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Abstract

Quantitative microscopy is a powerful method for performing phenotypic screens from which 

image-based profiling can extract a wealth of information, termed profiles. These profiles can 

be used to elucidate the changes in cellular phenotypes across cell populations from different 

patient samples or following genetic or chemical perturbations. One such image-based profiling 

method is the Cell Painting assay, which provides morphological insight through the imaging 

of eight cellular compartments. Here, we examine the performance of the Cell Painting assay 

across multiple high-throughput microscope systems and find that all are compatible with this 

assay. Furthermore, we determine independently for each microscope system the best performing 

settings, providing those who wish to adopt this assay an ideal starting point for their own assays. 

We also explore the impact of microscopy setting changes in the Cell Painting assay and find that 

few dramatically reduce the quality of a Cell Painting profile, regardless of the microscope used.
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Introduction

The drug discovery process poses a plethora of challenges, often requiring a specialized 

combination of solutions. In the early stages of drug discovery, target-based or phenotypic-

based approaches can be used to find promising compounds to take forward [1–3]. 

Phenotypic screens can capture information from vastly complex biological systems and 

provide a wealth of insight, for example when treating a disease model with a panel of 

drugs to determine compounds that elicit the desired outcome. The molecular targets of any 

promising compounds identified through phenotypic screens can then later be elucidated by 

target deconvolution.

Cell Painting is a phenotypic assay that can be performed at a cost of approximately 26 cents 

per well for staining reagents at scale in both academia and industry [4,5]. Information-rich 

data is extracted by imaging eight internal cellular structures using six fluorescent stains, 

typically over five channels. Across all of these imaged compartments, thousands of features 

(such as nucleus area, cell shape, staining intensity and more) can be recorded using 

CellProfiler [6]; alternately, trained deep learning networks can extract features that are 

more powerful but currently less interpretable [7]. Collections of either type of features are 

termed profiles [8,9]. These profiles can then be used to elucidate a compound’s mechanism 

of action by comparing the profile of one compound that has a known mechanism of action 

with another compound that has an unknown mechanism. Measuring thousands of features 

at this scale in an unbiased way is known as profiling, which contrasts with screening 

methods where scientists select individual biologically relevant features of interest. The 

Cell Painting assay encapsulates a vast wealth of nuanced information about cell state 

following treatment creating a global view of the cell’s phenotype, rather than a view that is 

constrained by the preconception of what is expected [10,11]. An approach like this allows 

virtual drug discovery; for example, the morphological profile of a particular treatment can 

be queried against other publicly available morphological profiles to reveal perturbations 

that lead to a similar, or opposing, phenotype [12]. Alternatively, deep learning models can 

learn to predict assay outcomes for compounds using image-based profiles [13].

In 2019, a collaboration between pharmaceutical companies, non-profit organizations, 

microscope vendors and several more supporting companies, collectively known as the Joint 

Undertaking for Morphological Profiling (JUMP) Cell Painting Consortium, was organized. 

Its goals were to generate a rich trove of imaging data to deepen our understanding of the 

information that can be derived from Cell Painting images, while also creating a public 

resource for others to use [5]. The collaborative effort of academic and industry partners in 

this consortium aimed to reduce the long drug development cycle by making image profiling 

data open to all. This can in turn drive a new data-driven approach to drug discovery and 

help to reduce failures of promising compounds in the later stages of the discovery process.

To prepare for the creation of this large public data set, significant efforts were taken to 

optimize the Cell Painting assay, yielding version 3 of the Cell Painting protocol [14]. 

Those efforts included the creation of a positive control plate of annotated chemical 

compounds that would allow benchmarking of Cell Painting assay performance; this plate 
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(JUMP-MOA) contains four replicates each of 40+ pairs of mechanism-of-action-matched 

compounds, allowing for detection of technical quality in a single 384-well plate [14].

