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Abstract

Purpose of Review—Vagus nerve stimulation (VNS) has emerged as a potential therapeutic
approach for neurological and psychiatric disorders. In recent years, there has been increasing
interest in VNS for treating ischemic stroke. This review discusses the evidence supporting VNS
as a treatment option for ischemic stroke and elucidates its underlying mechanisms.

Recent Findings—~Preclinical studies investigating VNS in stroke models have shown reduced
infarct volumes and improved neurological deficits. Additionally, VNS has been found to reduce
reperfusion injury. VNS may promote neuroprotection by reducing inflammation, enhancing
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cerebral blood flow, and modulating the release of neurotransmitters. Additionally, VNS may
stimulate neuroplasticity, thereby facilitating post-stroke recovery.

Summary—The Food and Drug Administration has approved invasive VNS (iVNS) combined
with rehabilitation for ischemic stroke patients with moderate to severe upper limb deficits.
However, iVNS is not feasible in acute stroke due to its time-sensitive nature. Non-invasive
VNS (nVNS) may be an alternative approach for treating ischemic stroke. While the evidence
from preclinical studies and clinical trials of nVNS is promising, the mechanisms through which
VNS exerts its beneficial effects on ischemic stroke are still being elucidated. Therefore, further
research is needed to better understand the efficacy and underlying mechanisms of nVNS in
ischemic stroke. Moreover, large-scale randomized clinical trials are necessary to determine the
optimal nVNS protocols, assess its long-term effects on stroke recovery and outcomes, and
identify the potential benefits of combining NVVNS with other rehabilitation strategies.

Keywords
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Neuroplasticity; Anti-inflammatory; Cortical spreading depolarization; Traumatic brain injury;
Nucleus tractus solitarius; Locus coeruleus

Introduction

Stroke is a major global health concern, ranking as the second-leading cause of death

and the third-leading cause of death and disability combined worldwide [1]. Since the
approval of intravenous thrombolysis in 1996 [2], mechanical thrombectomy for large
vessel occlusion has further expanded treatment options for acute ischemic stroke (AIS)
[3]. However, even in the best-case scenario, only 24% of AIS cases receive thrombolytic
therapy [4]. Furthermore, merely 3.1% of AIS patients undergo mechanical thrombectomy
[5]. Many AIS patients are still not qualified for intravenous thrombolysis or mechanical
thrombectomy; therefore, alternative and synergistic treatment options are warranted.
Neuroprotective therapies for AIS have shown promise in preclinical studies but have been
futile in clinical trials. One of the challenges of pharmacological agents is reaching the
penumbra in the absence of reperfusion.

Neuromodulation is a rapidly evolving space in stroke—both as an acute treatment modality
to mitigate against the deleterious effects of stroke and as a long-term tool to promote
neuroplasticity and functional recovery in chronic settings. Vagus nerve stimulation (VNS)
is a neuromodulation technique that delivers electrical signals to the vagus nerve. The
technique was introduced by neurologist Corning more than a century ago [6]. Today, VNS
via a surgically implanted device has been approved by the Food and Drug Administration
(FDA) for the treatment of depression [7¢], epilepsy [8¢], and ischemic stroke [9]. Studies
have shown VNS’s potential for the treatment of various neurological disorders, such

as Alzheimer’s disease [10], Parkinson’s disease [11¢], traumatic brain injury (TBI) [12,
13¢], tinnitus [14¢], and sleep disorders [15]. Published literature suggests that VNS is a
promising treatment in rat models of ischemic stroke via improved neurological function
[16+]. However, implantable or invasive VNS (iVNS) requires surgery, so its use in acute
clinical settings is not feasible. More recently, non-invasive VNS (nVNS) techniques have
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been developed that can be used in acute settings. The FDA has already approved nVNS
for treating cluster headaches [17]. A recent study evaluated its safety and feasibility in AIS
[18], and ongoing clinical studies are testing its efficacy [19].

