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Summary

Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the 

functional roles of many loci remain unexplored. Here, we engineered isogenic knockout human 

embryonic stem cell lines for 20 genes associated with type 2 diabetes risk. We examined 

the impacts of each knockout on β-cell differentiation, functions and survival, and generated 
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gene expression and chromatin accessibility profiles on β cells derived from each knockout 

line. Analyses of T2D-association signals overlapping HNF4A-dependent ATAC peaks identified 

a likely causal variant at the FAIM2 T2D-association signal. Additionally, the integrative 

association analyses identified four genes (CP, RNASE1, PCSK1N and GSTA2) associated with 

insulin production, and two genes (TAGLN3 and DHRS2) associated with β-cell sensitivity 

to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific 

imbalance at variants heterozygous in the parental line and identified a single likely functional 

variant at each of 23 T2D-association signals.

Graphical Abstract

In brief

Xue et al. engineered and characterized isogenic knockout human embryonic stem cell lines for 20 

genes associated with type 2 diabetes risk. Integration of the genomic alterations and subsequent 

cellular assays in 20 hESC-β cells identifies genes affecting β-cell functionality and putative 

causal variants for type 2 diabetes.

Introduction

Type 2 diabetes (T2D) is a major contributor to the global burden of disease.1 It is 

characterized by impaired insulin secretion in pancreatic islet β cells and reduced insulin 

response in insulin-sensitive tissues.2 Despite success in identifying T2D-associated genetic 
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effects in recent large-scale genetic studies2-5, the challenge of understanding the molecular 

and cellular mechanisms driving these associations remains difficult.6 In those instances 

where a candidate effector gene is known, few of these genes have been investigated 

through detailed functional studies in model systems of disease relevant tissues.7,8 As the 

catalog of effector genes underlying T2D genetic association9-14 grows, the T2D research 

community needs efficient model systems to probe the molecular and cellular consequences 

of perturbations of these genes.

Given the pathophysiology of T2D, much current genetic evidence supports the central role 

of pancreatic β-cell development and dysfunction in T2D disease progression.9,15 Robust 

protocols to differentiate human pluripotent stem cells (hPSCs) into insulin producing β-like 

cells have enabled in vitro model systems to study β-cell development.16-18 Coupled with 

the advent of flexible gene-editing technologies19, genetically engineered hPSCs promise 

to be an effective toolkit to investigate the effect of T2D-implicated genes on β-cell 

dysfunction. Indeed, recent studies have begun to implement this model system to generate 

isogenic hPSC-derived pancreatic β-like cells and characterize the effect of T2D-implicated 

genes on β-cell differentiation, function, and survival.20-29 However, these efforts have thus 

far studied only a limited set of genes, with most studies focusing on one or a few genes at 

one time. The polygenic nature of T2D demands larger studies to probe candidate effector 

genes more comprehensively.

In this study, we employ an efficient CRISPR-based platform to generate isogenic knockout 

(KO) human embryonic stem cells (hESCs) across 20 T2D risk genes. We differentiate KO 

hESCs as well as two wildtype (WT) control hESCs into insulin-producing β-like cells 

(Figure 1A, Table 1). We then assess the effect of each KO across five different cellular 

phenotypes, including β-cell differentiation efficiency, insulin production and secretion, and 

β-cell survival after lipotoxic exposure. To understand the molecular mechanisms driving 

these differences, we generate gene expression and chromatin accessibility profiles of 

purified insulin-expressing β-like cells and characterize the transcriptional and epigenetic 

alterations caused by the loss of expression of each of these T2D-associated genes. 

Integrating functional traits and genomic alterations in 22 hESC-β and WT cells helps 

pinpoint putative likely causal variants and genes affecting β-cell functionality, providing 

valuable insights to the genetic architecture of T2D.

Results

Generation and functional characterization of isogenic T2D-KO hESC lines

We selected candidate T2D effector genes with various degrees of evidence in recent T2D 

genetic studies3,6,14,30-33, and prioritized 20 genes which showed detective expression in 

both primary human islet β cells and hESC-derived β cells (Table 1). We generated isogenic 

knockout lines using an INSGFP/w MEL1 hESC reporter line34 that enables the isolation 

of insulin-expressing cells by fluorescence-activated cell sorting (FACS). Two isogenic 

clones (labeled as #1 and #2), carrying either homozygous or compound heterozygous 

frameshift mutations (Figure S1), were identified for each T2D gene. For all target genes, 

we documented loss of function (LoF) mutations on both copies of the chromosome—except 

for CDC123, which was heterozygous LoF (CDC123 is a cell cycle protein; homozygous 
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LoF would impair cell division35,36). As controls for subsequent analyses, we selected two 

wild type (WT) clones—one of which was exposed to Cas9 without the targeting sgRNA, 

the other of which was the unexposed INSGFP/w MEL1 cells. We confirmed that each clone 

retained typical hESC colony morphology and expressed pluripotency markers, including 

OCT4, SSEA4, NANOG, and TRA-1-81 (Figure S2A).

We differentiated the 42 hESC lines (2 WT lines, 20 KO lines with 2 biological replicate 

clones of each KO line; Table S2) into pancreatic β-like cells (hESC-β cells). We performed 

live-cell imaging and observed variable representation of INS-GFP+ cells in KO lines 

(Figure 1B), suggesting that some of the T2D-associated genes affect differentiation. 

We further quantified the percent of GFP+ cells using flow cytometry and found that 

the COBLL1−/−, GIPR−/−, HNF4A−/−, TCF7L2−/−, TGFB1−/−, and TLE4−/− lines with 

impaired differentiation efficiency (P-value<0.05; Figure 1C, Figure S2B). Notably, for 

the TCF7L2−/− line, the effect on differentiation efficiency was so severe that we dropped 

this line from some of the subsequent functional experiments that required many β-like 

cells (e.g., insulin secretion assays and apoptosis assays). To rule out off-target effects, 

we performed whole genome sequencing of two TCF7L2−/− clones and two WT controls 

and did not detect any clonal mutations in 250 bp flanking regions of 2,513 predicted 

CRISPR-Cas9 off-target cleavage sites. Meanwhile, we further examined the stepwise 

differentiation of TCF7L2−/− hESCs and found that loss of TCF7L2 damages definitive 

endoderm development (Figure S2C-E). The compromised differentiation of the definitive 

endoderm in TCF7L2−/− cells would inevitably hinder the subsequent differentiation toward 

pancreatic β cells.

Next, we measured three insulin-related cellular traits: (i) insulin production; (ii) glucose 

stimulated insulin secretion (GSIS), and (iii) KCl stimulated insulin secretion (KSIS) on β 
cells derived from WT and KO hESCs. First, we measured the total intracellular insulin 

content in purified INS-GFP+ hESC-β cells, and detected decreased total intracellular 

insulin content in ABCC8−/−, APOE−/−, CDKAL1−/−, COBLL1−/−, GIPR−/−, HNF1A−/−, 
HNF4A−/−, HTT−/−, IGF2BP2−/−, SLC16A11−/−, TCF7L2−/−, TGFB1−/−, WDR13−/−, and 

WFS1−/− cells (P-value<0.05; Figure 1D). Next, we differentiated all of the lines apart 

from TCF7L2−/− into islet-like organoids (hESC-islets) and assessed insulin secretion index 

after stimulation with 20 mM glucose or with 30 mM KCl (Figure S3A). Multiple KO 

hESC-islets exhibited impaired response to high glucose (P-value<0.05; Figure 1E) while 

only ABCC8−/−, HNF1A−/−, HNF4A−/−, HTT−/−, KCNJ11−/− and WDR13−/− hESC-islets 

showed defective insulin secretion in response to KCl stimulation (P-value<0.05; Figure 1F).

