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Abstract

Background: Emerging evidence has revealed that dysregulation of the hormone ghrelin and 

its receptor, growth hormone secretagogue receptor (GHSR), contributes to the pathogenesis 

of Alzheimer’s disease (AD). Specifically, defective GHSR function and resultant hippocampal 

ghrelin resistance are linked to hippocampal synaptic injury in AD paradigms. Also, AD patients 

exhibit elevated ghrelin activation. However, the detailed molecular mechanisms of hippocampal 

GHSR dysfunction and the relevance of ghrelin elevation to hippocampal ghrelin resistance in 

AD-relevant pathological settings are not fully understood.

Objective: In the current study, we employed a recently established mouse line of AD risk 

[humanized amyloid beta knockin (hAβ KI mice), also referred to as a mouse model of late-onset 

AD in previous literature] to further define the role of ghrelin system dysregulation in the 

development of AD.

Methods: We employed multidisciplinary techniques to determine the change of plasma ghrelin 

and the functional status of GHSR in hAβ KI mice as well as primary neuron cultures.

Results: We observed concurrent plasma ghrelin elevation and hippocampal GHSR 

desensitization with disease progression. Further examination excluded the possibility that ghrelin 

elevation is a compensatory change in response to GHSR dysfunction. In contrast, further in vitro 
and in vivo results show that agonist-mediated overstimulation potentiates GHSR desensitization 

through enhanced GHSR internalization.
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Conclusions: These findings suggest that circulating ghrelin elevation is a pathological event 

underlying hippocampal GHSR dysfunction, culminating in hippocampal ghrelin resistance and 

resultant synaptic injury in late-onset AD-related settings.
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INTRODUCTION

Patients with Alzheimer’s disease (AD) demonstrate loss in hippocampal synaptic strength, 

resulting in progressive memory deficits [1, 2]. A recently identified hippocampal pathology 

associated with AD is blunted response of growth hormone secretagogue receptor (GHSR, 

also known as ghrelin receptor) to agonist-induced activity [3, 4]. This functional defect 

of GHSR causes hippocampal ghrelin resistance, leading to impaired synaptic plasticity 

and transmission. The significance of hippocampal GHSR signaling dysfunction in AD 

pathogenesis is not only endorsed by its contribution to hippocampal failure in AD 

paradigms but also supported by AD-like hippocampal synaptic injury and cognitive 

impairment in mice deficient in GHSR [3] or ghrelin [5]. So far, despite the deleterious 

effect of amyloid-β (Aβ) on GHSR [3], the precise molecular mechanisms of hippocampal 

GHSR dysfunction and resultant ghrelin resistance in AD-relevant pathological settings are 

not yet fully understood.

The hormone ghrelin, also referred to as acyl-ghrelin in the literature, is a mainly stomach-

produced acylated polypeptide that passes the blood-brain barrier (BBB) to activate GHSR 

in multiple brain regions including the hippocampus [5, 6], where GHSR is abundantly 

expressed [7, 8]. Despite its best-known actions to stimulate food intake and body 

weight gain [9], ghrelin-dependent GHSR signaling is pivotal in modulating hippocampal 

synaptic strength [5, 10, 11] and neurogenesis [12–14], thus regulating multiple types of 

hippocampal functions including spatial and aversive memories as well as conditioned 

feeding behavior [3, 5, 15]. In contrast to dysfunctional GHSR, a previous clinical study 

reported elevated ghrelin and its negative association with cognitive performance in patients 

even at the early stage of AD [16]. At face value, simultaneous high ghrelin levels and 

impaired GHSR function in AD-relevant pathological settings, represents a conundrum. 

Yet, the irresponsiveness of GHSR to its agonist may support a state of ghrelin resistance, 

which underpins a hypothesis that ghrelin elevation may reflect an adaptive change to 

compensate for GHSR dysfunction in AD [3]. However, it also can be argued that the 

high ghrelin has a harmful influence on GHSR, leading to GHSR exhaustion due to loss 

of vacillatory ligand stimulation. Because both ideas sound plausible but lack support from 

experimental evidence, it is, therefore, of great interest to delineate the impact of circulating 

ghrelin elevation on hippocampal GHSR function and the relevance of circulating ghrelin 

dysregulation to hippocampal ghrelin resistance in AD-related conditions.

Here, we report circulating ghrelin elevation and hippocampal GHSR defects that concurred 

with disease progression in humanized amyloid beta knockin (hAβKI) mice, a recently 
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established mouse model of late-onset AD [17]. In contrast to no influence of functional 

GHSR availability on ghrelin regulation, further results show that agonist-mediated 

overstimulation promotes GHSR desensitization through enhanced GHSR internalization. 

Therefore, these findings suggest that circulating ghrelin elevation is a pathological event 

underlying hippocampal GHSR dysfunction, culminating in hippocampal ghrelin resistance 

and resultant synaptic injury in late-onset AD-related settings.