Here, we sought to develop recommendations for settings on multiple high-throughput 

microscopes from different vendors for the Cell Painting assay. The microscopes tested 

include those used by different partners in the JUMP Consortium who produced portions of 

the full dataset at various laboratory sites around the world. Our goal was to optimize the 

quality of data from a number of different microscopes from different manufacturers for the 

Consortium, and to be able to confidently recommend Cell Painting imaging settings to a 

broad variety of end users. Five microscope vendors captured images of the JUMP-MOA 

standard plates across multiple imaging settings, yielding approximately 450,000 images 

capturing 41 million cells with a combined size of ~6.7 TB involving 23 unique microscope 

setting combinations. We assessed what settings are the most influential and which have 

a comparatively lower impact in identifying wells treated with the same compound or 

with drugs that have a similar mechanism of action [15]. Our goal was not to compare or 

recommend particular instruments; as system configurations can widely vary and end users 

typically are constrained to use a pre-existing system at their institution. We rather hope 

to empower users of any microscope system to be able to quickly optimize conditions on 

whatever microscope they have access to.

Results and Discussion

We explored the best performing microscope settings combinations to determine best 

settings for the Cell Painting assay across multiple microscope systems and find that 

all microscopes tested are fully compatible with the Cell Painting assay. The best 

performing setting combinations for each microscope are summarized in Tables 1–5. Each 

“leaderboard” is normalized to the best-performing settings for that microscope and the top 

scores for all microscopes fall within 6.7% of each other prior to normalization. We used 

two profile quality metrics: percent replicating (what proportion of compounds correctly 

match replicates of itself) and percent matching (what proportion of compounds correctly 

match another compound annotated with the same mechanism of action, MOA), hereafter 

collectively referred to as profile strength. In tables 1–5, both percent matching and percent 

replicating are averaged and the best performing setting combination for a given microscope 

is set to 100% to create the metric called percent score. We additionally sought to tease out 

any common effects that particular settings have. However, as each vendor independently 

determined the parameters they wished to test, in many cases we could not conclusively 

study the effects of individual settings in isolation. Nevertheless, we examined several 

imaging variables, recognizing that the available data usually did not test each setting 

independently.

Researchers must typically evaluate a tradeoff when selecting an objective for a new 

imaging assay. While higher magnification objectives, especially at higher numerical 

apertures (NA), can capture more detail, they cover a smaller field of view and thus require 

more acquisition sites (and thus longer imaging time) to image the same number of cells 

when compared to lower magnification objectives. We initially found that data sets taken 

with 20X magnification objectives typically yielded better profile strength when compared 
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to data sets taken with 10X or 40X objectives (Figure 1A). We also found that experiments 

that imaged three or more sites per well tended to have an increased profile strength (Figure 

1B, Figure S1BC). The objective NA did not appear to yield a difference in our sample 

(Figure S1A). We also observe that percent matching for individual plates often has the same 

percent matching value as other plates (Figure 1AB). This behavior is due to there being 

only 43 MoA classes with more than one member that can be compared to find a match, 

thus limiting the total number of combinations that can be made when compared to the 90 

replicates in the case of the percent replicating metric. Additionally, we find that percent 

matching scores are in a low 16–26% range. Finding MoA matches from image features 

alone is a remarkably difficult task [12]. A contributor to making this task challenging 

can be drug polypharmacology, leading to the induction of different cellular morphologies 

despite drugs being reported to have the same MoA. In contrast, percent replicating achieves 

much higher scores due to cells being treated with identical compounds. We also see that 

alternative metrics, such as mean average precision, report somewhat higher values, while 

being well correlated with the main metrics used here (Figure S2AB).

Previous publications [14] and internal data (Way, Singh, and Carpenter, personal 

communication) have shown that increasing the number of cells per well improves the 

number of detectable phenotypes. While we observe a positive relationship between site 

count and profile strength, which could be indicative of taking an improved “sample” of a 

well (ie. more sites, which can better reveal variations present within a population of cells, 

such well-edge and center related effects), it could also be a result of imaging more cells. 

Indeed, in line with previous results we do find that imaging more cells typically leads to a 

higher profile strength whether measured by percent replicating (Figure 1CD, Figure S1D) 

or percent matching (Figure S1E).