As a final cellular phenotype, we evaluated the apoptotic rate of WT and mutant hESC-β 
by quantifying the population of AnnexinV+DAPI− cells in INS-GFP+ cells (Figure S3B). 

Under regular cell culture conditions, we did not observe differences in β-cell survival 

between WT and KO hESC-β cells (Figure S3C). Given the importance of pancreatic 

β-cell death induced by lipid accumulation and stress in the context of T2D,37,38 we 

then assayed the apoptotic rate of WT and mutant hESC-β cells after exposing cells to 1 

mM palmitate for 3 days. Comparing the KO lines to WT lines, we observed increased 

palmitate-induced β-cell apoptosis in ABCC8−/−, APOE−/−, CDC123+/−, CDKAL1−/−, 
COBLL1−/−, GIPR−/−, HNF1A−/−, HNF4A−/−, HTT−/−, IGF2BP2−/−, SLC16A11−/−, 
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TLE4−/−, TMCC2−/−, WDR13−/−, and WFS1−/− hESC-β cells while detected a decreased 

apoptotic rate in SLC30A8−/− hESC-β cells (PP-value<0.05; Figure 1G-H). Overall, 19 out 

of the 20 T2D-associated genes showed an impaired effect in at least one of the five cellular 

assays considered, supporting our hypothesis that these 20 genes may affect T2D risk in part 

by perturbing the generation, function, and survival of pancreatic β cells. Strikingly, the loss 

of HNF4A affected all the five cellular traits, suggesting a particularly prominent role of 

HNF4A in the development and function of pancreatic β cells (Figure 1I).

Knockout of T2D genes results in large-scale transcriptomic and chromatin accessibility 
changes

To profile the transcriptomic and chromatin accessibility changes of each KO compared with 

WT, we purified INS-GFP+ hESC-β cells derived from one KO clone for each T2D gene 

along with the two WT lines and performed RNA-seq as well as ATAC-seq (Table S2). 

Focusing on the differentially expressed genes (DEGs; false discovery rate [FDR]<5% and 

∣fold change [FC]∣>1.5), the range of the number of DEGs varied widely, from 295 genes 

in SLC30A8−/− hESC-β cells to 5,969 genes in HNF4A−/− hESC-β cells (Figure 2A). We 

found 171 out of 257 genes previously reported as T2D effector genes3,30-33 were DEGs 

in at least one line (Figure S4A), including PPARG, PAX4, and NEUROG3. In addition, 

we estimated the enrichment of DEGs in genes binned by their expression specificity in 

primary islet β cells compared to other islet cell types39. We observed that genes with 

expression profiles highly specific to β cells were enriched (FDR<5%) in DEGs for 17/20 

of the KO lines (Figure 2B), underscoring the relevance of hESC-β cells as a model for 

primary islet β cells. These β-cell specific genes (Figure S4B and S4C) also included 

many well-characterized T2D genes, such as G6PC240 and NKX6-141. In addition, some 

disallowed genes that are typically repressed in mature adult β cells42, such as SLC16A143 

and HSD11B144, were found to be upregulated in some KO lines (Figure S4D). This 

suggests alterations of gene regulatory networks and potential functional defects in those 

mutant β cells.

By comparing ATAC-seq data from KO lines to WT lines, we also identified differentially 

accessible chromatin regions (DARs; FDR<5% and ∣FC∣>1.5; Figure 2A). As with the DEG 

results, HNF4A−/− exhibited the greatest number of DARs (39,013; Figure 2A). Indeed, 

across all KO lines, the proportion of DARs identified was strongly correlated with the 

proportion of DEGs identified (Pearson’s r=0.71, P-value=4.1x10−4; Figure 2C). We found 

that DEGs were enriched near DARs up to 100 kb away (FDR<5%) in all but two KO 

lines, SLC30A8−/− and WDR13−/− (Figure 2D). At closer distances (<=25 kb), all lines 

showed substantial enrichment (FDR<5%). Finally, we considered the distance between 

each DAR and the nearest transcription start site (TSS) and observed that a large proportion 

of DARs (>21.7%) occur within 25 kb of a TSS (Figure 2E). We tested for an enrichment 

of HNF4A−/− suppressed DARs with HNF4A TF footprints around 25kb flanking regions of 

TSSs of DEGs and showed an abundance of overlap (P-value=1.01x10−5; Figure S4E).

To identify potential regulatory elements in hESC-β cells, we fit a regression to link 

accessible chromatin regions to nearby genes (<50kb) by jointly modeling ATAC-seq and 

RNA-seq signals across all 22 lines (KO+WT). We identified 1,150 associations (FDR<5%) 
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spanning 726 genes and 1,035 accessible chromatin regions. While most genes were 

associated with a single chromatin region, we found that a few genes were associated with 

as many as 10 open chromatin peaks (Figure S4F). The same trend held true for accessible 

chromatin regions (Figure S4G). Notably, we identify chromatin regions associated with 

established T2D effector genes (e.g., TMEM176A/B; Figure S4H) and genes important in 

β-cell identity (e.g., NKX6-1; Figure S4H).

HNF4A regulates diabetes-relevant genes and HNF4A binding sites are perturbed by 
genetic variants associated with T2D

Across all KO lines, HNF4A−/− affected all five functional readouts compared to WT 
lines (Figure 1I), induced the greatest number of transcriptional and epigenomic changes 

compared to the WT lines (Figure 2A, 3A, 3B), and resulted in DEGs with the greatest 

enrichment in β-cell specific expression patterns (Figure 2B). We therefore further explored 

the role of HNF4A in the context of (i) hESC-β cell gene regulation and (ii) the genetics 

of T2D. First, we found that genes down-regulated in HNF4A−/− compared to WT were 

enriched (FDR<5%) in genes related to glucose metabolism and maturity onset diabetes of 

the young (MODY; Figure 3C), while up-regulated genes were enriched in processes not 

clearly relevant to diabetes; Figure S5A). Next, we expanded our characterization of the 

regulatory patterns of HNF4A−/− DARs. We observed that 58% of the 39,013 DARs in 

the line were suppressed while 42% were activated (Figure 3B). Among all the KO lines, 

HNF4A−/− showed the largest percentage of DEGs around DARs, with 79% of DEGs having 

a DAR within 50kb (P-value=3.1x10−10; Figure 2D). We hypothesized that such results may 

indicate that HNF4A−/− DARs occur in regulatory elements that may drive the observed 

changes in gene expression. We observed strong enrichment (FDR<0.05) for suppressed 

DARs in HNF4A−/− KO in islet enhancers and active promoters45 (Figure 3D)—notably 

islet stretch enhancers, which generally regulate tissue/cell-type specific gene expression46 - 

while we did not find such an enrichment for activated DARs. We scanned the HNF4A−/− 

DARs using binding site motifs for 677 transcription factors expressed in WT hESC-β cells 

and found that the suppressed DARs were most enriched in the HNF4A binding motif 

(FDR<5%; Figure 3E), while the activated DARs were most enriched in the FOXA1 binding 

motif (FDR<5%; Figure S5B). For the suppressed DARs the HNF4A binding motif most 

often occurred at the center of the region while for activated DARs there was no such trend 

(Figure 3F and Figure S5C). These results suggest that many of the suppressed DARs reflect 

direct changes due to binding of HNF4A, while many activated DARs reflect indirect effects 

resulting from the HNF4A knockout.