Vagus Nerve Anatomy and Function

The vagus nerve is the longest cranial nerve transmitting motor and sensory signals and

is a major component of the parasympathetic nervous system. It contains motor, sensory,
and parasympathetic nerve fibers, providing innervation to various organs and regulating
physiological activities such as heart rate, blood pressure, gastrointestinal tract, stomach acid
secretion, gall bladder, and biliary tract. In addition, the vagus nerve is a regulator of the
cholinergic anti-inflammatory pathway, which can modulate the innate immune response
[20].

Originating from the medulla oblongata in the brain stem, the vagus nerve exits the skull
through the jugular foramen. From there, it extends through the carotid sheath in the neck
and splits off into branches in the chest and the abdomen, ramifying to form the esophageal
plexus and passing through the esophageal hiatus. These branches allow the vagus nerve to
innervate various organs and tissues throughout the body. The vagus nerve has two main
branches: the superior and inferior trunks that relay sensory information to the brainstem
nuclei, where it is integrated and processed. The superior vagal trunk arises from the
nucleus ambiguus in the medulla oblongata and innervates the larynx, pharynx, and upper
esophagus. The inferior vagal trunk arises from the dorsal motor nucleus and innervates the
heart, lungs, and gastrointestinal tract, excluding the spleen [21].

Within the vagus nerve, two distinct fiber tracts exist. The efferent fibers, including

general visceral and special visceral fibers, carry signals from the brain to various organs
and structures, which are critical in regulating their activities. The spleen is the primary
source of inflammatory cytokines production, such as tumor necrosis factor (TNF), and is
considered the main regulator of TNF production [22, 23]. Even though the vagus nerve
does not directly innervate the spleen, efferent fibers terminate in celiac ganglia and superior
mesenteric ganglion, which has led to different hypotheses of cholinergic anti-inflammatory
pathway to inhibit pro-inflammatory cytokines by splenic macrophages [23-25].

The afferent fibers, constituting approximately 80% of the vagus nerve fibers, transmit
sensory signals from the body back to the brain, terminating mainly in the nucleus tractus
solitarius (NTS) in the brain stem [10] with some in the dorsal motor vagal nucleus and

the area postrema, allowing for the control and coordination of gut function, as well

as modulation of autonomic function and behavior in higher brain regions such as the
prefrontal cortex, limbic system, and parietal cortex. The NTS has a direct, monosynaptic
projection to the locus coeruleus (LC), a brain region that produces norepinephrine, allowing
regulation of LC activity [26]. A further afferent branch, the auricular branch of the vagus
nerve (ABVN), is located in the cymba concha of the outer ear.

Vagus nerve terminal branches innervate the gut wall, transmitting information about
luminal contents and mechanosensory muscle activity. The sensory cell bodies are mainly
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located in the nodose ganglia, which project centrally to the brain stem and peripherally
to the organs they innervate. Therefore, the vagus nerve provides a bidirectional brain and
body communication channel. This allows for the modulation of autonomic functions and
integrating sensory information from the body with cognitive processes in the brain.

Invasive and Non-Invasive VNS

The anatomical pathway of the vagus nerve, particularly its extension through the neck,
provides a suitable access point for stimulation that can influence a wide range of
physiological processes regulated by the parasympathetic nervous system. This has led to
exploring VNS as a potential treatment option for various neurological disorders.

In humans and large animals, the right vagus nerve is not recommended for stimulation

as it regulates cardiac function. However, this is not an issue with rodents. For iVNS, the
electrode is wrapped around the left vagus nerve and is tunneled subcutaneously to a pocket
created in the left pectoral region for connecting to an implanted pulse generator [27¢¢].
One of the main advantages of iVNS is its ability to provide continuous stimulation on a
long-term basis. It has shown effectiveness in reducing seizure frequency and severity in
epilepsy, improving mood in depression, and reducing chronic pain [7¢, 8e].