In order to uncouple the existing inverse relationship present between magnification and 

cell count, we artificially subsampled profiles that contained more than one acquisition site 

to all pre-existing site counts (1, 2, 3, 4), creating profiles that had site counts lower than 

their original (Figure 1CD). While this subsampling does not entirely remove the association 

between cell count, it allows us to simulate performance across a wider range of cell counts 

for each magnification than were present in the original data. Here, we see that profile 

strength increases in tandem with cell count until approximately one million cells per plate 

(approximately 2,500 cells per well) where we see a mild leveling off. We also show that 

this effect holds for individual plate profiles: when subsampling the 49 profiles with at least 

3 sites per well, 46 show a positive Pearson correlation coefficient between the number of 

cells in the profile and percent replicating (median: 0.848)(Figure S3AB). These results are 

consistent with a prior study with controlled variables that found profile strength eventually 

levels off as a greater sample of a well is taken [14]. This likely explains the low profile 

strength for 40X as this magnification does not reach a cell count high enough to observe 

profile leveling-off. While there may be a difference between 10X and 20X in the 0.5 to 1 

million cell count range, we cannot be certain based on the data examined here. We also 

explored the impact objective immersion has on profile strength and find that water seems 

to perform better than air, but this setting is difficult to detangle from other settings, such as 

the magnification used (Figure S4A). These results show that, to the degree measurable here, 

that having sufficient cell count is more important than the details of the objective chosen 
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for overall ability to detect phenotypic signatures. Thus, researchers can feel free to choose 

the settings that are optimal based on other possible considerations (imaging time, ability 

to match to existing data, detection of a particular organelle phenotype, etc). We therefore 

recommend aiming to acquire ~2,500 cells per well.

We next sought to explore the impact of imaging modalities (confocal vs widefield 

microscopy) as well as detector binning on profile strength. To control for vendor-to-vendor 

differences, this was examined for a single vendor who had adjusted both settings within 

their data sets. Another vendor who tested confocal vs widefield but not binning is shown in 

Figure S4B. While binning combines adjacent pixels, leading to a decrease in the effective 

pixel size and thus resolution, we find that increased binning has little impact on profile 

strength in the contexts of confocal and widefield microscopy (Figure 2AB) using a 20X 

magnification 1.0NA objective. This indicates that there appears to be no loss in ability to 

discern overall phenotypic signatures between an effective pixel size of approximately 0.3 vs 

0.6 μm. This indicates binning may be especially attractive in particularly large screens due 

to its typically shorter image acquisition times, reduced file sizes (up to 4-fold for increasing 

detector binning from 1 to 2), and faster image processing. We also compared detector 

binning using the alternative metric mean average precision for replicates and MoA matches 

and found no significant difference between the performance of these two settings (Figure 

S5AB).

We next examined the influence of the number of z-planes on profile strength by comparing 

single-plane acquisition to multiplane acquisition followed by maximum projection. We 

found that capturing three z-planes in confocal and widefield microscopy has minimal 

impact on profile strength compared to a single plane, suggesting that this may be an 

unnecessary complexity added to Cell Painting imaging workflows (Figure 2CD). However, 

it is important to note that the U2OS cells imaged here have a flat morphology, so other less 

flat cell lines may benefit from additional z-planes. We additionally confirmed using mean 

average precision as an alternative metric that there is no statistically significant difference 

between one and three z-planes in finding replicate perturbations or MoA matching 

perturbations (Figure S5CD). Collectively, these results reveal that the computational cost of 

image processing, storage and acquisition time can be optimized for the Cell Painting assay 

by increasing detector binning to 2 and reducing the number of z-planes acquired to a single 

plane.

We next sought to characterize spectral filter effects on image-based profiles. Typically, 

the Cell Painting assay involves adding six dyes to cells but performing only five-channel 

imaging due to the difficulty of spectrally separating two of the dye conjugates (Phalloidin/

Alexa Fluor 568, which binds to actin, and Wheat-germ agglutinin/Alexa Fluor 555, 

which binds to the Golgi apparatus and the plasma membrane). This creates the final 

five effective channels of DNA, endoplasmic reticulum (ER), nucleoli + cytoplasmic RNA 