Given the wide-spread diabetes-relevant effects of HNF4A−/− on hESC-β cells, we 

investigated if predicted HNF4A binding sites may be perturbed by candidate causal 

variants within 99% credible sets for genetic associations with T2D3. We focused on the 

suppressed DARs in HNF4A−/− compared to the WT lines and observed 64 out of 22,710 

suppressed DARs overlap 90 credible SNPs, representing 57 T2D association signals. Two 

of these SNPs (rs7132908 and rs34033101), in two different T2D signals, are predicted 

to affect HNF4A TF footprints (Table S3). We selected the T2D genetic association 

signal at FAIM23 for experimental follow-up. The FAIM2 GWAS signal contained two 

credible SNPs: rs7132908 (MAF=0.25; posterior probability of association [PPA]=0.92) 
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and rs3205718 (MAF=0.25; PPA=0.07). Of these two SNPs, only rs7132908 overlaps an 

HNF4A footprint, where the T2D risk allele, “A”, is predicted to disrupt HNF4A binding 

(Figure 3G). This HNF4A footprint occurred in a suppressed DAR in HNF4A−/− and was 

not associated with expression of FAIM2 or any other nearby gene (FDR>5%), making the 

effector gene unknown at this signal. We performed allele-specific luciferase assays for both 

variants in EndoC-βH1 cells, a human pancreatic β-cell line47. We observed a differential 

change in luciferase activity of the alleles for rs7132908 (P-value=0.002) —the “A” allele 

of rs7132908 was associated with increased luciferase activity—but not for rs3205718 

(P-value=0.618; Figure 3H). Combined, these data suggest that rs7132908 is likely the 

causal variant at this T2D signal and that the “A” allele increases T2D risk by decreasing 

HNF4A binding and increasing the strength of an enhancer. In this situation, it thus appears 

that HNF4A is acting as a repressor.

Association between gene expression and cellular traits identifies genes controlling 
insulin production and β-cell survival

By comparing WT lines to KO lines spanning 20 genes, we identified downstream effects of 

T2D-relevant genes on β-cell cellular traits (Figure 1C-H), gene expression (Figure 2A), and 

chromatin accessibility (Figure 2A). In addition, the availability of cellular traits paired with 

-omics measurements across gene perturbations created a dataset where one could begin to 

map regulatory networks for cellular traits. Across all cell lines with paired cellular trait 

and -omics data, we jointly modeled gene expression and chromatin accessibility with each 

cellular trait. We identified 21 genes associated with insulin content and 35 genes associated 

with β-cell apoptotic rate after palmitate exposure (FDR<5% and ∣effect size∣>1.5, Table 

S4).

Focusing on the 21 genes associated with total insulin content (Figure 4A, Table S4), 

we selected five protein-coding genes (Figure 4B-F) to test for a causal relationship with 

insulin content based on the effect size of the association (∣effect size∣>1.5) and the 

gene’s expression in human islets (TPM>5) and hESC-β cells (TPM>5). Using EndoC-βH1 

cells, we perturbed the expression of these candidate genes by inhibiting the expression 

of genes positively correlated with insulin content—CP and FOSB—through CRISPR 

interference (CRISPRi) and activating the expression of genes negatively correlated—

RNASE1, PCSK1N, and GSTA2—through CRISPR activation (CRISPRa). Prior to testing 

for effects on insulin content, we confirmed the reduced or activated expression of the five 

genes in correspondingly perturbed EndoC-βH1 cells (Figure S6A). For 4/5 of the selected 

genes, we observed the predicted effect on total insulin content, where the inhibition of 

CP and the activation of RNASE1, PCSK1N, and GSTA2 decreased total insulin content 

(P-value<0.05; Figure 4G-H). For FOSB inhibition, there was no notable impact observed 

on the total insulin content of EndoC-βH1 cells (P-value=0.32). This suggests that the 

correlation between FOSB and total insulin content, as observed in hESC-β cells, may not 

stem from a causal relationship, or that EndoC-βH1 cells may not be an ideal model for 

detecting this effect.

To better understand the molecular mechanisms underlying the observed effects of CP, 
RNASE1, PCSK1N, and GSTA2 on total insulin content, we conducted similar CRISPR 
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perturbation experiments and measured (i) INS transcription and (ii) insulin protein 

translation/processing in EndoC-βH1-luc cells. For INS transcription, we used qRT-PCR 

in EndoC-βH1 cells, revealing that decreased CP expression and increased RNASE1 
expression resulted in lower INS expression (P-value<0.05) (Figure 4I, 4J). To assess insulin 

protein translation/processing, we used EndoC-βH1-luc cells, in which Nano-Glo luciferase 

(Nano-luc) could be released via endogenous proinsulin convertase enzymes and its intensity 

could be used as a readout to track the change of proinsulin transgene translation and 

processing48. We first confirmed the reduced expression of CP and activated expression of 

RNASE1, PCSK1N, and GSTA2 in EndoC-βH1-luc cells using qRT-PCR (Figure S6B). 

Then Nano-luc assay showed that inhibition of CP had a mild effect on insulin protein 

translation/processing, reducing luciferase intensity by only ~10% (P-value<0.05; Figure 

4K), while activation of PCSK1N, GSTA2, and RNASE1 greatly reduced intracellular 

Nano-luc production (P-value<0.05; Figure 4L). Collectively, these experiments indicate 

that PCSK1N and GSTA2 influence insulin production primarily by modulating insulin 

protein translation or processing, whereas CP and RNASE1 have implications for both INS 
transcription and downstream translation/processing processes.

In addition, from the 35 genes associated with palmitate-induced β-cell apoptotic rate 

(Figure 5A, Table S4), we selected five protein-coding genes to test for a causal 

relationship with palmitate-induced apoptotic rate based on the effect size of the association 

(∣effectsize∣>1.5) and the gene’s expression in human islets (TPM>5) and hESC-β cells 

(TPM>5): TAGLN3, ADCYAP1, DHRS2, CP, and SYNPO (Figure 5B-F). Similar to the 

assessment of insulin content, we used CRISPRa to activate the expression of positively 

correlated genes—TAGLN3, ADCYAP1, and DHRS2— and CRISPRi to inhibit the 

expression of negatively correlated genes—CP and SYNPO—in EndoC-βH1 cells. We 

confirmed that the expression of all five genes was reduced or activated in perturbed cells 

(Figure S6C). After stressed EndoC-βH1 cells with 1 mM of palmitate for 3 days, we 

detected an increased apoptotic rate in those cells with activation of TAGLN3 and DHRS2 
(P-value<0.05; Figure 5G-H). Through immunofluorescence staining, we confirmed that 

activation of TAGLN3 and DHRS2 led to an increased percentage of cleaved caspase3+ cells 

(Figure 5K-L), supporting the role of TAGLN3 and DHRS2 in regulating β-cell survival. 