The nVNS approach involves the delivery of electrical impulses using external devices that
do not require surgical implantation. There are two nVVNS devices: transcutaneous cervical
VNS (tcVNS) and transcutaneous auricular VNS (taVNS). The electrodes for tcVNS are
positioned on the neck overlying the vagus nerve using an electrolyte gel, while taVNS
stimulates ABVN, which comprises thick myelinated axons of the Ap class, albeit five

to six times less numerous than those in the cervical vagus nerve [28]. Clinical studies
have shown nVNS is safe and tolerable [29]. Two of the most widely used nVNS devices
are gammacCore (tcVNS) and NEMOS (taVNS). The gammaCore device (electroCore,
Rockaway, NJ, USA) [30] is FDA-approved for treating of headaches [18]. The NEMOS
device (distributed by tVNS Technologies, previously Cerbomed) delivers signals to ABVN
and has been approved for treating resistant epilepsy [30]. Figure 1 illustrates various types
of VNS used in clinical settings.

Possible Mechanisms of VNS in Ischemic Stroke

Figure 2 depicts possible mechanisms of action of VNS. A deeper understanding of how
VNS improves functional recovery following an ischemic stroke can broaden the scope of
its applications in clinical settings. Moreover, identifying relevant biomarkers might enable
adaptive trial designs with different stimulation protocols. Table 1 summarizes preclinical
stroke studies conducted on the mechanistic role of VNS.

Enhanced Neuroplasticity

The engagement of neuromodulatory networks regulating synaptic plasticity offers a
means through which VNS likely supports brain recovery. Activations of cholinergic,
noradrenergic, and serotonergic systems make VNS-based rehabilitation promising
for improving post-stroke motor deficits by promoting plasticity [31-33]. In a rat
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model of middle cerebral artery occlusion (MCAO0), VNS activated the brain-derived
neurotrophic factor (BDNF)/cCAMP/PKA/p-CREB pathway. It also enhanced axonal
plasticity, regeneration reorganization, and improved neurobehavioral performance and
functional recovery via the a7 nicotinic acetylcholine receptor (a7nAChR) [34]. Another
preclinical stroke study illustrated that iVNS paired with rehabilitative supination training
improved plasticity in corticospinal motor networks to increase synaptic connectivity to the
musculature of the rehabilitated forelimb [35].

Anti-Inflammatory Effect

Neuroinflammation is an important mechanism affecting the outcome that starts a few hours
after ischemic stroke and can persist as a delayed tissue reaction to injury. The vagus

nerve, which connects the immune and central nervous systems, plays a significant role in
regulating neuroinflammation [36]. The vagus nerve consists of highly myelinated A, lightly
myelinated B, and unmyelinated C fibers. Vagus nerve A fibers may contribute to cytokine
release regulation. The cholinergic anti-inflammatory pathway, mainly involving A fibers,
has a low activation threshold and is involved in immune regulation. The neural pathways

of the vagus nerve that detect inflammation are sensitive to lower concentrations of tissue
inflammatory molecules, prompting a reaction even when these agents are not abundant
enough to reach the brain via the bloodstream [37, 38].

VNS impedes the production of pro-inflammatory cytokines such as TNF, interleukin
(IL)-1p, IL-6, and 1L-18 [12, 39, 40]. The neuroprotective effect of iVNS after MCAo
may be associated with inhibition of TNF-a and IL-6 expression [41e]. Experimental
models have demonstrated that VNS inhibits TNF synthesis in the liver and prevents shock
development in lethal endotoxemia [39]. In a rat model of MCAo0, tcVNS decreased the
number of Iba-1, CD68, and TNF-a positive cells and increased the number of high
mobility group box 1-positive cells [42]. In a mouse model of MCAo0, nVNS heightened
microglial M2 polarization, shown by increased Arg-1 protein expression and Arg-1*
cells, while reducing levels of IL-17A protein expression [43]. Intranasal administration
of recombinant IL-17A (rIL-17A) nullified the nVNS-induced microglial M2 polarization
and its neuroprotective effect. In a rat MCAo0 model, tcVNS suppressed the injury cascade
involving the MMPs/IL-1p signaling pathway in neurons through a7nAChR [40]. Others
also have shown that VNS-induced neuroprotection after MCAGo is likely related to the
activation of the a 7nAchR/JAK2 anti-inflammatory pathway [44]. One study looking at
the inflammatory markers among 20 healthy subjects treated with active or sham tcVNS
indicated lower levels of IL-1p, IL-8, TNF, macrophage inflammatory protein-1a, and
monocyte chemoattractant protein-1 in the active tcVNS arm [45]. In an MCAo model,
taVNS promoted the secretion of acetylcholine, inhibited the secretion of IL-1p, IL-6, and
TNF-a, and decreased connexin 43 phosphorylation in the ischemic penumbra and motor
cortex [46]. Another study showed that iVNS upregulated peroxisome proliferator-activated
receptor-gamma in ischemic penumbra and suppressed TNF-a,, IL-1B, and immune cell
activation [47].
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Inhibition of Glutamate Release, Post-Reperfusion Hyperemia, Oxidative Stress,
Apoptosis, and Autophagy

