeros) for count data in marginalized 

models (Zhou et al., 2023c). This proposed method is based on the generalized estimating 

equation (GEE; Liang and Zeger, 1986) approach to variance estimation and directly 

models the overall mean of count outcomes. Because of the flexibility, this method can 

be particularly attractive for meta-analysis of individual participant data from heterogeneous 

trials with count outcomes. Future extensions to accommodate more than two subgroups or 

longitudinal data would also be meaningful.

The importance of reporting credible and accurate effect size estimates cannot be overstated. 

Underestimated or overestimated intervention effects, especially with incomplete or unclear 

trial data reporting in primary studies, pose a challenge as they can add noise and bias 

to data. It is even more critical for meta-analysis because whether each trial resulted in 

a statistically significant outcome is less important in a meta-analysis. Although it may 

be possible to correct biased effect size estimates under a specific data situation (e.g., not 

accounting for zero inflation; Zhou et al., 2021) and derive effect size estimates directly 

using individual participant data (e.g., Mun et al., 2022a, 2022b, Tan et al., 2023), no 
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broadly applicable measures exist with aggregate data. Because many individual BAI trials 

are likely underpowered (see Zhou et al., 2023a for simulation results), large intervention 

effects are more likely in small trials, and meta-analyses tend to be more robust, large-scale 

meta-analysis has an important role in providing evidence of comparative effectiveness 

and heterogeneity of treatment effects. Toward this goal, we call for the field to continue 

improving reporting standards to ensure the generation of trustworthy evidence.

Given that systematic reviews and meta-analyses of aggregate data will remain important 

for clinical and policy decision-making for the foreseeable future, we need to improve 

the prevailing outcome reporting standard. It would also be helpful to have a better 

consensus about which core outcome measures should be assessed and reported in BAI 

trials. Shorter et al. (2019) found that no single outcome was common in all BAI trials 

included in a systematic review. Variability in outcome measures across existing BAI 

trials can result in trials being excluded from a meta-analysis due to a lack of common 

outcomes. Subsequently, Shorter et al. (2021) suggested that BAI trials include a core 

outcome set of ten measures. Improved overlap of core outcome measures across trials 

would facilitate efforts to synthesize credible and accurate intervention effects from more 

trials and compare the relative effectiveness of different BAI strategies. We also note a need 

to extend existing statistical models and improve their accessibility to further meet emerging 

challenges faced in BAI clinical research and meta-analyses. With the strengthened outcome 

reporting standard in the current review, we can trust and utilize the body of evidence in 

clinical research.
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Figure 1. 
Flow chart for reviewed reports
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Figure 2. 
Visual display of typical count distributions

Notes. All five plots depict a simulated dataset of N = 400. The red curve depicts the 

expected density of the distribution. Figures 2A – 2E were drawn for the distribution with 

an average of 5 drinks per week. The red shaded area in the left tail in Figure 2A depicts 

negative values that would be expected under the normal distribution. The variance of the 

normally distributed data (2A) was 9. The Poisson data (2B and non-zero part of 2D) were 

generated with λ = 5. The NB data (2C and non-zero part of 2E) were generated with a 

mean parameter of 5 and a dispersion parameter of 3. Figures 2D and 2E had 15% zero 

observations.
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Figure 3. 
Decision tree for statistical models to analyze count outcomes

Notes. The decision tree included commonly used models that are appropriate and available 

for count and other distributions. Other methods, such as non-parametric models, are out 

of scope for this review but may be appropriate for the discussed data conditions. eBAC = 

estimated blood alcohol concentration.
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Table 1

Statistics reporting checklist for BAI trials with count outcomes

1 A comprehensive description of the randomization process is reported. This should include details about the timing of 
randomization relative to screening/consent, the random sequence generation process, any concealment of the random generation 
process, and whether randomization resulted in balanced groups.

2 Minimum, maximum, unadjusted (and adjusted, if applicable) mean, standard deviation and standard error (for adjusted mean), 
and sample size for each outcome variable (raw scores) are reported per randomized group at each baseline and follow-up time 
point.

3 For any count outcome variables, the percent of zero observations for the variable is reported per randomized group at each 
baseline and follow-up time point.

4 For any count outcome variables, the distributional properties of the variable are examined based on descriptive statistics (#2 and 
#3) and visual inspection of outcome distributions. Histograms, density plots, or other similar graphical tools can be used for 
visual inspection and reporting of outcome distributions.

5 The mechanisms and assumptions of missing data and handling of missing data are reported. This should include details about 
the prevalence of missing data, assumptions about the mechanisms behind the missing data, and methods for addressing the 
missing data in the analysis models (e.g., maximum likelihood estimation and multiple imputations). Report the number of 
imputed datasets, a list of auxiliary variables used in imputation, and state whether imputations were conducted separately for 
groups/conditions in the trial.

6 The software programs or packages and their versions used to conduct the analyses are reported.
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