However, the other three correlated genes—CP, ADCYAP1 and SYNPO—exhibited no 

effects on palmitate-induced β-cell apoptosis (P-value>0.05; Figure 5G-J), indicating that 

they may only be involved in the innate β-cell survival response but do not exert a direct role 

to regulate β-cell apoptosis.

Analysis of allelic imbalance in accessible chromatin regions identifies a single candidate 
causal variant at 23 T2D genetic associations

A less obvious benefit of the inclusion of ATAC-seq in the experimental design was the 

chance to infer functional information about non-coding regions of the genome that are 

relevant to hESC-β cells, and to connect those to T2D genetic risk factors identified by 

GWAS. Statistical methods seek to reduce these multi-SNP signals to a “99% credible 

set”, including multiple tightly linked variants. But this “lumpy” architecture of genomic 

variation means that discerning the actual causative SNP at GWAS signals presents a major 

challenge for common disease genomics. We hypothesized that the causative variant is more 
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likely to lie in an area of open chromatin in β cells. More than that, we hypothesized that 

the causative SNP should show evidence of differential chromatin accessibility between 

the risk and the non-risk alleles. ATAC-seq is capable of capturing instances where one 

allele is preferentially accessible (e.g., preferentially bound by a TF49,50). Such events can 

be quantified by measuring the difference in allele counts at heterozygous variants. Since 

both alleles occur within the same cell and have been exposed to the same experimental 

conditions, the intra-sample nature of this metric greatly reduces noise and maximizes 

signal.

In this study, the two WT lines and the 20 KO β-cell lines are all derived from the 

INSGFP/w MEL1 parental line. Therefore, for any SNP that happens to be heterozygous 

in this line, there is a large amount of ATAC-seq data available to examine for allelic 

imbalance. Furthermore, if one SNP in a credible set is heterozygous in INSGFP/w MEL1, 

linkage disequilibrium makes it likely that all of the SNPs in that credible set will be 

heterozygous. Using the chromatin accessibility data generated across the 20 KO lines and 

two WT lines, we quantified allelic imbalance across SNPs in 99% credible sets for T2D 

genetic associations.3 We identified 26 T2D association signals with ≥1 SNP that showed 

allelic imbalance (FDR<5%; Table S5; Figure 6A). At 18 of those signals, the INSGFP/w 

MEL1 cell line was heterozygous at all SNPs in the credible set and only one SNP showed 

allelic imbalance, which we conclude is likely to be the causal SNP at the T2D genetic 

association (Figure 6A).

As an example, we highlight a T2D association near ADCY5 (Figure 6B). Within the 99% 

credible set there are three SNPs, all of which are heterozygous in the INSGFP/w MEL1 cells. 

In our data, we found that rs11708067 (MAF=0.15) lies within an ATAC peak and exhibits 

allelic imbalance, where the “G” allele, associated with reduced T2D risk, shows increased 

accessibility. These results comport with a previous study that reports increased H3K27ac 

ChIP-seq reads from the “G” allele in human islets and increased luciferase activity of the 

“G” allele in a mouse β-cell line47, are in line with the deleterious effects of silencing 

ADCY5 in human islets51. We performed TF footprint analysis and discovered that the 

rs11708067 overlapped a E2F2 footprint where the “G” allele is predicted to have increased 

binding. We looked for, but did not find, an association between the chromatin accessibility 

of the region overlapping rs11708067 and the expression of nearby genes (FDR>5%), 

making the candidate effector gene at this signal an open question. Nonetheless, these results 

suggest that the T2D risk allele “A” may contribute to T2D risk by disrupting E2F2 binding.

As another example, we examined the complete credible set of 16 SNPs at a T2D 

association ~25kb downstream of SEC16B, all of which were heterozygous in the INSGFP/w 

MEL1 cells. Of the credible set SNPs, only rs574367 (MAF= 0.15) showed allelic 

imbalance (FDR<5%), with an increased proportion of reads from the non-risk “G” allele in 

21 lines (Figure 6C). We performed TF footprint analysis and found that rs574367 strongly 

disrupts a predicted binding site for the RFX TF family, previously reported as an important 

T2D-relevant regulator of islet gene expression.45 We tested for an association between 

chromatin accessibility of the region overlapping rs574367 and the expression of nearby 

genes, but found no association (FDR>5%).
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We also considered the possibility that some causal SNPs may not manifest an effect across 

all of the KO lines, since the knockouts have changed cellular phenotype and that may 

affect chromatin structure. Therefore, we also tested for allelic imbalance within each line 

individually. At an FDR<5%, we found 5 signals where a single SNP was not identified 

when considering common allelic imbalance effects across all lines, but the imbalance was 

significant in a subset of lines (Figure S7). Assuming that the SNP(s) driving the T2D 

genetic association manifest an effect in hESC-β cells, the 23 SNPs identified from these 

combined analyses represent strong candidates for being the causal SNP at these 23 T2D 

association signals.

As a third example, one signal located at chr20:32674967, all 95 SNPs in the 99% credible 

set were heterozygous in the parental INSGFP/w MEL1 line. SNP rs2284379, located in the 

first intron of the RALY locus, showed evidence of allelic imbalance (Figure 6D). But this 

association was particularly remarkable in that the allelic association favored the T allele in 

the majority of lines, but the C allele in the four lines with the lowest insulin content (see 

below; Figure 6E). The T2D risk allele of rs2284379, “C”, is predicted to better match the 

binding site motifs at footprints of RFX3, ZNF737, and MTF1. Given the location of this 

SNP, we tested for an association between chromatin accessibility of the region overlapping 

this SNP and RALY expression but did not find an association (FDR>5%).

Finally, we were also able to assess whether allelic imbalance at a particular SNP showed 

association with a phenotype of interest (e.g., a cellular trait ).52-54 To identify such effects, 

we jointly modeled allelic imbalance across all 22 lines, testing for an association with 

each cellular trait at all T2D 99% credible set SNPs. We identified two associations 

(FDR<5%), both with insulin content: rs2284379 (MAF=0.80) at the chr20:32674967 T2D 

association signal (RALY, Figure 6E,) and rs1800900 (MAF=0.60) at the chr20:57387352 

T2D association signal (Table S5).

Discussion

We developed an isogenic KO hESC-derived β-cell platform to assess the molecular and 

cellular changes of human β cells carrying LoF mutations of 20 T2D-associated genes. 