MATERIALS AND METHODS

Animal studies

Mice studies were approved and performed following the guidelines of the University of 

Kansas Institutional Animal Care and Use Committee (IACUC) and National Institutes of 

Health (NIH). B6N(Cg)-Apptm1.1Aduci/J (hAβ KI) and nontransgenic (nonTg) C57BL/6NJ 

mice were purchased from Jackson Laboratory. GHSR-null mice were obtained from UT 

Southwestern Medical Center [18]. GHSR null mice on a C57BL/6N genetic background 

were backcrossed with C57BL/6NJ mice at least 10–12 times to generate GHSR null mice 

on a C57BL/6NJ genetic background, which were used in this study. Genotypes of mice 

were confirmed by PCR. Mouse numbers used in this study were calculated based on 

previous results and power analysis.

Non-transgenic (nonTg) mice were treated with vehicle or 1 mg/kg MK 0677 (Tocris, 

#5272) via intraperitoneal (IP) injection for 30 days and then proceeded to GHSR and 

synaptic function analysis.

Mice at desired ages were fasted for 8 h and then proceeded to whole blood collection 

and brain dissection. Submandibular blood collection was performed, and the blood were 

collected into ice-cold EDTA-coated tubes. Plasma was prepared by centrifuging the whole 

blood samples for 15 min at 1,500×g, at 4°C. Protease inhibitor cocktail (Millipore Sigma, 

#20–201) and PMSF (Fisher Scientific) were added to all plasma samples. Plasma samples 

for ghrelin assays were further prepared by adding HCl to a final concentration of 0.1 N HCl 

and stored in −80°C for later use.

Fourteen-month-old and 24-month-old hAβ KI mice, adult GHSR null mice and age- 

and gender-matched nonTg mice were subjected to ELISA and chemical tests. HCl-free 

plasma samples were used for assays including LEAP2 ELISA (EK-075-50, Phoenix 

Pharmaceuticals) and Glucose (TR15421, Thermo Fisher). Plasma with 0.1N HCl were 

used for ghrelin assays: total ghrelin ELISA (EZRGRT-91K, Millipore Sigma) and acylated 

ghrelin ELISA (EZRGRA-90K, Millipore Sigma). All assays were performed according to 

the user manual. Data were collected and analyzed using Biotek Neo2 microplate reader.

Neuron culture and treatment

Mouse hippocampal neurons were cultured as previously described [19]. Whole mouse 

hippocampi were dissected from postnatal day 0–1 pups in cold HBSS (Corning). Cells 

were dissociated using 0.025% trypsin with 37°C 15 min incubation followed by 10 times 

homogenization in ice-cold HBSS. Dissociated cells were then passed through a 100 μm cell 

strainer (Corning) and centrifuged for 5 min at 210×g. The pellet was gently resuspended 
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in neuron culture medium (Neurobasal A with 2% B27 supplement, 0.5 mM L-glutamine, 

Invitrogen) and plated on poly-D-lysine (Sigma-Aldrich) coated Lab-Tek chamber slides 

(Nunc, 177445) with appropriate densities.

At 21 days in vitro (DIV), hippocampal neurons were exposed to synthetic mouse 

ghrelin (Phoenix Pharmaceuticals) for 5 min or 24 h. The exposure was followed by 

immunostaining to examine the effects of GHSR short-term or long-term activation on 

synaptic function as described in the immunocytochemistry section.

Immunocytochemistry

Frozen tissue sections were prepared as previously described [4]. Mouse brains were 

dissected and fixed in 4% paraformaldehyde (PFA, Sigma-Aldrich) overnight at 4°C. Brain 

blocks were prepared using Leica cryostat and stored in −80°C until using. Primary cultured 

hippocampal neurons on a Lab-Tek chamber slides were fixed in 4% PFA for 30 min 

at 37°C. After blocking (5% goat or donkey serum (Sigma-Aldrich), 0.3% Triton X-100 

(Fisher Scientific) in PBS, pH 7.4), brain slices or cultured neurons were incubated with 

our previously validated primary antibodies against GHSR (Santa Cruz Biotechnology, 

#sc-10359, 1 : 100), DRD1 (Abcam, #ab81296, 1 : 200), PSD 95 (CST, #3450, 1 : 400), 

VGLUT1 (SYNAPTIC SYSTEMS, #135304, 1 : 400), Phospho-CaMKII (Thr286) (CST, 

#12716, 1 : 200), MAP2 (Sigma-Aldrich, #M4403, 1 : 300) in mixture or separately as we 

previously described [3, 20]. After washing with PBS, the slices or cultured neurons were 

probed with appropriate cross-adsorbed secondary antibodies conjugated to Alexa Fluor 

488, Alexa Fluor 594, or Alexa Fluor 647 (Thermo Fisher Scientific, 1 : 500). Nuclear 

were labeled with diamidino-2-phenylindole (DAPI, Thermo Fisher, #62248). Images were 

collected on a Nikon confocal microscope. Mean intensity or the overlap of different 

staining were analyzed using Nikon-Elements Advanced Research software accordingly.

Cell surface GHSR in cultured hippocampal neurons was labeled with 15 min light fixation 

in 2% PFA at 4°C, followed by overnight GHSR1a antibody (Santa Cruz Biotechnology, 

#sc-10359, 1 : 100) incubation at 4°C. Images were then collected on a Nikon confocal 

microscope.

