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Abstract

Purpose of Review—Vagus nerve stimulation (VNS) has emerged as a potential therapeutic 

approach for neurological and psychiatric disorders. In recent years, there has been increasing 

interest in VNS for treating ischemic stroke. This review discusses the evidence supporting VNS 

as a treatment option for ischemic stroke and elucidates its underlying mechanisms.

Recent Findings—Preclinical studies investigating VNS in stroke models have shown reduced 

infarct volumes and improved neurological deficits. Additionally, VNS has been found to reduce 

reperfusion injury. VNS may promote neuroprotection by reducing inflammation, enhancing 
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cerebral blood flow, and modulating the release of neurotransmitters. Additionally, VNS may 

stimulate neuroplasticity, thereby facilitating post-stroke recovery.

Summary—The Food and Drug Administration has approved invasive VNS (iVNS) combined 

with rehabilitation for ischemic stroke patients with moderate to severe upper limb deficits. 

However, iVNS is not feasible in acute stroke due to its time-sensitive nature. Non-invasive 

VNS (nVNS) may be an alternative approach for treating ischemic stroke. While the evidence 

from preclinical studies and clinical trials of nVNS is promising, the mechanisms through which 

VNS exerts its beneficial effects on ischemic stroke are still being elucidated. Therefore, further 

research is needed to better understand the efficacy and underlying mechanisms of nVNS in 

ischemic stroke. Moreover, large-scale randomized clinical trials are necessary to determine the 

optimal nVNS protocols, assess its long-term effects on stroke recovery and outcomes, and 

identify the potential benefits of combining nVNS with other rehabilitation strategies.
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Introduction

Stroke is a major global health concern, ranking as the second-leading cause of death 

and the third-leading cause of death and disability combined worldwide [1]. Since the 

approval of intravenous thrombolysis in 1996 [2], mechanical thrombectomy for large 

vessel occlusion has further expanded treatment options for acute ischemic stroke (AIS) 

[3]. However, even in the best-case scenario, only 24% of AIS cases receive thrombolytic 

therapy [4]. Furthermore, merely 3.1% of AIS patients undergo mechanical thrombectomy 

[5]. Many AIS patients are still not qualified for intravenous thrombolysis or mechanical 

thrombectomy; therefore, alternative and synergistic treatment options are warranted. 

Neuroprotective therapies for AIS have shown promise in preclinical studies but have been 

futile in clinical trials. One of the challenges of pharmacological agents is reaching the 

penumbra in the absence of reperfusion.

Neuromodulation is a rapidly evolving space in stroke—both as an acute treatment modality 

to mitigate against the deleterious effects of stroke and as a long-term tool to promote 

neuroplasticity and functional recovery in chronic settings. Vagus nerve stimulation (VNS) 

is a neuromodulation technique that delivers electrical signals to the vagus nerve. The 

technique was introduced by neurologist Corning more than a century ago [6]. Today, VNS 

via a surgically implanted device has been approved by the Food and Drug Administration 

(FDA) for the treatment of depression [7•], epilepsy [8•], and ischemic stroke [9]. Studies 

have shown VNS’s potential for the treatment of various neurological disorders, such 

as Alzheimer’s disease [10], Parkinson’s disease [11•], traumatic brain injury (TBI) [12, 

13•], tinnitus [14•], and sleep disorders [15]. Published literature suggests that VNS is a 

promising treatment in rat models of ischemic stroke via improved neurological function 

[16•]. However, implantable or invasive VNS (iVNS) requires surgery, so its use in acute 

clinical settings is not feasible. More recently, non-invasive VNS (nVNS) techniques have 
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been developed that can be used in acute settings. The FDA has already approved nVNS 

for treating cluster headaches [17]. A recent study evaluated its safety and feasibility in AIS 

[18], and ongoing clinical studies are testing its efficacy [19].

Vagus Nerve Anatomy and Function

The vagus nerve is the longest cranial nerve transmitting motor and sensory signals and 

is a major component of the parasympathetic nervous system. It contains motor, sensory, 

and parasympathetic nerve fibers, providing innervation to various organs and regulating 

physiological activities such as heart rate, blood pressure, gastrointestinal tract, stomach acid 

secretion, gall bladder, and biliary tract. In addition, the vagus nerve is a regulator of the 

cholinergic anti-inflammatory pathway, which can modulate the innate immune response 

[20].