The most fundamental detrimental effect, impaired β-cell differentiation, was observed 

for COBLL1, GIPR, HNF4A, TCF7L2, TGFB1, and TLE4. The defective differentiation 

in HNF4A−/− and TCF7L2−/− hESC lines is consistent with previous murine studies that 

the knockout of Hnf4a resulted in embryonic lethality55 and homozygous Tcf7l2 null 

mice experienced postnatal mortality56. Similarly, the impaired differentiation phenotype 

of TGFB1−/− hESCs also aligns with previous reports that dysregulation of TGFB1 signaling 

influences β-cell development.57 Interestingly, our finding of that GIPR KO impaired β-cell 

differentiation in hESCs, seems to diverge from the phenotype observed in Gipr null mice 

which display a twofold increase of β-cell area58, suggesting that the role of GIPR in β-cell 

differentiation may exhibit species-specific nuances. Of note, those Gipr−/− mice have a 

40% reduction in pancreatic insulin content and gene expression despite the increased β-cell 

mass, indicating a functional abnormality of Gipr-deficiency β-cells58. The mechanisms 

underlying the relationship between T2D and COBLL1 or TLE4 remain unclear.

Xue et al. Page 10

Cell Metab. Author manuscript; available in PMC 2024 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We observed multiple genes of diverse classes affecting a similar set of cellular traits. For 

example, loss of ABCC8, HNF1A, WDR13, and HTT does not affect β-cell generation in 

this system but impairs four cellular traits. Mutations in the genes ABCC859, HNF1A60, 

and WDR1361 have been associated with impaired β-cell function and insulin secretion. 

Recent studies suggest that mutations in ABCC8 and HNF1A may also contribute to 

β-cell dedifferentiation/transdifferentiation.60,62,63 Consistently, we found that ABCC8−/−, 
HNF1A−/−, and WDR13−/− hESC-β cells exhibit decreased total insulin content along with 

decreased expression of β-cell genes(Figure S3D and S4C). Meanwhile, for ABCC8−/−, 
HNF1A−/−, and WDR13−/− hESC-β cells, we also observed an upregulation of marker genes 

associated with other pancreatic endocrine cells (α, δ, ε and PP cells), ductal cells and 

acinar cells, further confirming the impaired β-cell identity in those KO cells (Figure S3D).

Among 20 T2D-associated genes studied, only loss of HNF4A caused effects in all five 

cellular traits (Figure 1I). HNF4A is an important transcription factor affecting liver64 and 

islet development and function65-67, Our analysis suggested that HNF4A might directly bind 

to regulatory elements that contribute to T2D risk, as we have shown for the FAIM2 signal. 

In contrast, SLC30A8−/− hESCs showed no impairments in any of five cellular traits. On the 

contrary, we found that homozygous LoF of SLC30A8 can actually enhance human β-cell 

survival from lipotoxicity, which is consistent with previous studies68-70 that LoF mutations 

of SLC30A8 showed a protective role in β-cell survival.

Notably, RNA-seq and ATAC-seq analysis suggested that knockout of KCNJ11 and ABCC8 
results in large-scale transcriptomic and chromatin accessibility changes. One possible 

mechanism might operate through intracellular calcium. KATP channel closure due to 

LoF mutations in KCNJ11/ABCC8 can elevate intracellular Ca2+ levels in β cells,71 

which disrupts Ca2+-regulated genes, leading to alterations in β-cell identity and islet 

morphology62.

By comparing across all 22 lines, we were able to identify genes whose expression 

correlated with insulin content, and with palmitate-induced apoptosis. Follow-up functional 

assays confirmed the regulatory roles of CP, RNASE1, PCSK1N, and GSTA2 in controlling 

insulin production, and identified TAGLN3 and DHRS2 as regulators of β-cell survival. CP, 
encoding for ceruloplasmin72, and GSTA2, encoding for glutathione S-transferase A273, are 

both enzymes involved in regulating oxidative stress in cells. Of particular interest, prior 

studies have reported elevated levels of serum ceruloplasmin in individuals with T2D.74,75 

Additionally, reduced expression of GSTA2 has been observed in human islets treated 

with palmitate and high glucose.76 PCSK1N is an inhibitor of PCSK1, the key enzyme 

controlling the conversion of proinsulin to insulin.77 Thus, upregulation of PCSK1N might 

directly affect insulin content by inhibiting the proinsulin to insulin conversion. RNASE1 
encodes an endonuclease that cleaves internal phosphodiester RNA bonds on the 3'-side 

of pyrimidine bases.78 Therefore, RNASE1 may indirectly regulate insulin production by 

affecting the stability of INS mRNA. Regarding genes associated with apoptosis, DHRS2 
overexpression has been shown to induce apoptosis in certain cancer cells.79,80 TAGLN3 
encodes transgelin 3, which has been shown to be involved in astrocyte inflammation.81 

However, how transgelin 3 regulates β-cell survival is still not clear. Here our study suggests 
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that TAGLN3 and DHRS2 may have a pro-apoptotic role in β cells, but further research is 

needed to fully elucidate their function and potential therapeutic implications.

Additional insights were derived by close inspection of allele-specific imbalance in ATAC-

seq data at sites where the INSGFP/w MEL1 parental line was heterozygous. With 20 

isogenic KO and two WT lines, the depth of coverage at an ATAC-seq peak was large 

enough to detect situations where one allele contributed substantially more than 50% of 

the reads. With this approach, we were able to pinpoint a single likely functional variant 

at each of 23 loci. The success of this effort, demonstrating that deep ATAC-seq coverage 

can discover biologically interesting allele-specific imbalance in a disease-relevant tissue, 

suggests that future work like this could be usefully done with a larger collection of iPSCs of 

diverse genotypes.

In summary, we developed an isogenic hESC platform to examine the impact of knocking 

out 20 T2D-associated genes on human β-cell generation, insulin content, glucose and KCl 

stimulated insulin secretion, and β-cell survival. Previously unknown insights were derived 

about each of the individual knockout lines, and the molecular comparison also revealed 

pathways involved in insulin production and apoptosis that would have been difficult to 

discern by other means. Future work to expand the panel to many more genes relevant 

to T2D, while maintaining the same standards for cellular phenotyping, is likely to be 

revealing. One can also readily imagine extrapolating this same platform to the analysis of 

any other polygenic disorder where relevant tissues can be differentiated from hPSCs and 

studied by integrative analysis methods.

Limitations of study

While this study represented a significant throughput advance by characterizing a total 

of 20 T2D gene knockouts in hESC-derived β cells, there are potentially dozens more 

effector genes that could not be included here. We observed that 15 out of 20 mutant 

β-like cell lines exhibited increased susceptibility to cell death under the in vitro conditions 

of palmitate-induced lipotoxicity. Though the 1 mM concentration of palmitate that we 

used falls within the normal range in human plasma, it is possible that the particular 

in vitro culture conditions, which naturally differ from what is experienced in vivo by 

pancreatic islets, might have heightened the sensitivity of hPSC-derived β cells towards 

palmitate-induced apoptosis. Finally, the ability to globally identify the likely functional 

basis for T2D GWAS risk loci by linking those up to hESC β-cell ATAC-seq peaks data 

was necessarily limited by the use of a single hESC line, the reality that many such risk loci 

reflect actions of other tissues, different differentiation states of β cells, or environmental 

influences that are unmeasured in this study.