Duolink in situ assay

Protein interactions between GHSR/DRD1 and GHSR/β-arrestin 2 in mouse brain slices 

and hippocampal neuron cultures were detected using Duolink Proximity Ligation Assay 

(PLA) detection kits (Sigma-Aldrich, #DUO92008) following manufacturer’s instructions. 

The following primary antibodies were used in proper combinations: goat-anti-GHSR (Santa 

Cruz Biotechnology, #sc-10359, 1 : 100), rabbit-anti-DRD1 (Abcam, #ab81296, 1 : 200), 

mouse-anti -arrestin 2 (Santa Cruz, #sc-13140). The specificity of antibodies to GHSR 

and DRD1 was validated as previously described [3]. The following Duolink in Situ PLA 

Probes were used: anti-Rabbit PLUS (Sigma-Aldrich, #DUO92002), anti-Goat MINUS 

(Sigma-Aldrich, #DUO92006), anti-Mouse PLUS (Sigma-Aldrich, #DUO92001). Images 

were collected on a Nikon confocal microscope. PLA-positive dot number was counted 

using Nikon-Elements Advanced Research software.
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Cell membrane isolation and membrane blotting

Mouse hippocampal cell membrane blot was performed using a previously published 

protocol [21]. Mouse hippocampal tissues from 14- and 24-month-old hAβ KI and nonTg 

were homogenized and incubated in ice-cold isolation buffer (50 mM Tris-HCl, pH 7.4, 1 

mM MgCl2, 0.5 U/μl benzonase) for 10 min. Hippocampal cell membranes were isolated 

and washed in PBS for three times 10 min centrifugation at 16,500×g. Purified hippocampal 

cell membranes were then fixed in 4% PFA for 0.5 h followed by 1 h blocking (5% 

donkey serum, 0.3% Trition-X-100, PBS, pH 7.4). Hippocampal cell membrane was 

incubated in primary goat-anti-GHSR1a antibody (Santa Cruz Biotechnology, #sc-10359, 

1 : 100) overnight at 4°C. Cell membranes were washed with PBST (PBS containing 0.05% 

Tween-20) for three times and then incubated with anti-goat HRP-conjugated secondary 

antibody (Sant Cruz) at room temperature for 1 h. Cell membrane proteins were then 

extracted using urea buffer (50 mM Tris-HCl, 8 M urea, 2% SDS, 10% glycerol, pH 6.8) 

and loaded onto a nitrocellulose membrane (NC, Bio-Rad) and allowed to dry completely 

before imaging. The dried NC membrane was subjected to imaging immediately using Bio-

Rad Chemidoc Imaging System with signal developed using enhanced chemiluminescent 

substrate (ECL, Thermo Fisher). The membrane was re-probed with Rabbit anti-pan 

cadherin (CST, #4068, 1 : 1,000) to normalize protein level.

Statistical analysis

Statistical analyses were performed using Graph-Pad Prism 9 software. Unpaired two-way 

Student’s t test was applied in data analysis. The data collected from mouse studies were 

presented as interleaved box & whiskers box graphs displaying median as a line within the 

box, interquartile range (IQR) as the box, 95% CI as bars flanking the box, all data points 

showed on the graphs. Significance was concluded when the p value was less than 0.05. The 

statistical significance was indicated by *p < 0.05, **p < 0.01, ***p < 0.001.

RESULTS

Circulating ghrelin is elevated in aged hAβ KI mice

Plasma samples were collected from hAβ KI mice and their nontransgenic (nonTg) controls 

at 14 and 24 months old as hAβ KI mice demonstrate no cognitive deficits at 14 months 

old and evident cognitive deficits at 24 months old, respectively [17]. In contrast to the 

comparable ghrelin levels in hAβ KI and nonTg mice at 14 months old (Fig. 1A), increased 

plasma ghrelin was detected in old hAβ KI mice as compared with their nonTg counterparts 

(Fig. 1B). In contrast to the age-dependent changes of ghrelin, the levels of plasma total 

ghrelin, which is composed of both ghrelin and its deacylated form, remained constant in 

hAβ KI mice throughout the tested ages (Fig. 1C, D). Liver-expressed antimicrobial peptide 

2 (LEAP2) is a recently identified endogenous antagonist of GHSR that counterbalances 

ghrelin’s effect [22, 23]. In view of the importance of LEAP2 and ghrelin balance to ghrelin 

sensitivity [24], we next performed ELISA assays for plasma LEAP2 and determined no 

difference in LEAP2 between hAβ KI mice and their nonTg controls at either tested 

age (Fig. 1E, F). Of note, comparable body weight (Supplementary Figure 1A, B) and 

blood glucose (Supplementary Figure 1C, D) were determined in hAβ KI mice and their 

nonTg counterparts at both tested ages, ruling out the impact of metabolic status on ghrelin 
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regulation. Moreover, in addition to comparable levels of ghrelin, total ghrelin, and LEAP2 

between female and male nonTg mice, hAβ mice did not display any sex effect on these 

parameters at the tested ages (Supplementary Figure 2A–C). Collectively, these results 

suggest ghrelin elevation is a phenotypic change in a late-onset AD-related setting, which 

agrees with a previous report of increased ghrelin in patients in the early stage of late-onset 

AD [16].