Originating from the medulla oblongata in the brain stem, the vagus nerve exits the skull 

through the jugular foramen. From there, it extends through the carotid sheath in the neck 

and splits off into branches in the chest and the abdomen, ramifying to form the esophageal 

plexus and passing through the esophageal hiatus. These branches allow the vagus nerve to 

innervate various organs and tissues throughout the body. The vagus nerve has two main 

branches: the superior and inferior trunks that relay sensory information to the brainstem 

nuclei, where it is integrated and processed. The superior vagal trunk arises from the 

nucleus ambiguus in the medulla oblongata and innervates the larynx, pharynx, and upper 

esophagus. The inferior vagal trunk arises from the dorsal motor nucleus and innervates the 

heart, lungs, and gastrointestinal tract, excluding the spleen [21].

Within the vagus nerve, two distinct fiber tracts exist. The efferent fibers, including 

general visceral and special visceral fibers, carry signals from the brain to various organs 

and structures, which are critical in regulating their activities. The spleen is the primary 

source of inflammatory cytokines production, such as tumor necrosis factor (TNF), and is 

considered the main regulator of TNF production [22, 23]. Even though the vagus nerve 

does not directly innervate the spleen, efferent fibers terminate in celiac ganglia and superior 

mesenteric ganglion, which has led to different hypotheses of cholinergic anti-inflammatory 

pathway to inhibit pro-inflammatory cytokines by splenic macrophages [23–25].

The afferent fibers, constituting approximately 80% of the vagus nerve fibers, transmit 

sensory signals from the body back to the brain, terminating mainly in the nucleus tractus 

solitarius (NTS) in the brain stem [10] with some in the dorsal motor vagal nucleus and 

the area postrema, allowing for the control and coordination of gut function, as well 

as modulation of autonomic function and behavior in higher brain regions such as the 

prefrontal cortex, limbic system, and parietal cortex. The NTS has a direct, monosynaptic 

projection to the locus coeruleus (LC), a brain region that produces norepinephrine, allowing 

regulation of LC activity [26]. A further afferent branch, the auricular branch of the vagus 

nerve (ABVN), is located in the cymba concha of the outer ear.

Vagus nerve terminal branches innervate the gut wall, transmitting information about 

luminal contents and mechanosensory muscle activity. The sensory cell bodies are mainly 

Andalib et al. Page 3

Curr Neurol Neurosci Rep. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



located in the nodose ganglia, which project centrally to the brain stem and peripherally 

to the organs they innervate. Therefore, the vagus nerve provides a bidirectional brain and 

body communication channel. This allows for the modulation of autonomic functions and 

integrating sensory information from the body with cognitive processes in the brain.

Invasive and Non-Invasive VNS

The anatomical pathway of the vagus nerve, particularly its extension through the neck, 

provides a suitable access point for stimulation that can influence a wide range of 

physiological processes regulated by the parasympathetic nervous system. This has led to 

exploring VNS as a potential treatment option for various neurological disorders.

In humans and large animals, the right vagus nerve is not recommended for stimulation 

as it regulates cardiac function. However, this is not an issue with rodents. For iVNS, the 

electrode is wrapped around the left vagus nerve and is tunneled subcutaneously to a pocket 

created in the left pectoral region for connecting to an implanted pulse generator [27••]. 

One of the main advantages of iVNS is its ability to provide continuous stimulation on a 

long-term basis. It has shown effectiveness in reducing seizure frequency and severity in 

epilepsy, improving mood in depression, and reducing chronic pain [7•, 8•].

The nVNS approach involves the delivery of electrical impulses using external devices that 

do not require surgical implantation. There are two nVNS devices: transcutaneous cervical 

VNS (tcVNS) and transcutaneous auricular VNS (taVNS). The electrodes for tcVNS are 

positioned on the neck overlying the vagus nerve using an electrolyte gel, while taVNS 

stimulates ABVN, which comprises thick myelinated axons of the Aβ class, albeit five 

to six times less numerous than those in the cervical vagus nerve [28]. Clinical studies 

have shown nVNS is safe and tolerable [29]. Two of the most widely used nVNS devices 

are gammaCore (tcVNS) and NEMOS (taVNS). The gammaCore device (electroCore, 

Rockaway, NJ, USA) [30] is FDA-approved for treating of headaches [18]. The NEMOS 

device (distributed by tVNS Technologies, previously Cerbomed) delivers signals to ABVN 

and has been approved for treating resistant epilepsy [30]. Figure 1 illustrates various types 

of VNS used in clinical settings.