STAR Methods

Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies
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REAGENT or RESOURCE SOURCE IDENTIFIER

Oct-4A (C30A3) Rabbit mAb Cell Signaling Technologies #2840

Nanog (D73G4) XP® Rabbit mAb Cell Signaling Technologies #4903

SSEA4 (MC813) Mouse mAb Cell Signaling Technologies #4755

TRA-1-81 Mouse mAb Cell Signaling Technologies #4745

Polyclonal Guinea Pig Anti-Insulin Dako #A0564

Human SOX17 Antibody R&D AF1924

Anti-HNF3β/FOXA2 Antibody Millipore 07-633

Purified Rabbit Anti- Active Caspase-3 BD bioscience #559565

Donkey anti-Goat IgG (H+L) Cross-Adsorbed 
Secondary Antibody, Alexa Fluor 488

Thermo Fisher Scientific A-11055

Donkey anti-Goat IgG (H+L) Cross-Adsorbed 
Secondary Antibody, Alexa Fluor™ 647

Thermo Fisher Scientific A-214477

Alexa Fluor 488 AffiniPure Donkey Anti-Guinea 
Pig IgG (H+L)

Jackson ImmunoResearch Labs #706-545-148

Donkey anti-Rabbit IgG (H+L) Highly Cross-
Adsorbed Secondary Antibody, Alexa Fluor™ 

Plus 488

Thermo Fisher Scientific #A32790

Donkey anti-Mouse IgG (H+L) Highly Cross-
Adsorbed Secondary Antibody, Alexa Fluor 594

Thermo Fisher Scientific #A-21203

Donkey anti-Rabbit IgG (H+L) Secondary 
Antibody, Alexa Fluor 594 conjugate

Thermo Fisher Scientific #A-21207

Chemicals, peptides, and recombinant proteins

Normocin Invivogen #ant-nr-2

Y-27632 MedchemExpress #HY-10583

Activin A R&D Systems #338-AC-500/CF

Recombinant Human KGF (FGF-7) Protein Peprotech #100-19-500UG

CHIR99021 Cayman Chemical #13122

SANT-1 Sigma Aldrich #S4572-25MG

Retinoic acid Sigma Aldrich #R2625-500MG

LDN 193189 hydrochloride Axon Medchem #Axon 1509

TPPB Tocris Bioscience #5343

T3 hormone Sigma Aldrich #T6397-100MG

Zinc sulfate heptahydrate Sigma Aldrich #Z0251-100G

Heparin sodium salt Sigma Aldrich #H3149-1MU

γ-Secretase Inhibitor XX Millipore #565789-1MG

ALK5 Inhibitor II Cayman Chemical #14794

L-Ascorbic acid Sigma Aldrich #A4544-100G

R428 MedchemExpress #HY-15150

N-acetyl-L-cysteine Sigma Aldrich #A9165-5G

Trolox Millipore #648471

Matrigel Corning #354234

TWEEN® 20 Sigma-Aldrich #P9416

APC Annexin V BD Biosciences # 550475
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REAGENT or RESOURCE SOURCE IDENTIFIER

Paraformaldehyde, 4% in PBS Thermo Fisher Scientific #J61899.AK

Penicillin and Streptomycin Thermo Fisher Scientific #10378016

Fetal Bovine Serum, qualified, heat inactivated Thermo Fisher Scientific #10438026

GlutaMAX Thermo Fisher Scientific #35050-061

D-Glucose Sigma-Aldrich #G8769

β-mercaptoethanol Thermo Fisher Scientific #21985023

Nicotinamide Sigma-Aldrich #72340

Sodium selenite Sigma-Aldrich #S9133

Transferrin Sigma-Aldrich #T8158

Accutase Innovative Cell Technologies #MSPP-AT104

ReLeSR STEMCELL Technologies #05872

ITS-X Thermo Fisher Scientific #51500056

NaHCO3 Thermo Fisher Scientific #S6267

Lipofectamine™ 2000 Transfection Reagent Thermo Fisher Scientific #11668027

Opti-MEM Thermo Fisher Scientific #331985070

Triton X-100 Sigma-Aldrich #X100

Igepal CA-630 Sigma-Aldrich #I8896

Digitonin Promega #G9441

L-Ascorbic acid (vitamin C) Sigma-Aldrich #4544

RIPA buffer Sigma-Aldrich #R0278

BSA, Fatty Acid Free, Fraction V Lampire #7500804

Bovine Serum Albumin, low endotoxin Sigma-Aldrich #A1470

Lenti-X Concentrator Takara #631232

Blasticidin Thermo Fisher Scientific #R21001

Puromycin Dihydrochloride Thermo Fisher Scientific #A1113803

EDTA Thermo Fisher Scientific #15575020

DAPI Sigma Aldrich #D9542

Critical commercial assays

Dual-Luciferase® Reporter Assay System Promega #E1980

Nano-Glo® Luciferase Assay System Promega #N1130

STELLUX Chemi Human Insulin ELISA Jumbo Alpco #80-INSHU-CH10

High-Capacity cDNA Reverse Transcription Kit 
with RNase Inhibitor

Thermo Fisher Scientific #4374966

SYBR™ Green PCR Master Mix Roche #4309155

Absolutely RNA Microprep Kit Agilent Technologies #400805

RNeasy Plus Mini Kit Qiagen #74136

Zymo DNA Clean & Concentrator Kits Zymo Research #D4003

TruSeq Stranded mRNA LP (48 Spl) Illumina #20020594

IDT for Illumina – TruSeq RNA UD Indexes (96 
Indexes, 96 Samples)

Illumina #20022371
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REAGENT or RESOURCE SOURCE IDENTIFIER

Illumina Tagment DNA Enzyme and Buffer Large 
Kit

Illumina #20034198

Deposited data

RNA-seq data This paper GSE228665

ATAC-seq data This paper GSE228665

SNP array genotyping data This paper GSE228665

Whole genome sequence data This paper GSE228665

Source data for manuscript figures This paper Table S1

Experimental models: Cell lines

hESC line MEL-1 Monash University #CVCL_XA16

EndoC-βH1 INSERM #CVCL_L909

HEK293T cells ATCC #CRL-11268

Oligonucleotides

Primers used for DNA sequencing Integrated DNA Technologies Sequences in Table S1

Primers used for qRT-PCR Integrated DNA Technologies Sequences in Table S1 and 
Table S6

Primers used for constructing luciferase vectors Integrated DNA Technologies Sequences in Table S6