(RNA), actin + Golgi + plasma membrane (AGP), and mitochondria (Mito)[4]. Two of 

these channels (ER and RNA) still share significant spectral similarity but can often be 

spatially resolved. While the majority of profiles tested used a five-channel acquisition, 

some omitted taking a separate acquisition of the RNA channel for four total channels and 

some used alternate filter sets (see Table 6) to separate the AGP channel into actin and Golgi 
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+ plasma membrane channels. Unsurprisingly given their close spectral similarity, we find 

the separated actin and Golgi + plasma membrane channels correlated more strongly with 

one another than with other channels (Figure S6). We find that six-channel profiles (in which 

Actin is attempted to be spectrally separated from the Golgi and plasma membrane) did not 

have any apparent advantage over five-channel profiles (Figure 3A), and therefore find little 

benefit in attempting this separation unless the researcher is particularly interested in aspects 

of actin and Golgi biology and wants to study individual phenotypic measurements of these 

dyes.

We found that some profiles from four-channel acquisitions had reduced profile strength 

(Figure 3A). This result was surprising, given that the dye from the dropped channel (RNA) 

is typically visible in an alternate channel (ER) and that previous results showed minimal 

effect of dropping measurement of any channel from the Cell Painting panel [14]. To 

resolve this discrepancy, we artificially dropped measurements of the RNA channel from 

profiles which had originally imaged RNA. Consistent with our prior results from a single 

microscope, we find that artificially dropping RNA features, and thus reducing the number 

of channels in these profiles, does not noticeably impact profile strength across a sample 

containing profiles taken on multiple microscopes with multiple spectral setups (88.7% and 

89% normalized and mean aggregated percent scores for +RNA and −RNA, respectively) 

(Figure 3B). We also evaluated the performance of finding replicates and MoA matches 

using mean average precision as an alternative metric for RNA channel dropout and found 

that replicate retrieval is significantly impacted by RNA dropout but MoA matching is not 

(Figure S7AB). This suggests that the reduction in profile strength for the poorly performing 

aforementioned four-channel profiles could in part be due to a lack of distinct RNA channel 

but further investigation is needed. Alternatively, since these profiles come from a single site 

per well, the low performance of the 4-channel profiles could be due to insufficiently high 

cell count.

One vendor explored using simultaneous excitation, which involves using a system with 

multiple cameras to capture Cell Painting fluorescence, a process that reduces imaging 

time. Two different simultaneous excitation setups were tested: two-channel simultaneous 

excitation was performed on the following channel combinations: endoplasmic reticulum 

+ AGP, mitochondria + RNA, and DNA alone, while four-channel simultaneous excitation 

was performed on the following channel combinations: DNA + endoplasmic reticulum + 

AGP + mitochondria, and RNA alone. Filter sets used can be found in Table 6. Profiles 

generated using four-channel simultaneous excitation minimally impacted profile strength 

when compared to two-channel, suggesting that simultaneous excitation could be a good 

additional setting to explore if the imaging system being used supports it (Figure 4A). 

However, the potential of significant spectral overlap in simultaneous excitation led us 

to explore if bleedthrough could be observed in the resulting images. Indeed, we find 

clear bleedthrough of signal between channels, namely DNA signal into the endoplasmic 

reticulum channel in 4 channel simultaneous excitation images (Figure 4BC, Figure S8). 

Interestingly, this suggests that overall phenotypic profile separation is relatively insensitive 

to dye bleedthrough, but this should be interpreted with caution in the absence of evaluation 

with a larger set of compounds or a more challenging task. Furthermore, an increase in 
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bleedthrough comes with decreased ability to investigate the source of individual feature 

changes, reducing the accuracy of biological insight that can be derived from the assay.

We finally examined how profile strength was impacted by the presence or absence of 

brightfield images. Unlike the analysis of fluorescent channel z-stacks, which involved 

maximum projection, brightfield analysis selected a single channel in the middle of the z-

stack, corresponding to the plane of best focus. We find that profiles that include brightfield 

data do not necessarily yield a greater profile strength than those where brightfield data 

is absent (Figure 5A). We next examined if the profile strength could be improved by 

removing brightfield features from profiles that originally included this information. We 

find that dropping the brightfield channel from profiles prior to feature selection has little 

impact on profile strength (Figure 5B). Profiles with brightfield features had a normalized 

mean-aggregated percent score of 88% whereas profiles with brightfield features dropped 

had a score of 92.7%. We also find that when brightfield channel dropping is examined 

using mean average precision as an alternative metric, there is no statistically significant 

impact on ability to find MoA replicates or MoA matches (Figure S7CD). While this 

may suggest that excluding brightfield image acquisition could be considered to improve 

imaging time, work has previously shown that these images can hold additional insight with 

more intensive image processing [16]. As these methods may improve in the future, we 

recommend capturing brightfield for high value public image sets.