Possible Mechanisms of VNS in Ischemic Stroke

Figure 2 depicts possible mechanisms of action of VNS. A deeper understanding of how 

VNS improves functional recovery following an ischemic stroke can broaden the scope of 

its applications in clinical settings. Moreover, identifying relevant biomarkers might enable 

adaptive trial designs with different stimulation protocols. Table 1 summarizes preclinical 

stroke studies conducted on the mechanistic role of VNS.

Enhanced Neuroplasticity

The engagement of neuromodulatory networks regulating synaptic plasticity offers a 

means through which VNS likely supports brain recovery. Activations of cholinergic, 

noradrenergic, and serotonergic systems make VNS-based rehabilitation promising 

for improving post-stroke motor deficits by promoting plasticity [31–33]. In a rat 
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model of middle cerebral artery occlusion (MCAo), VNS activated the brain-derived 

neurotrophic factor (BDNF)/cAMP/PKA/p-CREB pathway. It also enhanced axonal 

plasticity, regeneration reorganization, and improved neurobehavioral performance and 

functional recovery via the α7 nicotinic acetylcholine receptor (α7nAChR) [34]. Another 

preclinical stroke study illustrated that iVNS paired with rehabilitative supination training 

improved plasticity in corticospinal motor networks to increase synaptic connectivity to the 

musculature of the rehabilitated forelimb [35].

Anti-Inflammatory Effect

Neuroinflammation is an important mechanism affecting the outcome that starts a few hours 

after ischemic stroke and can persist as a delayed tissue reaction to injury. The vagus 

nerve, which connects the immune and central nervous systems, plays a significant role in 

regulating neuroinflammation [36]. The vagus nerve consists of highly myelinated A, lightly 

myelinated B, and unmyelinated C fibers. Vagus nerve A fibers may contribute to cytokine 

release regulation. The cholinergic anti-inflammatory pathway, mainly involving A fibers, 

has a low activation threshold and is involved in immune regulation. The neural pathways 

of the vagus nerve that detect inflammation are sensitive to lower concentrations of tissue 

inflammatory molecules, prompting a reaction even when these agents are not abundant 

enough to reach the brain via the bloodstream [37, 38].

VNS impedes the production of pro-inflammatory cytokines such as TNF, interleukin 

(IL)-1β, IL-6, and IL-18 [12, 39, 40]. The neuroprotective effect of iVNS after MCAo 

may be associated with inhibition of TNF-α and IL-6 expression [41•]. Experimental 

models have demonstrated that VNS inhibits TNF synthesis in the liver and prevents shock 

development in lethal endotoxemia [39]. In a rat model of MCAo, tcVNS decreased the 

number of Iba-1, CD68, and TNF-α positive cells and increased the number of high 

mobility group box 1-positive cells [42]. In a mouse model of MCAo, nVNS heightened 

microglial M2 polarization, shown by increased Arg-1 protein expression and Arg-1+ 

cells, while reducing levels of IL-17A protein expression [43]. Intranasal administration 

of recombinant IL-17A (rIL-17A) nullified the nVNS-induced microglial M2 polarization 

and its neuroprotective effect. In a rat MCAo model, tcVNS suppressed the injury cascade 

involving the MMPs/IL-1β signaling pathway in neurons through α7nAChR [40]. Others 

also have shown that VNS-induced neuroprotection after MCAo is likely related to the 

activation of the α 7nAchR/JAK2 anti-inflammatory pathway [44]. One study looking at 

the inflammatory markers among 20 healthy subjects treated with active or sham tcVNS 

indicated lower levels of IL-1β, IL-8, TNF, macrophage inflammatory protein-1α, and 

monocyte chemoattractant protein-1 in the active tcVNS arm [45]. In an MCAo model, 

taVNS promoted the secretion of acetylcholine, inhibited the secretion of IL-1β, IL-6, and 

TNF-α, and decreased connexin 43 phosphorylation in the ischemic penumbra and motor 

cortex [46]. Another study showed that iVNS upregulated peroxisome proliferator-activated 

receptor-gamma in ischemic penumbra and suppressed TNF-α, IL-1β, and immune cell 

activation [47].