Recombinant DNA

pSpCas9(BB)-2A-Puro (PX459) V2.0 Ran et al. 201319 Addgene plasmid # 62988; 
RRID: Addgene_62988

pCC_12 - hU6-BsmBI-sgRNA(E+F)-barcode-
EFS-KRAB-dxCas9NG-NLS-2A-Puro-WPRE

Legut et al. 202082 Addgene plasmid # 139097; 
RRID: Addgene_139097

pCC_05 - hU6-BsmBI-sgRNA(E+F)-barcode-
EFS-dCas9-NLS-VPR-2A-Puro-WPRE

Legut et al. 202082 Addgene plasmid # 139090; 
RRID: Addgene_139090

psPAX2 Didier Trono83 Addgene plasmid # 12260; 
RRID: Addgene_12260

pMD2.G Didier Trono84 Addgene plasmid # 12259; 
RRID: Addgene_12259

Proinsulin-NanoLuc in pLX304 Burns et al. 201548 Addgene plasmid # 62057; 
RRID: Addgene_62057

pGL4.23[luc2/minP] vector Promega #E8411

phRL-SV40 Vector Promega #E6261

Software and algorithms

FlowJo FLOWJO LLC https://www.flowjo.com/

GraphPad Prism GraphPad Software http://www.graphpad.com/
scientific-software/prism

Adobe illustrator Adobe https://www.adobe.com/
products/illustrator.html

MetaMorph® image analysis software Molecular Devices https://
www.moleculardevices.com/
products/cellular-imaging-
systems/acquisition-and-
analysis-software/metamorph-
microscopy

ZEN ZEISS https://www.zeiss.com/
microscopy/en/products/
software/zeiss-zen-lite.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

novoalign v2.07.11 http://www.novocraft.com/
products/novoalign

Michigan TOPmed Server (Minimac v4) Das et al. 201685 https://
imputation.biodatacatalyst.nhl
bi.nih.gov/#!

STAR v2.73a Dobin et al. 201386 https://github.com/alexdobin/
STAR

QoRTs (v1.3.6,87 Hartley & Mullikin 201587 https://hartleys.github.io/
QoRTs/

GATK v4.1.9.0 Auwera & O’Connor 202088 https://
gatk.broadinstitute.org/hc/en-
us/articles/360041320571--
How-to-Install-all-software-
packages-required-to-follow-
the-GATK-Best-Practices

Samtools v1.9 Danecek et al. 202189,90 https://github.com/samtools/
samtools

verifybamID v1.1.191 Jun et al. 201291 https://github.com/statgen/
verifyBamID/releases

BWA-MEM v0.7.17-r1194 Li & Durbin 200992 https://github.com/lh3/bwa

bedtools v2.26.0 Quinlan and Hall 201093 https://
bedtools.readthedocs.io/en/
latest/content/installation.html

MACS2 v2.2.7.194 Zhang et al. 200894 https://github.com/macs3-
project/MACS/wiki/Install-
macs2

DESeq2 v1.32.095 Love et al. 201495 https://bioconductor.org/
packages/release/bioc/html/
DESeq2.html

MetaVolcano v1.10.096 Cesar Prada 201996 https://www.bioconductor.org/
packages/release/bioc/html/
MetaVolcanoR.html

fgsea v1.20.0 Korotkevich et al. 201697 https://bioconductor.org/
packages/release/bioc/html/
fgsea.html

msigdbr v7.5.1 Liberzon et al. 201198 https://igordot.github.io/
msigdbreak/

UCSC Genome Browser Nassar et al. 202399 https://genome.ucsc.edu/

LIMIX v1.0.17 Lippert et al. 2014100 https://github.com/limix/
limix/blob/master/doc/qtl.rst

CELLEX v1.2.2 Timshel et al. 2020101 https://github.com/perslab/
CELLEX/blob/master/
tutorials/
demo_mousebrain_vascular_c
ells.ipynb

CTA: C++ implementation of Buenrostro adapter 
trimming

John Hensley 2017John 
Hensley 2017

https://github.com/
ParkerLab/cta

FIMO v5.4.1 Grant et al. 2011102 https://meme-suite.org/
meme/doc/download.html

SEA v5.4.1 McLeay & Bailey 2010103 https://meme-suite.org/
meme/doc/download.html

CENTIPEDE v1.2 Pique-Regi et al. 2011104 https://rdrr.io/rforge/
CENTIPEDE/man/
CENTIPEDE-package.html
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WASP v0.3.4 van de Geijn et al. 2015105 https://github.com/bmvdgeijn/
WASP

Annotate_variation.pl (v2019-10-24) Wang et al. 2010106 https://
annovar.openbioinformatics.o
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RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact Dr. Francis S. Collins 

(francis.collins@nih.gov).

Materials availability—Cell lines generated in this study will be made available on 

request, but we may require a payment and/or a completed Materials Transfer Agreement.

Data and code availability

• The RNA-seq, ATAC-seq, whole genome sequence data, and SNP array 

genotyping data generated during this study are available at GEO under 

accession no. GSE228665. Source data used to generate the graphs in the paper 

can be found in the file Data S1.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and culture conditions—We obtained INSGFP/w MEL-1 (RRID: 

CVCL_XA16, male) human embryonic stem cell (hESC) stocks from Dr. Ed Stanley at 

Monash University. All hESC studies were approved by the Tri-Institutional Embryonic 

Stem Cell Research Committee (ESCRO). To culture and maintain both wildtype (WT) 

and isogenic (see Generation of isogenic hESC lines) hESCs, we followed a previously 

described protocol.107 We grew hESCs on Matrigel-coated plates in StemFlex medium 

(Thermo Fisher Scientific) supplemented with 50 μg/mL Normocin (InvivoGen), with 

medium changed daily and cultures passaged at 1:6-1:10 with ReLeSR (Stem Cell 

Technologies). We obtained EndoC-βH1 cells (RRID: CVCL_L909, female) from CNRS, 

and cultured them in DMEM containing 5.6 mM glucose, 2% BSA (Sigma-Aldrich), 50 μM 

2-mercaptoethanol (Thermo Fisher Scientific), 10 mM nicotinamide (Sigma-Aldrich), 5.5 

μg/ml transferrin (Sigma-Aldrich), 6.7 ng/ml selenite (Sigma-Aldrich), 100 U/ml penicillin 

and 100 μg/ml streptomycin. HEK293T cells (purchased from ATCC, CRL-11268, female) 

were cultured in DMEM supplemented with 10% FBS (Thermo Fisher Scientific). All cell 

lines were cultured at 37 °C with 5% CO2 and were tested for mycoplasma contamination 

every six months using MycoAlertTM PLUS Mycoplasma Detection Kit (Lonza).

Xue et al. Page 17

Cell Metab. Author manuscript; available in PMC 2024 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/bmvdgeijn/WASP
https://github.com/bmvdgeijn/WASP
https://annovar.openbioinformatics.o
https://annovar.openbioinformatics.o


METHOD DETAILS

All studies were performed in a blinded manner without inclusion and exclusion applied. 

The sample size and statistical analysis method of each experiment have been provided in 

the figure legends.

Selection of T2D associated genes—For the isogenic knockout lines, we selected 20 

genes that are enriched with T2D effector genes defined by the Accelerating Medicines 

Partnership (AMP)12 (https://t2d.hugeamp.org) (Table 1). Briefly, we considered two pools 

of genes for the candidate selection: 1) The genes implicated to be causal by having T2D-

associated coding variant(s) in a large-scale exome sequencing study14; OR 2) closest genes 

to a 99% credible set of SNP with a high posterior probability of association (PPA>0.7)6. 

Next, we prioritized the ones that are expressed in human pancreatic β cells (TPM≥0.01). 