Excessive glutamate release after ischemia contributes to brain damage via free radicals

or reactive oxygen species production [48]. A study showed that iVNS regulated
malondialdehyde, glutathione, and superoxide dismutase levels in corticaland subcortical
regions in a rat model of MCAo [49]. Additionally, it significantly attenuated both
ischemia-induced glutamate release and transient increase of hippocampal blood flow during
reperfusion [50]. Post-reperfusion hyperemia and excessive glutamate release are important
factors in brain injury as they lead to the production of reactive oxygen species [50].

By activating neuronal and astrocytic a7nAChR, VNS inhibits apoptosis and oxidative stress
responses, potentially by enhancing Akt phosphorylation and miR-210 expression, regulated
by hypoxia-inducible factor and Akt-dependent pathways [51]. Using a rat model of stroke,
another study showed that VNS suppresses inflammation and apoptosis by activating
cholinergic and a7nAChR/Akt pathways, resulting in improved neurological outcomes,
reduced infarct volume, decreased pro-inflammatory cytokine levels, and decreased cleaved
caspase-3 protein levels [52]. Elsewhere, iVNS reduced neuronal apoptosis as shown by the
reduced Bax and cleaved caspase-3 and increased Bcl-2 levels; the beneficial iVNS effects
weakened following lipocalin-type prostaglandin D synthase (L-PGDS) down-regulation
[53]. VNS also exhibits neuroprotective effects by inhibiting autophagy. In a rat stroke
model, VNS downregulated autophagy-related proteins, including microtubule-associated
protein 1 light chain 3 (LC3)-I1 and Beclin-1, and decreased cleaved caspase-3 protein levels
[54].

Reduction of Blood—Brain Barrier Disruption

Stroke can lead to blood-brain barrier (BBB) dysfunction. VNS has been shown to recover
BBB function post-stroke in preclinical studies [55]. In a rat model of MCAo, VNS
produced neuroprotective effects by reducing infarct extent and IL-1p level in the ipsilateral
hemisphere and by inhibiting MMP-2 and MMP-9 expressions in reactive astrocytes in the
peri-infarct area [40]. Other studies have also confirmed that VNS reduces infarct size,
improves neurological function, and reduces BBB disruption and brain edema after ischemic
stroke in rats [42, 54-56, 57+¢]. Similar to preclinical stroke studies, VNS also decreased
BBB permeability by reducing the up-regulation of aquaporin-4 and ipsilateral edema in
preclinical TBI studies [13e, 58]. Of course, it is difficult to determine whether preserved
BBB is due to the neuroprotective effect leading to milder injury (i.e., smaller infarcts) or via
a direct effect on BBB.

Angiogenesis

In a rat MCAo0 model, taVNS improved neurobehavioral recovery and upregulated cerebral
growth differentiation factor 11 (GDF11) [59]. GDF11 augments the proliferation of
primary brain capillary endothelial cells, is involved in vascular remodeling, improves the
volume of blood vessels, and restores age-related decline in neurogenesis [60].