Andalib et al. Page 5

Curr Neurol Neurosci Rep. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Inhibition of Glutamate Release, Post-Reperfusion Hyperemia, Oxidative Stress, 
Apoptosis, and Autophagy

Excessive glutamate release after ischemia contributes to brain damage via free radicals 

or reactive oxygen species production [48]. A study showed that iVNS regulated 

malondialdehyde, glutathione, and superoxide dismutase levels in corticaland subcortical 

regions in a rat model of MCAo [49]. Additionally, it significantly attenuated both 

ischemia-induced glutamate release and transient increase of hippocampal blood flow during 

reperfusion [50]. Post-reperfusion hyperemia and excessive glutamate release are important 

factors in brain injury as they lead to the production of reactive oxygen species [50].

By activating neuronal and astrocytic α7nAChR, VNS inhibits apoptosis and oxidative stress 

responses, potentially by enhancing Akt phosphorylation and miR-210 expression, regulated 

by hypoxia-inducible factor and Akt-dependent pathways [51]. Using a rat model of stroke, 

another study showed that VNS suppresses inflammation and apoptosis by activating 

cholinergic and α7nAChR/Akt pathways, resulting in improved neurological outcomes, 

reduced infarct volume, decreased pro-inflammatory cytokine levels, and decreased cleaved 

caspase-3 protein levels [52]. Elsewhere, iVNS reduced neuronal apoptosis as shown by the 

reduced Bax and cleaved caspase-3 and increased Bcl-2 levels; the beneficial iVNS effects 

weakened following lipocalin-type prostaglandin D synthase (L-PGDS) down-regulation 

[53]. VNS also exhibits neuroprotective effects by inhibiting autophagy. In a rat stroke 

model, VNS downregulated autophagy-related proteins, including microtubule-associated 

protein 1 light chain 3 (LC3)-II and Beclin-1, and decreased cleaved caspase-3 protein levels 

[54].

Reduction of Blood–Brain Barrier Disruption

Stroke can lead to blood–brain barrier (BBB) dysfunction. VNS has been shown to recover 

BBB function post-stroke in preclinical studies [55]. In a rat model of MCAo, VNS 

produced neuroprotective effects by reducing infarct extent and IL-1β level in the ipsilateral 

hemisphere and by inhibiting MMP-2 and MMP-9 expressions in reactive astrocytes in the 

peri-infarct area [40]. Other studies have also confirmed that VNS reduces infarct size, 

improves neurological function, and reduces BBB disruption and brain edema after ischemic 

stroke in rats [42, 54–56, 57••]. Similar to preclinical stroke studies, VNS also decreased 

BBB permeability by reducing the up-regulation of aquaporin-4 and ipsilateral edema in 

preclinical TBI studies [13•, 58]. Of course, it is difficult to determine whether preserved 

BBB is due to the neuroprotective effect leading to milder injury (i.e., smaller infarcts) or via 

a direct effect on BBB.

Angiogenesis

In a rat MCAo model, taVNS improved neurobehavioral recovery and upregulated cerebral 

growth differentiation factor 11 (GDF11) [59]. GDF11 augments the proliferation of 

primary brain capillary endothelial cells, is involved in vascular remodeling, improves the 

volume of blood vessels, and restores age-related decline in neurogenesis [60].

Another preclinical stroke study [61] investigated the effect of taVNS on angiogenesis 

and explored potential molecular mechanisms. The study found that taVNS treatment 
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upregulated peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression in the 

ischemic cortex, improved neurobehavioral recovery, reduced neuronal injury, decreased 

infarct volume, and increased angiogenesis. Moreover, VNS was shown to increase the 

expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic 

factor (BDNF) in the ischemic hemisphere, which are key regulators of neuroplasticity [61]. 

In addition to the aforementioned beneficial effects, such as suppressing pro-inflammatory 

proteins, ta-VNS may improve dysphagia, possibly due to protecting ischemic white matter 

[62]. VNS also facilitated the growth of blood vessels and synapses in the ischemic 

hemisphere, ultimately improving functional outcomes [61, 63]. These findings highlight the 

VNS potential to promote both angiogenesis and neuroplasticity after stroke, contributing to 

improved recovery.