Hippocampal GHSR is impaired in aged hAβ KI mice

To determine whether ghrelin changes accompany GHSR deregulation in hAβ KI mice, 

hippocampal slices from age- and sex-matched hAβ KI and nonTg mice at 14 and 

24 months old were subjected to immunostaining for GHSR expression in neurons in 

the CA1 area, which is an AD-sensitive brain region [25]. Further analysis showed 

no quantitative difference in GHSR between the two types of mice at a younger age 

(Fig. 2A). However, a reduction in hippocampal GHSR expression was determined in 

aged hAβ KI mice as compared with their nonTg counterparts (Fig. 2B). Like many 

other G protein-coupled receptors (GPCRs), ligand-stimulated GHSR undergoes β-arrestin 

2-mediated internalization for recycling or degradation [26]. To this end, we performed 

Duolink proximity ligation assay (PLA) for the interaction of GHSR with β-arrestin 

2. In contrast to no genotypic change in young hAβ KI mice (Fig. 2C), augmented 

β-arrestin 2/GHSR complexation demonstrated by increased Duolink PLA-positive dots 

in hippocampal CA1 neurons was determined in 24-month-old hAβ KI mice (Fig. 2D). 

To determine whether loss of GHSR has a pathological consequence that undermines 

GHSR’s function in modulating synaptic strength, we examined GHSR heteromerization 

with hippocampal dopamine receptor D1 (DRD1), a pivotal mechanism of GHSR-related 

regulation of hippocampal synaptic activity via activating calcium/calmodulin-dependent 

protein kinase type II (CamKII) [10]. Duolink PLA assay for GHSR/DRD1 complexes in 

the hippocampal CA1 region was performed using hippocampal slices from hAβ KI and 

nonTg mice at 14 and 24 months old. Consistent with the changes of GHSR expression 

in hAβ KI mice, loss of hippocampal GHSR/DRD1 complexes was not determined in 

young hAβ KI mice (Fig. 2E) but became evident with mouse aging (Fig. 2F). Moreover, 

the unchanged expression of DRD1 in the hippocampal CA1 regions in hAβ KI mice at 

either tested age (Supplementary Figure 3A, B) indicates that the impaired GHSR/DRD1 

heteromerization is possibly, to a large extent, due to GHSR deregulation. Echoing the 

disrupted hippocampal GHSR/DRD1 interaction, an age-dependent decrease in hippocampal 

neuronal CamKII activation demonstrated by reduced phosphorylation modification was 

determined (Fig. 2G, H) alongside reduced synaptic density in the CA1 region (Fig. 2I, J) 

in hAβ KI mice. Therefore, the concurrent deregulation of ghrelin and hippocampal GHSR 

indicates attenuated GHSR response to its agonist and implicates a potential association 

between ghrelin elevation and hippocampal ghrelin resistance with disease progression in 

the mouse model of late-onset AD.

GHSR loss-of-function has no impact on ghrelin

If we can draw an analogy between ghrelin and insulin resistance, we anticipate seeing 

increased circulating ghrelin in mice devoid of GHSR function, alike compensatory 

hyperinsulinemia in response to peripheral insulin receptor dysfunction [27]. To this end, 
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we adopted adult mice with GHSR deficiency (GHSR null mice) (Fig. 3A) and performed 

ELISA assays for ghrelin, total ghrelin, and LEAP2 in plasma samples from GHSR null 

mice and their age- and sex-matched nonTg littermates. Data analysis showed no difference 

in the tested parameters including ghrelin (Fig. 3B), total ghrelin (Fig. 3C), or LEAP2 

(Fig. 3D) between the two groups of mice. The unchanged ghrelin in GHSR-deficient 

mice agrees with previous findings [28, 29], indicating no impact of GHSR functional 

status on ghrelin. Of note, previous studies have determined that diet-induced obesity is 

associated with reductions in plasma ghrelin [24, 30–32]. Yet, we measured mouse body 

weight and found that the tested GHSR-null and nonTg mice demonstrated comparable body 

weights (Fig. 3E), corroborating a previous observation with standard chow-fed male GHSR 

null mice [18]. These results together contradict the hypothesis that ghrelin elevation is a 

compensatory change in response to GHSR loss-of-function in AD-related conditions.

Persistent ghrelin stimulation induces GHSR desensitization in hippocampal neurons

To further delineate the relationship between ghrelin and GHSR deregulation in AD-relevant 

pathological settings, we then asked whether plasma ghrelin elevation is a cause of GHSR 

loss-of-function. It is a well-documented notion that short-term ligand exposure regulates 

GPCRs in a multi-step process including internalization, desensitization, and resensitization; 

while long-term intense ligand-mediated activation leads to GPCR internalization followed 

by degradation [26]. Therefore, it would be of great interest to determine the impact of such 

a ghrelin-mediated overstimulation on the regulation and function of GHSR in hippocampal 

neurons. Primary hippocampal neuronal cultures exposed to transient 5-min treatment of 

ghrelin at 0, 1, and 10 μM exhibited a dose-dependent reduction in their surface GHSR 

determined by immunostaining (Fig. 4A). Further Duolink PLA for the interaction of GHSR 

with β-arrestin 2 showed increased GHSR/β-arrestin 2 complexation (Fig. 4B), implicating 

neuronal GHSR’s response to transient ghrelin stimulation. To determine whether transient 

ligand-mediated activation promotes the synapse-modulating effect of GHSR, we examined 

the activation status of CamKII by immunostaining and detected ghrelin-induced CamKII 

activation demonstrated by increased CamKII phosphorylation modification (Fig. 4C). 