Conclusion

In this work we have established the relative performance of various setting configurations 

across a range of different microscopes for the Cell Painting assay, allowing users to start 

from an already-optimized set of conditions when beginning to optimize this assay on their 

own equipment. We hope that these comparisons, as well as our overall recommendations, 

give confidence to those wishing to adopt the assay, especially as they reveal that there 

are very few microscopy settings that dramatically decrease the quality of a Cell Painting 

profile no matter which microscope you happen to use. Deeper exploration into the data also 

revealed that some settings have a greater impact on the Cell Painting assay than others. We 

have found that setting choices that increase the cell count, such as decreased magnification 

and increased number of sites, typically has a positive impact on profile strength. However, 

due to the interconnected nature of these settings with cell count, it is difficult to clearly 

conclude those which impact profile strength the most. We also found that simultaneous 

excitation of four channels leads to bleedthrough in the Cell Painting assay, which can 

negatively impact interpretation of image-derived features in downstream analysis.

We also found that some settings have a comparatively lower impact on the Cell Painting 

assay, such as the number of z-planes acquired and detector binning. The number of z-planes 

can be reduced and detector binning increased with little impact on profile strength, both of 

which can also afford faster image acquisition. Differences in imaging modality, confocal 

and widefield, also minimally impact the Cell Painting assay. Additionally, we see no 

detectable difference when brightfield features are included or removed from profiles, but 

this does not necessarily suggest that brightfield image acquisition should be excluded 

from imaging assays completely. Developing work is beginning to reveal that deep learning 
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can provide deeper insight into brightfield images. Recently, it was reported that all five 

fluorescent channels of a Cell Painting assay can be predicted from the brightfield channel 

alone [16]. Thus, the brightfield images from an assay could be repurposed at a later date to 

yield additional insight through label free imaging.

As a final note, while our comparison metrics shown here describe the ability to match 

compounds and treatments across a broad range of phenotypes, many research applications 

are not solely about the ability to detect many phenotypes but also the ability to detect 

one special phenotype of interest. Figure S9A shows examples of images from DMSO 

and AMG900 treatments which show general reproducibility in these experiments, but also 

show strong changes in particular individual metrics. If individual metrics or phenotypes are 

important to a user’s application, care should be taken to ensure the settings chosen allow 

good signal-to-noise in the user’s preferred feature; features (Figure S10A–E) and feature 

classes (Figure S11AB) will vary substantially in their sensitivity to changes in imaging 

parameters. Since Cell Painting’s general profiling ability performs well across a broad 

range of imaging parameters, users can therefore feel confident that optimizations tailored to 

their most-preferred specific phenotypes should typically not materially harm their ability to 

create useful multidimensional Cell Painting profiles.

Taken together, a general set of recommendations for the Cell Painting assay could be: to 

capture five fluorescent channels and brightfield using a magnification of 20X across four 

to nine sites or ~2,500 cells per well, whichever comes first. An increase in binning and a 

reduction in z-planes can also be explored, depending on the unbinned pixel size and the 

resolution of any features that are especially interesting to the researcher performing the 

assay. When following these basic guidelines, Cell Painting can be a powerful tool capable 

of detecting many phenotypes, across many different kinds of microscopes.

Methods

Cell Culture and small molecule treatment

Approximately 2,000 U2OS cells (ATCC cat. no. HTB-96, https://scicrunch.org/resolver/

RRID:CVCL_0042) were seeded into each well of a 384-well plate. Cells were then allowed 

to settle at RT for 1–2 hours to reduce plate effects.