Another preclinical stroke study [61] investigated the effect of taVNS on angiogenesis
and explored potential molecular mechanisms. The study found that taVNS treatment
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upregulated peroxisome proliferator-activated receptor-gamma (PPAR-y) expression in the
ischemic cortex, improved neurobehavioral recovery, reduced neuronal injury, decreased
infarct volume, and increased angiogenesis. Moreover, VNS was shown to increase the
expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic
factor (BDNF) in the ischemic hemisphere, which are key regulators of neuroplasticity [61].
In addition to the aforementioned beneficial effects, such as suppressing pro-inflammatory
proteins, ta-VNS may improve dysphagia, possibly due to protecting ischemic white matter
[62]. VNS also facilitated the growth of blood vessels and synapses in the ischemic
hemisphere, ultimately improving functional outcomes [61, 63]. These findings highlight the
VNS potential to promote both angiogenesis and neuroplasticity after stroke, contributing to
improved recovery.

Cortical Spreading Depolarization

Following AIS, recurrent spreading depolarization (SD) waves are believed to worsen the
outcomes. SD is an intense depolarization wave that originates in the ischemic penumbra
and slowly propagates across the gray matter, constricting the arteries in the ischemic brain
region and imposing a tremendous metabolic demand, thus increasing the supply—demand
mismatch [64—66]. In a rat model of stroke, both iVNS and nVVNS significantly decreased
the frequency of SDs in the peri-infarct cortex compared with sham, without affecting
relative blood flow changes, blood pressure, heart rate, or breathing rate [67]. Similar effects
of VNS on the inhibition of SD were also observed in other experimental models that did
not elicit cerebral ischemia [68, 69¢¢]. The efficacy of VNS in suppressing SD is mediated
through the activation of vagal visceral sensory afferents and their projections to subcortical
neuromodulatory regions [69e¢]. Optimal VNS parameters for SD suppression are still under
investigation, but it has been suggested that two 2-min sessions of tcVNS, spaced 5 min
apart, yield the highest efficacy [70].

Gut-Brain Axis and Microbiome Regulation

The brain and the gastrointestinal tract keep a continuous and bidirectional communication
through the gut-brain axis. The vagus nerve contains 80% of afferent fibers that can

sense gut microbiota metabolites [71]. Some of these metabolites are neurotransmitters
such as y-aminobutyric acid, serotonin, dopamine, and acetylcholine, which act locally

on the enteric nervous system but can also reach the brain through the vagus nerve [72,
73]. Other metabolites, such as short-chain fatty acids, could trigger the enteric nervous
system and send signals through the terminals of the vagus nerve [74]. An imbalance

in gut microbiota (dysbiosis) before stroke can indirectly contribute to an increased risk

of stroke and negatively impact the outcome. Conversely, stroke can cause changes in

gut motility, intestinal permeability, and dysbiosis [75], which leads to inflammation

and oxidative stress, thereby worsening post-stroke outcomes and increasing the risk of
pneumonia and cardiovascular and gastrointestinal complications [76, 77]. A cohort of
elderly patients with acute cerebral infarction and healthy controls identified four bacterial
pathways that might be related to the development of this disease, including methane
metabolism, lipopolysaccharide synthesis, bacterial secretion, and flagellar assembly of the
gut microbiota [78]. Also, there was a higher level of trimethylamine-N-oxide producing
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bacteria and a decrease of butyrate-producing bacteria. Butyrate-producing bacteria might
play a protective role against infections [78]. These findings might shed light on the
modulation of gut microbiota and gut-brain axis through VNS as a potential for both
preventive and therapeutic approaches for treating ischemic stroke. To address this void,
future studies are needed.

VNS Treatment in Clinical Studies of Ischemic Stroke

Several lines of evidence indicate that VNS treatment can improve ischemic stroke
outcomes. Table 2 outlines clinical VNS studies in the ensuing discussion.