Cortical Spreading Depolarization

Following AIS, recurrent spreading depolarization (SD) waves are believed to worsen the 

outcomes. SD is an intense depolarization wave that originates in the ischemic penumbra 

and slowly propagates across the gray matter, constricting the arteries in the ischemic brain 

region and imposing a tremendous metabolic demand, thus increasing the supply–demand 

mismatch [64–66]. In a rat model of stroke, both iVNS and nVNS significantly decreased 

the frequency of SDs in the peri-infarct cortex compared with sham, without affecting 

relative blood flow changes, blood pressure, heart rate, or breathing rate [67]. Similar effects 

of VNS on the inhibition of SD were also observed in other experimental models that did 

not elicit cerebral ischemia [68, 69••]. The efficacy of VNS in suppressing SD is mediated 

through the activation of vagal visceral sensory afferents and their projections to subcortical 

neuromodulatory regions [69••]. Optimal VNS parameters for SD suppression are still under 

investigation, but it has been suggested that two 2-min sessions of tcVNS, spaced 5 min 

apart, yield the highest efficacy [70].

Gut-Brain Axis and Microbiome Regulation

The brain and the gastrointestinal tract keep a continuous and bidirectional communication 

through the gut-brain axis. The vagus nerve contains 80% of afferent fibers that can 

sense gut microbiota metabolites [71]. Some of these metabolites are neurotransmitters 

such as γ-aminobutyric acid, serotonin, dopamine, and acetylcholine, which act locally 

on the enteric nervous system but can also reach the brain through the vagus nerve [72, 

73]. Other metabolites, such as short-chain fatty acids, could trigger the enteric nervous 

system and send signals through the terminals of the vagus nerve [74]. An imbalance 

in gut microbiota (dysbiosis) before stroke can indirectly contribute to an increased risk 

of stroke and negatively impact the outcome. Conversely, stroke can cause changes in 

gut motility, intestinal permeability, and dysbiosis [75], which leads to inflammation 

and oxidative stress, thereby worsening post-stroke outcomes and increasing the risk of 

pneumonia and cardiovascular and gastrointestinal complications [76, 77]. A cohort of 

elderly patients with acute cerebral infarction and healthy controls identified four bacterial 

pathways that might be related to the development of this disease, including methane 

metabolism, lipopolysaccharide synthesis, bacterial secretion, and flagellar assembly of the 

gut microbiota [78]. Also, there was a higher level of trimethylamine-N-oxide producing 
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bacteria and a decrease of butyrate-producing bacteria. Butyrate-producing bacteria might 

play a protective role against infections [78]. These findings might shed light on the 

modulation of gut microbiota and gut-brain axis through VNS as a potential for both 

preventive and therapeutic approaches for treating ischemic stroke. To address this void, 

future studies are needed.

VNS Treatment in Clinical Studies of Ischemic Stroke

Several lines of evidence indicate that VNS treatment can improve ischemic stroke 

outcomes. Table 2 outlines clinical VNS studies in the ensuing discussion.

Outcomes of iVNS in Ischemic Stroke

The effectiveness of iVNS on upper limb deficits in stroke patients has been investigated 

through several studies. Dawson et al. [27••] conducted a stroke trial in the UK with 

moderate to severe upper-limb impairment. The patients (n = 20) were randomized to 

receive either iVNS + rehabilitation or rehabilitation alone. While the intention-to-treat 

analysis showed no significant difference in Fugl–Meyer Assessment-Upper Extremity 

(FMA-UE) scores at 90 days, the per-protocol analysis demonstrated a significant difference 

favoring the iVNS + rehabilitation group. A case study also highlighted iVNS’s potential 

for sensory recovery [79]. In another pilot study [80], stroke patients with upper-limb 

impairment were implanted with a VNS device and divided into active iVNS or sham iVNS 

groups. Clinically meaningful improvements were observed in the FMA-UE score at day 90 

for the active iVNS group compared to the sham group.

Dawson et al. [81••] conducted a trial in the UK and the USA with stroke patients 

experiencing arm weakness. The group receiving 6 weeks of rehabilitation therapy followed 

by active iVNS showed a significant rise in FMA-UE scores compared to the sham group. 