Accordingly, primary cultured hippocampal neurons showed increased synaptic density (Fig. 

4D), which agrees with the well-defined synaptogenesis-promoting effect of ghrelin [5, 33]. 

When challenged by 24 h exposure of ghrelin at varying doses including 0, 1, and 10 μM, 

hippocampal neurons displayed greater responses to ghrelin-induced reduction in neuronal 

surface GHSR (Fig. 4E) and an increase in GHSR complexation with β-arrestin 2 (Fig. 

4F). However, long-term ghrelin-challenged neurons exhibited irresponsiveness to ghrelin-

induced CamKII activation (Fig. 4G), which concurred with impaired ghrelin-elicited 

synaptogenesis (Fig. 4H), implicating blunted GHSR signaling. To test the detrimental 

influence of agonist-mediated overstimulation on hippocampal GHSR in an in vivo setting, 

we treated wildtype (wt) mice with vehicle or 1 mg/kg MK 0677, a synthetic mimetic of 

ghrelin, via daily intraperitoneal (i.p.) injection for 30 days. Dot blotting assay using isolated 

cell membrane fractions from hippocampal tissues showed a reduction in cell membrane-

bound GHSR in MK 0677-treated mice (Fig. 4I), indicating GHSR overstimulation-induced 

GHSR loss. Further immunostaining for synaptic density hippocampal CA1 region showed 

a marginal decrease in MK 0677-treated mice as compared with their vehicle-treated 

counterparts (Fig. 4J), suggesting diminished response of hippocampal neurons to GHSR 
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agonist-induced synaptogenesis. Put together, these findings from in vitro and in vivo 
settings support the deleterious impact of persistent ghrelin stimulation on GHSR regulation, 

leading to GHSR desensitization and ghrelin resistance in hippocampal neurons.

DISCUSSION

The hippocampus is a pivotal brain region for memory storage and processing [34]. 

Accordingly, hippocampal synaptic injury constitutes a characteristic pathology underlying 

memory loss in multiple types of dementias including AD [35, 36]. So far, the detailed 

molecular mechanisms of AD-related hippocampal deficits are not fully understood. In 

addition to their well-documented function in maintaining energy homeostasis [6, 37–39], 

ghrelin and GHSR are critical for the regulation hippocampal synaptic physiology [5, 10, 

11]. Emerging evidence suggests deregulation of hippocampal GHSR signaling and its close 

association with hippocampus-related memory deficits in AD-relevant pathological settings 

[3, 4]. A prominent defect of hippocampal GHSR in AD-related conditions is blunted 

response of GHSR to its agonist-induced activation, supporting the presence of ghrelin 

resistance in AD hippocampi [3, 4]. However, other than the deleterious impact of the 

interaction between GHSR and Aβ, a key mediator of AD [40] on GHSR signaling [3, 

4], the precise pathways causing hippocampal ghrelin resistance in this neurodegenerative 

disorder have not yet been fully depicted. In this study, we newly determined a detrimental 

effect of high circulating ghrelin in promoting hippocampal GHSR desensitization via 

enhanced internalization and degradation in humanized Aβ knockin mice, a mouse model 

of late-onset AD [17]. These findings corroborate our previous report of increased ghrelin 

in patients at the early stage of late-onset AD [16], implicating ghrelin dysregulation is a 

phenotypic change accompanying AD, at least, in a late-onset AD-related setting. Notably, 

despite their similarities in clinical and pathological features, the late-onset sporadic and 

early-onset familial AD exhibit differences in the course of disease and several key 

components including genetics, aging, and other risk factors in the etiopathogenesis [41–45]. 

To this end, it would be of great interest to examine whether ghrelin dysregulation follows 

suit in early-onset familial AD and animal models carrying familial AD-associated genetic 

causes, which requires further investigation. In addition, a sex difference has been implicated 

in the development of AD [46]. Previous studies have shown a sex-related difference in 

the baseline levels of ghrelin in adults [47] and a sex-related difference in the response 

to sex hormone-elicited ghrelin changes in peripubertal children [48], indicating the sex 

effect on ghrelin regulation. However, postmenopausal women, with the sharp decrease in 

female sex hormones, demonstrate a close association of ghrelin with testosterone, which 

diminishes the sex difference in circulating ghrelin [49]. These findings indicate an age 

effect on the patterns of sex-related ghrelin regulation and further address our observations 

of no sex effect on ghrelin in the tested mice at old ages. In this regard, we cautiously 

postulate that ghrelin dysregulation may have deleterious impact on patients with late-onset 

AD regardless of their sexes, which also instigates our interest to investigate the impact of 

ghrelin dysregulation on patients with early-onset AD, who develop AD symptoms early in 

life, in our future study.