Cells were treated with compounds as found in the JUMP-MOA plate at a final 

concentration of 3μM. The JUMP-MOA plate layout enables testing of 90 compounds from 

47 distinct MOA classes and each compound has 4 replicate wells; see [14] and links within.

Immunofluorescence

20 μL of mitochondrial staining solution (1.5 μM in cell media which dilutes to a final 

concentration of 500 nM. MitoTracker Deep Red, Invitrogen M22426) was added to directly 

each well of the 384-well plate prior to media aspiration to achieve a final well volume 

of 60 μL. Plates were then incubated in the dark at 37°C for 30 minutes. Cells were then 

fixed by adding 20 μL of 16% (w/v) methanol-free paraformaldehyde (PFA) to each well, 

bringing the final volume to 80 μL with a concentration of 4% w/v PFA. Plates were then 

incubated in the dark at RT for 20 minutes. Wells were then washed with 70 μL of 1x HBSS 
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(Invitrogen, 14065–056) 4 times with the final HBSS wash being aspirated. To each well, 

20 μL of staining and permeabilization solution was added (1% BSA, Sigma 05470; 0.1% 

Triton X100, Sigma T9284; 1 μg/mL Hoechst, Invitrogen H3570; 100 μg/mL concanavalin 

A/Alexa Fluor 488, Invitrogen C11252; 3 μM SYTO 14, Invitrogen S7576; 1.5 μg/mL 

WGA/Alexa Fluor 555, Invitrogen W32464; 8.25 nM phalloidin/Alexa Fluor 568, Invitrogen 

A12380) and incubated in the dark at RT for 30 minutes. Wells were then filled with PBS, 

plates were then sealed using adhesive foil and shipped to vendor partners at 4°C for image 

acquisition.

Image acquisition

Each microscope vendor determined the optimal acquisition settings for their system. 

Individual setting combinations explored for a particular microscope system are summarized 

in Tables 1–5. Excitation and emission filter sets used for each microscope can be found in 

table 6.

Morphological feature extraction

Morphological features were extracted from images using CellProfiler. First, maximum 

z-projections were applied to any batches of images that contained more than one z-plane 

for fluorescent channels. For brightfield images, the middle z-plane of best focus was 

taken forward for subsequent analysis. Next, an illumination correction function was 

calculated independently for each channel and applied to all images within a given plate. 

Nuclei, cytoplasm and cells were segmented from which we then extracted colocalization, 

granularity, intensity, neighbor, size, shape and texture features.

Morphological profile generation

Features extracted by CellProfiler were combined into SQLite files using cytominer-

database [17] mean aggregated per-well using pycytominer [18]. Next, features were 

normalized followed by feature selection [19].This process resulted in morphological 

profiles for each plate that was imaged.

Data analysis

For each profile, percent replicating and percent matching were calculated. Briefly, these 

metrics can be determined by first calculating the null distribution from the correlation 

across features for 10,000 random (non-matching) wells. Then, the feature correlation 

distribution of replicate wells (percent replicating) or MOA matching wells (percent 

matching) is calculated. The percentage of the replicate or matching distribution that is 

above the 95th percentile of the null distribution is the percent replicating or percent 

matching score, respectively [15].

For calculating mean average precision scores (mAP) we used matric (https://github.com/

cytomining/evalzoo/tree/main/matric). We use mAP to assess: (1) replicate retrievability 

and (2) mechanism of action (MoA) matching. In both scenarios, mAP measures the 

average similarity within a group of profiles in comparison to their similarities to controls 

or other perturbations. Similarity calculation involves ranking profiles by cosine distance. 

For replicate retrievability, mAP indicates how well replicates of a compound can retrieve 

Tromans-Coia et al. Page 9

Cytometry A. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cytomining/evalzoo/tree/main/matric
https://github.com/cytomining/evalzoo/tree/main/matric


each other with respect to negative controls. For MoA matching, mAP shows how well 

compounds annotated with the same MoA can retrieve each other with respect to other 

compounds. For a more in depth description of mAP, see [5].

Marker selection was performed as described in [20]. In brief, feature selected profiles were 

loaded into Morpheus (available at https://software.broadinstitute.org/morpheus/) and t-test 

marker selection was performed between the DMSO and AMG900 treatments. The absolute 

values for the t-test statistic were sorted and the top 10 highest values are reported.