A clinically meaningful response on the FMA-UE score was observed in a higher proportion 

of subjects in the iVNS group compared with the sham group at 90 days post-therapy. In 

2021, the FDA approved the Vivistim® Paired VNS™ System for treating moderate to severe 

upper extremity motor deficits in stroke patients who undergo rehabilitation therapy [9]. 

Subsequent meta-analyses supported iVNS as a potential treatment option for improving 

motor function and daily activities in stroke patients [82–84].

Outcomes of nVNS in the Treatment of Ischemic Stroke

The use of iVNS devices, like Vivistim, is limited to a chronic setting. In contrast, nVNS can 

be employed in hyperacute, acute, and chronic stages. Notable studies on nVNS have been 

conducted across both the acute or subacute stroke stages [18, 85] and in chronic settings 

[86–88] demonstrating promise.

In a pilot study, stroke patients (n = 14) received robot-assisted therapy with either active or 

sham taVNS. Active taVNS significantly improved Fugl–Meyer Assessment (FMA) scores 

[86]. Another study by Redgrave et al. [87] involved stroke patients (n = 13) with residual 

upper limb weakness, receiving taVNS sessions along with rehabilitation. A substantial 

change in FMA-UE scores and sensory recovery was observed. In a post hoc analysis [88], 

eleven (92%) of the patients had a sensory loss at baseline, of whom 7 (64%) recovered 
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some sensation following the intervention (6 proprioception, 2 light touch, and 1 both 

modalities). In a randomized pilot study in China, subacute stroke patients (n = 21) with 

single upper limb motor function impairment underwent rehabilitation training with active 

or sham taVNS. The active taVNS group demonstrated significantly greater improvement in 

functional assessments at 12 weeks [85].

Regarding tcVNS, the TRanscutaneous cervical Vagus nErve stimulatioN as a treatment 

for acUte Stroke (TR-VENUS) trial showed the safety and feasibility in patients with 

AIS and intracerebral hemorrhage (ICH) [18]. In addition, there was a suggestion that high-

dose tcVNS could significantly reduce infarct growth in patients with diffusion mismatch. 

The ongoing Non-invasive Vagus Nerve Stimulation in Acute Ischemic Stroke (NOVIS) 

trial (NCT04050501) randomizes patients to tcVNS combined with standard treatment or 

standard treatment alone within 12 h from symptom onset [19]. The primary endpoint is the 

infarct volume.

Effects on Cholinergic Neuromodulation and Cognitive Abilities

Cognitive impairments are commonly observed after stroke, affecting memory, attention, 

and executive functions. Studies have shown that the vagus nerve is crucial for the 

memory-enhancing effects of substances that stimulate peripheral receptors [89, 90••]. When 

combined with cognitive training, nVNS has been found to lead to greater improvements 

in attention and executive functions compared to cognitive training alone [91]. Vagotomy 

impairs these memory-enhancing effects, indicating the vagus nerve’s role in relaying 

diverse peripheral information to impact memory [92–95]. Additionally, VNS causes the 

release of multiple neuromodulators throughout the brain, potentially enhancing sensory and 

cognitive processing [96, 97].

The activation of the basal forebrain (BF) cholinergic neurons and the synaptic release 

of acetylcholine from their target projections in the cortical and hippocampal areas is 

implicated in the regulation and maintenance of multiple cognitive functions, including 

attention and memory [98–100]. The electrical stimulation of the vagus nerve has been 

shown to activate BF cholinergic neurons and modulate cortical excitability through the 

activation of muscarinic receptors [101]. The effects of VNS on movement representation 

and plasticity of neurons in the primary motor cortex were abolished by either selective 

lesions or optogenetic inhibition of the BF cholinergic neurons [31, 102]. The cholinergic 

system is highly vulnerable to vascular damage in stroke, leading to cognitive impairments. 

Moreover, treatment with acetylcholinesterase inhibitors has shown efficacy in improving 

post-stroke cognitive impairments [103]. A recent study employing diffusion tractography 

and neuropsychological assessment reported that the structural status of the fornix, 

BF cholinergic region, and hippocampal subfields predicted spontaneous recovery and 

improvements in working and episodic memory in patients with stroke [104]. The available 

evidence suggests that the benefits of VNS in post-stroke cognitive functioning may partly 

involve central cholinergic neuromodulation. Given the evidence that VNS can also activate 

BF cholinergic neurons directly or indirectly via LC noradrenergic pathways resulting in 

cortical and behavioral activation [105], it is possible that the procognitive effects of VNS 

are driven in part by noradrenergic mechanism. Further studies are warranted to pars out 
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the contributions of cholinergic and LC-noradrenergic pathways in VNS-mediated cognition 

enhancement during post-stroke recovery.