Our current observations of the deleterious impact of ghrelin elevation on GHSR agree with 

previous reports of GHSR desensitization due to agonist-induced GHSR overstimulation 
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[50] and thus have further deepened our understanding of ghrelin system deregulation 

in AD pathogenesis. In fact, such an agonist-induced receptor deactivation is not unique 

to GHSR and frequently occurs to many other types of GPCRs. For instance, it is a well-

recognized clinical problem in the management of Parkinson’s disease (PD) that PD patients 

under the long-term treatment of dopamine receptor agonists such as levodopa demonstrate 

the “wearing-off” phenomenon due to increased dopamine receptor desensitization 

via internalization, resulting in the reemergence of symptoms [51–53]. Indeed, most 

GPCRs follow a sequence of agonist-induced activation, internalization/desensitization, and 

resensitization in physiology [26]. However, the deleterious impact of ghrelin overactivation-

induced GHSR defects determined in this study together with the aforementioned levodopa-

induced “wearing-off” phenomenon [51–53] support the previously documented notion that 

the physiological regulation of GPCRs is disrupted when they are persistently activated 

by loss of vacillatory ligand stimulation, eventually leading to receptor exhaustion [26]. 

Another outstanding example to reflect the different regulation of GPCRs in response 

to agonist-induced transient activation versus continuous overstimulation is the clinical 

applications of leuprolide, a synthetic analogue of gonadotropin-releasing hormone (GnRH) 

[54]. In contrast to the luteinizing hormone (LH)- and follicle stimulating hormone (FSH)-

promoting effects of transient use of the drug, long-term administration of leuprolide, which 

demonstrates clinical benefits for the management of sex hormone-sensitive cancers such 

as the breast and prostate cancers, desensitizes gonadotropin-releasing hormone receptor 

(GnRHR), thus leading to LH and FSH suppression [54–57]. Therefore, together with the 

deleterious impact of ghrelin deficiency on hippocampal function [5], our findings support 

that ghrelin overactivation is an AD-associated pathological event that adversely induces 

GHSR desensitization, at least, in the hippocampus and further highlight the importance of 

ghrelin homeostasis to hippocampal fitness.

Of note, previous findings [16] and our observation have raised an interesting question 

of the mechanisms of disrupted ghrelin homeostasis towards overactivation in AD-related 

conditions. Consistent with the previous report in patients [16], we did not find any change 

in total ghrelin in aged hAβ KI mice, suggesting unaffected production of ghrelin. To this 

end, the most possible reasons for ghrelin abnormality are increased ghrelin activation 

via acylation or decreased ghrelin deactivation via deacylation or both in AD-related 

conditions. GOAT, also known as membrane bound O-acyltransferase domain containing 

4, which is encoded by the MBOAT4 gene, is so far the only determined specific enzyme 

that activates ghrelin through a post-translational acylation modification [58–60]. However, 

whether the expression and/or activity of GOAT in AD is changed is, to date, poorly 

investigated and thus endorses our future studies on the functional status of GOAT in this 

neurodegenerative disorder. In contrast to the explicit pathway of ghrelin activation, the 

mechanisms of ghrelin deacylation still remain elusive. Butyrylcholinesterase (BChE) is 

a determined major enzyme responsible for ghrelin deacylation [61]. An association of 

BChE with AD pathogenesis has been suggested. In addition to the intertwined relationship 

between BChE, amyloid plaques [62], iron deregulation [63] and apolipoprotein E (ApoE) 

[64] in AD-relevant pathological settings, a genetic variant of BChE, which impairs BChE 

expression and activity, has been arguably associated with AD risk [65–67]. In this context, 

we cannot fully exclude the possibility that BChE may play a role in promoting ghrelin 

Tian et al. Page 9

J Alzheimers Dis. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deregulation in AD. Furthermore, there is increasing recognition of the interactions between 

ghrelin system and AD-associated pathological molecules including Aβ and pathological 

tau [3, 68, 69]. Although whether Aβ and/or tau may affect ghrelin regulation remains 

uncharacterized, given the presence of circulating Aβ and pathological tau in AD patients 

[70–72], we cannot refute the possibility that Aβ and/or pathological tau may exert influence 

on ghrelin activation and deactivation in direct or indirect manners. All these outstanding 

questions need to be addressed in further comprehensive studies.

Lastly, the neurotrophic property of ghrelin [5, 6, 13, 33, 73] has promoted the research 

interest in the therapeutic potential of ghrelin or its synthetic mimetics for the management 

of AD. [74, 75]. However, current attempts to treat AD using ghrelin or its mimetics have 

shown mixed results. In contrast to a protective effect of ghrelin or its mimetics in mitigating 

brain pathology in some mouse experiments [76–79], studies of both ours and others 

reported opposite results [3, 4, 80]. Indeed, debate on the therapeutic potential of ghrelin 

for AD treatment may have been resolved by a 12-month large-scale clinical trial which 

used MK 0677, a synthetic ghrelin mimetic to treat AD patients in different stages and 

reported no clinical benefit [81]. Our current findings of ghrelin elevation and its deleterious 

impact on hippocampal GHSR have provided further experimental evidence against the 

usefulness of ghrelin and its mimetics for AD management. In fact, previous reports of 

the poor performance of ghrelin mimetics supplementation [3, 4, 81] and our current study 

support that ghrelin system-targeting strategies solely using ghrelin or its mimetics should be 

avoided from AD treatment regimen.