Outcomes of iVNS in Ischemic Stroke

The effectiveness of iVNS on upper limb deficits in stroke patients has been investigated
through several studies. Dawson et al. [27+¢] conducted a stroke trial in the UK with
moderate to severe upper-limb impairment. The patients (7= 20) were randomized to
receive either iVNS + rehabilitation or rehabilitation alone. While the intention-to-treat
analysis showed no significant difference in Fugl-Meyer Assessment-Upper Extremity
(FMA-UE) scores at 90 days, the per-protocol analysis demonstrated a significant difference
favoring the iVNS + rehabilitation group. A case study also highlighted iVNS’s potential
for sensory recovery [79]. In another pilot study [80], stroke patients with upper-limb
impairment were implanted with a VNS device and divided into active iVNS or sham iVNS
groups. Clinically meaningful improvements were observed in the FMA-UE score at day 90
for the active iVNS group compared to the sham group.

Dawson et al. [81¢¢] conducted a trial in the UK and the USA with stroke patients
experiencing arm weakness. The group receiving 6 weeks of rehabilitation therapy followed
by active iVNS showed a significant rise in FMA-UE scores compared to the sham group.

A clinically meaningful response on the FMA-UE score was observed in a higher proportion
of subjects in the iVNS group compared with the sham group at 90 days post-therapy. In
2021, the FDA approved the Vivistim® Paired VNS™ System for treating moderate to severe
upper extremity motor deficits in stroke patients who undergo rehabilitation therapy [9].
Subsequent meta-analyses supported iVNS as a potential treatment option for improving
motor function and daily activities in stroke patients [82-84].

Outcomes of NnVNS in the Treatment of Ischemic Stroke

The use of iVNS devices, like Vivistim, is limited to a chronic setting. In contrast, nVNS can
be employed in hyperacute, acute, and chronic stages. Notable studies on nVNS have been
conducted across both the acute or subacute stroke stages [18, 85] and in chronic settings
[86—88] demonstrating promise.

In a pilot study, stroke patients (7= 14) received robot-assisted therapy with either active or
sham taVNS. Active taVNS significantly improved Fugl-Meyer Assessment (FMA) scores
[86]. Another study by Redgrave et al. [87] involved stroke patients (/7= 13) with residual
upper limb weakness, receiving taVVNS sessions along with rehabilitation. A substantial
change in FMA-UE scores and sensory recovery was observed. In a post hoc analysis [88],
eleven (92%) of the patients had a sensory loss at baseline, of whom 7 (64%) recovered
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some sensation following the intervention (6 proprioception, 2 light touch, and 1 both
modalities). In a randomized pilot study in China, subacute stroke patients (7= 21) with
single upper limb motor function impairment underwent rehabilitation training with active
or sham taVNS. The active taVNS group demonstrated significantly greater improvement in
functional assessments at 12 weeks [85].

Regarding tcVVNS, the TRanscutaneous cervical Vagus nErve stimulatioN as a treatment
for acUte Stroke (TR-VENUS) trial showed the safety and feasibility in patients with

AIS and intracerebral hemorrhage (ICH) [18]. In addition, there was a suggestion that high-
dose tcVNS could significantly reduce infarct growth in patients with diffusion mismatch.
The ongoing Non-invasive Vagus Nerve Stimulation in Acute Ischemic Stroke (NOVIS)
trial (NCT04050501) randomizes patients to tcVNS combined with standard treatment or
standard treatment alone within 12 h from symptom onset [19]. The primary endpoint is the
infarct volume.

Effects on Cholinergic Neuromodulation and Cognitive Abilities

Cogpnitive impairments are commonly observed after stroke, affecting memory, attention,
and executive functions. Studies have shown that the vagus nerve is crucial for the
memory-enhancing effects of substances that stimulate peripheral receptors [89, 90e¢]. When
combined with cognitive training, nVVNS has been found to lead to greater improvements

in attention and executive functions compared to cognitive training alone [91]. Vagotomy
impairs these memory-enhancing effects, indicating the vagus nerve’s role in relaying
diverse peripheral information to impact memory [92-95]. Additionally, VNS causes the
release of multiple neuromodulators throughout the brain, potentially enhancing sensory and
cognitive processing [96, 97].