For feature sensitivity analysis, we performed 2-sample Kolmogorov-Smirnov tests [21] 

between pairs of plates using unnormalized, mean-aggregated profiles; each individual 

feature’s 384-well distribution was compared to the other plate’s 384-well distribution, and 

the p value of the comparison extracted. Since the goal was to compare relative rather than 

absolute feature sensitivity, no correction for multiple tests was performed. The per-feature 

p-values were averaged across all pairs of plates within an experimental group, which 

was either all plates from a particular vendor (Figure S11A), all plates from a particular 

vendor which had the same pixel size (Figures S10, S11B), or all plates from a particular 

vendor with the same pixel size and simultaneous excitation settings (Figure S10E). In 

Figure S10, per-feature measurements as described above were mean aggregated by cellular 

compartment, measurement module, and the base measurement type; all measurement types 

were then ranked.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

All images, single cell profiles and processed files are freely available in the Cell Painting 

Gallery https://registry.opendata.aws/cellpainting-gallery/ under cpg0002-jump-scope.
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Figure 1: 
Impact of magnification, number of imaged sites, and cell count on technical quality of the 

Cell Painting assay. Each data point represents one 384-well plate. Note that the data points 

are the same in A + B and in C + D but the color labeling changes in each.

(A) Comparison of objective magnification in the Cell Painting assay. Because all plates 

contain the same finite number of replicates and matches, some data points match exactly.

(B) Profile strength increases with the number of sites taken per well.

(C) An increase in cell count typically leads to an increase in profile strength, leveling off 

around one million cells. Plot includes artificially site-subsampled data. Cell count shown is 

sum across all wells.

(D) An increase in cell count and profile strength is associated with an increase in the 

number of sites taken per well. Cell count shown is sum across all wells.
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Figure 2: 
Influence of detector binning and number of z-planes in confocal and widefield microscopy.

(AB) Increased detector binning from 1 to 2 has minimal impact on profile strength. 

Comparison of detector binning in confocal (A) and widefield (B) microscopy. Both 

widefield and confocal microscopes used the same 20X NA 1.0 lens. Error bars: SD, center 

of cross: mean for the indicated group.

(CD) Increasing the number of max-projected z-planes in confocal and widefield 

microscopy from 1 to 3 has little impact on profile strength.
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Figure 3: 
Exploring the technical impact of different channel setups for the Cell Painting assay.

(A) Comparison of four, five, and six channel imaging. Since all plates contain the same 

finite number of replicates and matches, some data points may match exactly.

(B) RNA features were dropped prior to feature selection and calculation of percent 

matching/replicating. Blue squares represent profiles prior to RNA feature dropout and 

orange Xs represent the same profiles following RNA feature dropout. Error bars: SD, center 

of cross: mean for a given group.
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Figure 4: 
Investigating how simultaneous excitation and spectral overlap can impact the Cell Painting 

assay.

(A) Simultaneous excitation of two channels can be utilized to improve image acquisition 

times, if available.

(BC) Representative images of either two- (B) or four-channel (C) simultaneous excitation. 

Nuclear signal in (C) can be observed bleeding through into the endoplasmic reticulum 

channel.
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Figure 5: 
Assessing if acquisition of brightfield images improves the technical quality of the Cell 

Painting assay.

(A) Comparison of profiles that either included or excluded brightfield image acquisition.

(B) Brightfield features were dropped from profiles prior to feature selection and calculation 

of percent replicating/matching.
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Table 1:

Molecular Devices ImageXpress Micro Confocal setting performance. The best performing settings within a 

vendor are set to 100% in the Percent Score column. This normalization was performed individually for each 

score type. Percent Score is the mean of Percent Replicating and Percent Matching for each individual profile 

prior to normalization. Duplicate setting combination scores are mean aggregated.