In summary, our current study suggests that ghrelin elevation is not a beneficial but 

rather a pathological phenomenon that undesirably contributes to hippocampal GHSR 

dysfunction and resultant ghrelin resistance, leading to impaired GHSR signaling-dependent 

hippocampal synaptic modulation in AD-relevant pathological settings. The unaffected 

ghrelin regulation in mice with loss of GHSR function further refutes the possibility that 

ghrelin elevation is an adaptive change to compensate for GHSR dysfunction in AD. It 

should be noted that our recent study showed imbalanced ghrelin/LEAP2 towards LEAP2 

effect and its association with age-associated cognitive decline in nondemented elderly and 

aging mice [20], representing another form of ghrelin system dysregulation in an aging 

setting. However, such a normal aging-related phenotype was not seen with hAβ KI mice 

although aged hAβ KI mice displayed a slight but not statistically significant increase in 

their LEAP2 levels. A possible explanation is that the mice used in this study were not 

adequately aged to 30 months old as we used before to demonstrate the age effect. In 

addition, we cannot rule out the possibility that ghrelin elevation, which is not an age-but 

AD-related change, may interfere with LEAP2 and break ghrelin/LEAP2 balance towards 

ghrelin effect in AD-related conditions. In this regard, although normal aging and dementia 

share hippocampal GHSR dysfunction in common, the two scenarios may have distinct 

mechanisms causing GHSR changes. This symbolizes the difference in the pathophysiology 

between normal and pathological aging and signifies the diagnostic potential of ghrelin 

and LEAP2 measurement in differentiating age-associated cognitive decline and memory 

loss in AD, especially in its early or prodromal stage. Nevertheless, our findings support 

the contribution of ghrelin system dysregulation, to be specific, ghrelin elevation to AD 

pathogenesis. Therefore, it would be of paramount importance to delineate the molecular 
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mechanisms of ghrelin deregulation in AD-related conditions, which will not only foster 

us a better understanding of ghrelin system in AD pathogenesis but also have the potential 

to advance the development of practical avenues to restore ghrelin homeostasis for the 

prevention and treatment of this devastating neurological disorder.
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Fig. 1. 
Elevated plasma ghrelin in 24-month-old hAβ KI mice. A, B) Plasma ghrelin level in 

(A) 14- and (B) 24-month-old hAβ KI mice and the nonTg controls. Unpaired two-way 

Student’s t test. 14-month-old nonTg n = 7 males, 4 females, hAβ KI n = 4 males, 4 females; 

24-month-old nonTg n = 4 males, 2 females, hAβ KI n = 4 males, 2 females. C, D) Plasma 

total ghrelin level in (C) 14- and (D) 24-month-old hAβ KI mice and the nonTg controls. 

Unpaired two-way Student’s t test. 14-month-old nonTg n = 7 males, 4 females, hAβ KI n 
= 5 males, 4 females; 24-month-old nonTg n = 3 males, 2 females, hAβ KI n = 3 males, 

3 females. E, F) Plasma LEAP2 level in (E) 14- and (F) 24-month-old hAβ KI mice and 

the nonTg controls. Unpaired two-way Student’s t test. 14-month-old nonTg n = 7 males, 4 

females, hAβ KI n = 5 males, 4 females; 24-month-old nonTg n = 3 males, 2 females, hAβ 
KI n = 5 males, 4 females. NS = not significant, **p < 0.01. Females: filled circles, males: 

open circles.
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Fig. 2. 
Deregulated hippocampal GHSR and synaptic function in 24-month-old hAβ KI mice. A, 

B) Hippocampal GHSR level in (A) 14- and (B) 24-month-old hAβ KI mice and the 

nonTg controls. Unpaired two-way Student’s t test. 14-month-old n = 3 males, 2 females; 

24-month-old n = 2 males, 2 females. Bottom panels are the representative images, scale 

bar = 200 μm (inset scale = 30 μm). C, D) Hippocampal GHSR/β-arrestin 2 complex level 

in (C) 14- and (D) 24-month-old hAβ KI mice and the nonTg controls. Unpaired two-way 

Student’s t test. 14-month-old n = 2 males, 2 females; 24-month-old nonTg n = 3 males, 

2 females, hAβ KI n = 2 males, 2 females. Bottom panels are the representative images, 

scale bar = 250 μm (inset scale = 50 μm). E, F) Hippocampal GHSR/DRD1 complex level 

in (E) 14- and (F) 24-month-old hAβ KI mice and the nonTg controls. Unpaired two-way 
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Student’s t test. 14-month-old n = 2 males, 2 females; 24-month-old n = 2 males, 2 females. 