The activation of the basal forebrain (BF) cholinergic neurons and the synaptic release

of acetylcholine from their target projections in the cortical and hippocampal areas is
implicated in the regulation and maintenance of multiple cognitive functions, including
attention and memory [98-100]. The electrical stimulation of the vagus nerve has been
shown to activate BF cholinergic neurons and modulate cortical excitability through the
activation of muscarinic receptors [101]. The effects of VNS on movement representation
and plasticity of neurons in the primary motor cortex were abolished by either selective
lesions or optogenetic inhibition of the BF cholinergic neurons [31, 102]. The cholinergic
system is highly vulnerable to vascular damage in stroke, leading to cognitive impairments.
Moreover, treatment with acetylcholinesterase inhibitors has shown efficacy in improving
post-stroke cognitive impairments [103]. A recent study employing diffusion tractography
and neuropsychological assessment reported that the structural status of the fornix,

BF cholinergic region, and hippocampal subfields predicted spontaneous recovery and
improvements in working and episodic memory in patients with stroke [104]. The available
evidence suggests that the benefits of VNS in post-stroke cognitive functioning may partly
involve central cholinergic neuromodulation. Given the evidence that VNS can also activate
BF cholinergic neurons directly or indirectly via LC noradrenergic pathways resulting in
cortical and behavioral activation [105], it is possible that the procognitive effects of VNS
are driven in part by noradrenergic mechanism. Further studies are warranted to pars out
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the contributions of cholinergic and LC-noradrenergic pathways in VNS-mediated cognition
enhancement during post-stroke recovery.

Safety and Adverse Effects

The most serious complications of iVNS include infection and vocal cord palsy due to
damage to the vagus nerve [106]. Regular maintenance, including battery replacement, is
required, and the device and surgical procedure cost can be a limiting factor for some
patients.

The nVVNS approach appears to be well-tolerated and safe, with mild side effects [18, 29,
107-109]. Common side effects include transient hoarseness, throat discomfort, and mild
skin irritation at the stimulation site [109]. Serious adverse events are rare, but further
long-term safety studies are warranted to establish the full safety profile of nVNS in stroke
patients.

Conclusions

VNS offers therapeutic potential for various neurological disorders. Experimental models
have demonstrated that VNS can improve the outcome of stroke. The effect of VNS

is exerted through its anti-inflammatory and neuromodulatory properties, to name a few.
Clinical studies have also shown the safety and efficacy of VNS in improving neurological
outcomes in stroke patients.

The iVNS method requires surgery that can only be applied in chronic settings. The
advantage of nVNS is that the treatment can be applied in acute settings, even by paramedics
in the field since VNS is safe for both ischemic and hemorrhagic strokes. Further research

is needed to (1) determine the optimal stimulation parameters, intervention time from
symptom onset, and treatment duration; (2) the mechanisms underlying the therapeutic
effects of VNS need to be elucidated further to guide the development of personalized
treatment strategies, and (3) most studies, so far, have relatively small sample sizes and
variations in stimulation parameters and protocols, making it challenging to draw definitive
conclusions. Therefore, future research should include larger-scale randomized clinical trials
with standardized protocols to determine optimal stimulation parameters, treatment duration,
and intervention time from symptom onset. Moreover, investigations into the long-term
effects of VNS, including its potential for promoting neural plasticity and neuro-recovery
and looking at a broader range of poststroke neurological deficits (e.g., dysphagia, cognition,
sleep disturbance, urinary incontinence, and visual dysfunction) are warranted [110].

In addition, several emerging technologies may enhance the therapeutic potential of VNS

in stroke recovery. For example, combining VNS with brain-computer interfaces (BCIs)
may provide a more effective therapy. This emerging field has demonstrated the potential

to revolutionize cognitive enhancement, epilepsy treatment, pain management, and stroke
rehabilitation [111]. Harnessing the synergic power of neuromodulation and BCIs may pave
the way for future innovative therapeutic strategies and personalized interventions.
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Mechanism of action of vagus nerve stimulation (VNS) (created with BioRender.com).

Abbreviations: ACh, acetyl cholin; DMN, dorsal motor nucleus; NTS, nucleus tractus

solitarius; a7nAChR, a7 nicotinic acetylcholine receptor subunit
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