Place Modality Binning Magnification NA Number Of 
Channels Z Planes Sites Percent 

Replicating
Percent 

Matching
Percent 

Score

1 Widefield 1 20 0.75 6 1 9 100 100 100

2 Confocal 1 10 0.45 6 3 4 98.4 100 98.8

3 Widefield 1 10 0.45 6 1 4 88.5 100 91.5

4 Confocal 1 10 0.45 6 1 4 91.8 80 88.8

5 Confocal 1 20 0.75 6 1 9 86.9 90 87.7

6 Confocal 1 20 0.75 6 3 4 85.2 80 83.9
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Table 2:

Nikon Eclipse Ti2 inverted microscope setting performance. See Table 1 for description.

Place Modality Binning Magnification NA
Number 

Of 
Channels

Z 
Planes Immersion Sites Percent 

Replicating
Percent 

Matching
Percent 

Score

1 Widefield 1 20 0.75 4 1 dry 9 100 100 100

2 Widefield 1 10 0.45 4 1 dry 1 79.1 85.3 80.7
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Table 3:

Revvity Opera Phenix Plus setting performance. See Table 1 for description.

Place Modality Binning Magnification NA
Number 

Of 
Channels

Z 
Planes Immersion Sites Percent 

Replicaling
Percent 

Matching
Percent 

Score

1 Confocal 2 20 1 5 1 water 3 96.8 100 100

2 Widefield 1 20 1 5 1 water 3 97.2 97.5 99.6

3 Confocal 2 20 1 5 3 water 3 100 87.5 98.8

4 Widefield 2 20 1 5 1 water 3 95.9 97.5 98.6

5 Widefield 2 20 1 5 3 water 3 97.2 92.5 98.2

6 Widefield 1 20 1 5 3 water 3 97.2 90 97.5

7 Confocal 1 20 1 5 3 water 3 95.9 92.5 97.2

8 Confocal 1 20 1 5 1 water 3 94.5 90 95.5
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Table 4:

Yokogawa CQ1 setting performance. See Table 1 for description.

Place Modality Binning Magnification NA
Number 

Of 
Channels

Z 
Planes Immersion Sites Percent 

Replicating
Percent 

Matching
Percent 

Score

1 Confocal 1 20 0.75 5 10 dry 9 TOO 100 100

2 Confocal 1 40 0–
95 5 12 dry 2 75,9 80 77
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Table 5:

Yokogawa CV8000 setting performance. See Table 1 for description.

Place Modality Binning Magnification NA
Number 

Of 
Channels

Simultaneous 
Excitation

Z 
Planes Immersion Sites Percent 

Replicating
Percent 

Matching
Percent 

Score

1 Confocal 1 20 1 5 2 12 water 9 100 100 100

2 Confocal 1 20 1 6 4 12 water 9 91.7 100 93.8

3 Confocal 1 20 1 5 2 1 water 9 90 95 91–3

4 Confocal 1 10 0.4 6 2 12 dry 4 85 100 88.9

5 Confocal 1 20 1 6 1 12 water 9 88.3 80 86.2

6 Confocal 1 40 1 6 4 12 water 9 81.7 80 81.2
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Table 6:

Excitation and emission information for all microscopes tested.

Microscope Channel Excitation (nm) Emission (nm)

Molecular Devices - ImageXpress Micro Confocal

Nuclei 405 452/22.5

ER 470 520/14

RNA 520 562/20

Golgi 555 595/15.5

Actin 577 624/20

Mitochondria 640 681/12

Revvity - Opera Phenix Plus - Confocal

DNA 375 457.5/22.5

ER 488 515/15

RNA 488 532.5/17.5

AGP 561 600/30

Mito 640 705/55

Revvity - Opera Phenix Plus - Widefield

DNA 375 457.5/22.5

ER 488 515/15

RNA 488 600/30

AGP 561 600/30

Mito 640 705/55

Yokogawa - CQ1

DNA 405 447/60

ER 488 525/50

RNA 488 617/73

AGP 561 617/73

Mito 640 708/75

Yokogawa - CV8000

DNA 405 445/45

ER 488 525/50

WGA 561 600/37

Mito 640 708/75 (or 676/29)

RNA 488 600/37

Nikon - Eclipse Ti2

DNA 395/25 460/25

ER 470/24 535/20

RNA/AGP 555/25 620/30

Mito 640/30 670/25
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