Bottom panels are the representative images, scale bar = 250 μm (inset scale = 50 μm). 

G, H) Hippocampal CamKII activation in (G) 14- and (H) 24-month-old hAβ KI mice 

and the nonTg controls represented by CamKII Thr286 phosphorylation. Unpaired two-way 

Student’s t test. 14-month-old nonTg n = 2 males, 2 females, hAβ KI n = 3 males, 2 females; 

24-month-old nonTg n = 2 males, 2 females, hAβ KI n = 3 males, 2 females. Bottom 

panels are the representative images, scale bar = 30 μm. I, J) Hippocampal synaptic density 

in (I) 14- and (J) 24-month-old hAβ KI mice and the nonTg controls represented by the 

overlap of presynapse marker vGlut1 and postsynapse marker PSD95. Unpaired two-way 

Student’s t test. 14-month-old nonTg n = 2 males, 2 females, hAβ KI n = 2 males, 2 females; 

24-month-old nonTg n = 2 males, 2 females; hAβ KI n = 2 males, 1 female. Bottom panels 

are the representative images, scale bar = 100 μm (inset scale = 10 μm). NS = not significant, 

*p < 0.05. Females: filled circles, males: open circles.
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Fig. 3. 
Unaltered ghrelin activation in GHSR null mice. A) Representative genotyping result of 

adult GHSR null mice and the nonTg littermate. B) Plasma activated ghrelin in GHSR null 

and nonTg control mice. Unpaired two-way Student’s t test. nonTg n = 9 males, 10 females, 

GHSR null n = 4 males, 8 females. C) Plasma total ghrelin in GHSR null and nonTg control 

mice. Unpaired two-way Student’s t test. nonTg n = 9 males, 10 females, GHSR null n 
= 4 males, 8 females. D) Plasma LEAP2 level in GHSR null and nonTg control mice. 

Unpaired two-way Student’s t test. nonTg nonTg n = 9 males, 10 females, GHSR null n = 4 

males, 8 females. E) Body weight of GHSR null and nonTg control mice. Unpaired two-way 

Student’s t test. nonTg n = 9 males, 10 females, GHSR null n = 4 males, 8 females. NS = not 

significant. Females: filled circles, males: open circles.
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Fig. 4. 
Long-term ghrelin treatment-induced GHSR desensitization in hippocampal neurons. A) 

Cell surface GHSR intensity in 5 min 1 μM or 10 μM ghrelin-treated hippocampal neurons. 

Unpaired two-way Student’s t test. vehicle n = 17, 1 μM n = 20, 1 μM n = 20 neurons. 

Bottom panels are the representative images, scale bar = 40 μm. B) GHSR/β-arrestin 2 

complex level in 5min 1 μM or 10 μM ghrelin-treated hippocampal neurons. Unpaired 

two-way Student’s t test. n = 11 neurons each group. Bottom panels are the representative 

images, scale bar = 20 μm. C) CamKII activation in 5 min 1 μM or 10 μM ghrelin-treated 

hippocampal neurons. Unpaired two-way Student’s t test. n = 10 neurons each group. 

Bottom panels are the representative images, scale bar = 30 μm. D) Synaptogenesis in 5min 

1 μM or 10 μM ghrelin-treated hippocampal neurons. Unpaired two-way Student’s t test. 

vehicle n = 8, 1 μM n = 8, 1 μM n = 10 neurons. Bottom panels are the representative 

images, scale bar=10 μm. E) Cell surface GHSR intensity in 24h 1 μM or 10 μM ghrelin-

treated hippocampal neurons. Unpaired two-way Student’s t test. vehicle n = 17, 1 μM n = 
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23, 1 μM n = 23 neurons. Bottom panels are the representative images, scale bar = 40 μm. 

F) GHSR/β-arrestin 2 complex level in 24h 1 μM or 10 μM ghrelin-treated hippocampal 

neurons. Unpaired two-way Student’s t test. n = 11 neurons each group. Bottom panels 

are the representative images, scale bar = 20 μm. G) CamKII activation in 24h 1 μM or 

10 μM ghrelin-treated hippocampal neurons. Unpaired two-way Student’s t test. n = 10 

neurons each group. Bottom panels are the representative images, scale bar = 30 μm. H) 

Synaptogenesis in 24h 1 μM or 10 μM ghrelin-treated hippocampal neurons. Unpaired 

two-way Student’s t test. n = 8 neurons each group. Bottom panels are the representative 

images, scale bar = 10 μm. I) Hippocampal cell membrane GHSR of MK 0677- and 

vehicle-treated nonTg mice. Unpaired two-way Student’s t test. n = 3 males, 2 females each 

group. Bottom panels are the representative images. J) Hippocampal synaptic density of 

MK 0677- and vehicle-treated nonTg mice. Unpaired two-way Student’s t test. nonTg n = 

2 males, 2 females, MK 0677 n = 3 males, 2 females. Bottom panels are the representative 

images, scale bar = 100 μm (inset scale = 10 μm). NS, not significant; *p < 0.05, **p < 0.01, 

***p < 0.001. Females: filled circles, males: open circles.
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