Safety and Adverse Effects

The most serious complications of iVNS include infection and vocal cord palsy due to 

damage to the vagus nerve [106]. Regular maintenance, including battery replacement, is 

required, and the device and surgical procedure cost can be a limiting factor for some 

patients.

The nVNS approach appears to be well-tolerated and safe, with mild side effects [18, 29, 

107–109]. Common side effects include transient hoarseness, throat discomfort, and mild 

skin irritation at the stimulation site [109]. Serious adverse events are rare, but further 

long-term safety studies are warranted to establish the full safety profile of nVNS in stroke 

patients.

Conclusions

VNS offers therapeutic potential for various neurological disorders. Experimental models 

have demonstrated that VNS can improve the outcome of stroke. The effect of VNS 

is exerted through its anti-inflammatory and neuromodulatory properties, to name a few. 

Clinical studies have also shown the safety and efficacy of VNS in improving neurological 

outcomes in stroke patients.

The iVNS method requires surgery that can only be applied in chronic settings. The 

advantage of nVNS is that the treatment can be applied in acute settings, even by paramedics 

in the field since VNS is safe for both ischemic and hemorrhagic strokes. Further research 

is needed to (1) determine the optimal stimulation parameters, intervention time from 

symptom onset, and treatment duration; (2) the mechanisms underlying the therapeutic 

effects of VNS need to be elucidated further to guide the development of personalized 

treatment strategies, and (3) most studies, so far, have relatively small sample sizes and 

variations in stimulation parameters and protocols, making it challenging to draw definitive 

conclusions. Therefore, future research should include larger-scale randomized clinical trials 

with standardized protocols to determine optimal stimulation parameters, treatment duration, 

and intervention time from symptom onset. Moreover, investigations into the long-term 

effects of VNS, including its potential for promoting neural plasticity and neuro-recovery 

and looking at a broader range of poststroke neurological deficits (e.g., dysphagia, cognition, 

sleep disturbance, urinary incontinence, and visual dysfunction) are warranted [110].

In addition, several emerging technologies may enhance the therapeutic potential of VNS 

in stroke recovery. For example, combining VNS with brain-computer interfaces (BCIs) 

may provide a more effective therapy. This emerging field has demonstrated the potential 

to revolutionize cognitive enhancement, epilepsy treatment, pain management, and stroke 

rehabilitation [111]. Harnessing the synergic power of neuromodulation and BCIs may pave 

the way for future innovative therapeutic strategies and personalized interventions.
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Abbreviations

ABVN Auricular branch of the vagus nerve

AIS Acute ischemic stroke

BBB Blood–brain barrier

BDNF Brain-derived neurotrophic factor

CSD Cortical spreading depolarization

FDA Food and Drug Administration

GDF11 Growth differentiation factor 11

ICH Intracerebral hemorrhage

LC L ocus coeruleus

LC3 Light chain 3

L-PGDS Lipocalin-type prostaglandin D synthase

IL I nterleukin

MCAo Middle cerebral artery occlusion

mRS Modified Rankin scale

NIHSS N ational Institute of Health stroke scale

NTS Nucleus tractus solitarius

nVNS Non-invasive vagus nerve stimulation

PPAR-γ Peroxisome proliferator-activated receptor-gamma

rIL-17A Recombinant IL-17A

TBI Traumatic brain injury

taVNS Transcutaneous auricular vagus nerve stimulation

tcVNS Transcutaneous cervical vagus nerve stimulation

VEGF V ascular endothelial growth factor

VNS Vagus nerve stimulation

α7nAChR α7 Nicotinic acetylcholine receptor subunit
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Fig. 1. 
Vagus nerve stimulation methods used in clinical settings (created with BioRender.com)
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Fig. 2. 
Mechanism of action of vagus nerve stimulation (VNS) (created with BioRender.com). 

Abbreviations: ACh, acetyl cholin; DMN, dorsal motor nucleus; NTS, nucleus tractus 

solitarius; α7nAChR, α7 nicotinic acetylcholine receptor subunit
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