We finally chose 20 genes with relatively high expression in hESC-β cells (TPM ≥7.50) 

for subsequent knock-out assays. It includes 17 predicted T2D effector genes (AMP) and 3 

genes that might have implications in islet β cells based on published literature57,61,108.

Generation of isogenic hESC lines—To create the isogenic KO hESC lines, we 

designed short guide RNAs (sgRNAs) targeting exons of 20 genes with evidence for 

T2D (Table 1; Table S1) using the web resources available at http://chopchop.cbu.uib.no/. 

We cloned them into the pSpCas9(BB)-2A-Puro (PX459) V2.0 vector (Addgene #62988) 

according to the instructions described in our previous publication.109 All KO lines were 

generated from INSGFP/w MEL-1. Briefly, MEL-1 cells were dissociated using Accutase 

(Innovative Cell Technologies) and electroporated (5× 105 cells per sample) with 4 

μg sgRNA-construct plasmids using Human Stem Cell Nucleofector™ solution (Lonza) 

following manufacturer’s instructions. The cells were then seeded into 2 wells of 24-well 

plates and cultured in StemFlexTM medium with 10 μM Y-27632. They were switched 

to StemFlexTM medium with 0.5mg/ml puromycin on the next day and maintained for 2 

days. After puromycin selection, hESCs were dissociated into single cells with Accutase and 

re-plated at a density of 5 cells/well in 96-well plates. 10 μM Y-27632 was added for the first 

2 days. 10 days later, individual colonies were picked and re-plated into two wells of 96-well 

plates. When hESCs reached ~90% confluence, one well of each clone was analyzed to 

confirm the indel information of each clone by Sanger sequencing a ~500 bp window 

around the Cas9-sgRNA recognition site (Figure S1). For biallelic frameshift mutants, 

we expanded two clones (clones #1 and #2) with either homozygous indel mutations or 

compound heterozygous indel mutations in each target gene to perform cellular assays. We 

also expanded two WT clonal lines as WT controls to account for potential non-specific 

effects associated with the gene-targeting process.

Assessment of knockout off-target effects—We performed an in-silico scanning 

of potential off-target sites for the TCF7L2 sgRNA using CRISPRitz110 across the entire 

genome. By allowing up to 4 mismatches in the sgRNA sequence, we identified 2,513 

cleavage sites that could be affected by the sgRNA. We extracted DNAs of two WT and 

two TCF7L2−/− lines with the DNeasy® Blood & Tissue Kit (QIAGEN) according to the 

manufacturer’s protocol. We performed whole genome sequencing of the cells with an 

average depth of >26x across the genome per clonal library. We aligned the reads to the 
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GRCh38 genome assembly using BWA-MEM v0.7.17-r1194 with the -M option.92 After 

removing duplicate reads and filtering for properly paired reads with mapping quality ≥30 

with samtools v1.9,89,90 we retained remaining uniquely aligned primary reads per library 

for downstream analyses. We identified all somatic variants (including single nucleotide 

polymorphisms (SNVs) and indels) in 250bp flanking regions of the predicted cleavage sites 

that are present in only TCF7L2−/− lines but not in the WTs using GATK v4.0.5.1 Mutect288 

(pair-wse comparisons) with the “--min-base-quality-score 30” option. As expected, we only 

observed homozygous on-target indels but no other variants with allele frequency >15% in 

the KO lines. As these allele frequencies fall well below the heterozygous level, we conclude 

that they are sequencing errors or mosaics arising during cellular expansion. Furthermore, 

as the variants are different in each of the two KO lines, we conclude that they cannot be 

responsible for the cellular phenotype.

Directed differentiation of hESC to β cells—We differentiated hESCs into pancreatic 

β-like cells using a modified protocol from previous studies.16,17,25 Briefly, on day 0, we 

exposed cells to basal medium RPMI 1640 (Corning) supplemented with 1× Glutamax 

(Thermo Fisher), 50 μg/mL Normocin, 100 ng/mL Activin A (R&D systems), and 3 μM 

of CHIR99021 (Cayman Chemical) for 24 hours. On day 1, we changed the medium to 

basal RPMI 1640 medium supplemented with 1× Glutamax, 50 μg/mL Normocin, 0.2% FBS 

(Thermo Fisher Scientific), 100 ng/mL Activin A for 2 days, producing definitive endoderm 

cells. On day 3, we cultured the definitive endoderm cells in basal MCDB131 supplemented 

with 1× Glutamax (Thermo Fisher Scientific), 1.5 g/L sodium bicarbonate (Sigma-Aldrich), 

2% bovine serum albumin (BSA, Lampire), 10 mM glucose (Sigma Aldrich), 50 ng/mL 

FGF7 (Peprotech) and 0.25 mM L-ascorbic acid (Sigma Aldrich) for 2 days to acquire 

primitive gut tube. On day 5, we induced the cells to differentiate to posterior foregut in 

basal medium MCDB 131 supplemented with 2% BSA, 2.5 g/L sodium bicarbonate, 1× 

Glutamax, 10 mM glucose, 0.25 mM L-ascorbic acid, 50 ng/mL FGF-7, 2 μM Retinoic 

acid (RA; Sigma Aldrich), 100 nM LDN193189 (LDN, Axon Medchem), 1:200 ITS-X 

(Thermo Fisher Scientific), 200 nM TPPB (Tocris Bioscience) and 0.25 μM SANT-1 (Sigma 

Aldrich) for 2 days. On day 7, we induced the cells to differentiate to pancreatic endoderm 

in MCDB 131 medium supplemented with 2% BSA, 2.5 g/L sodium bicarbonate, 1× 

Glutamax, 10 mM glucose, 0.25 mM L-ascorbic acid, 2 ng/mL of FGF-7, 0.2 μM RA, 

200 nM LDN193189, 1:200 ITS-X, 100 nM TPPB and 0.25 μM SANT-1 for 3 days. On 

day 10 the cells were induced to differentiate to pancreatic endocrine precursors in MCDB 

131 medium supplemented with 1.5 g/L sodium bicarbonate, 1×Glutamax, 20 mM glucose 

at final concentration, 2% BSA, 0.1 μM RA, 100 nM LDN193189, 1:200 ITS-X, 0.25 mM 

SANT-1, 1 μM T3 hormone (Sigma Aldrich), 10 μM ALK5 inhibitor II (Cayman Chemical), 

10 μM zinc sulfate heptahydrate (Sigma Aldrich) and 10 μg/mL of heparin (Sigma Aldrich) 

for 3 days. On day 13, we exposed cells to MCDB 131 medium supplemented with 1.5 g/L 

sodium bicarbonate, 1× Glutamax, 20 mM glucose at final concentration, 2% BSA, 100 nM 

LDN193189, 1:200 ITS-X, 1 μM T3, 10 μM zinc sulfate, 10 μg/mL of heparin, 100 nM 

gamma secretase inhibitor XX (Millipore) for the 7 days. On day 21, cells were exposed to 

MCDB 131 medium supplemented with 1.5 g/L sodium bicarbonate, 1× Glutamax, 20 mM 

glucose, 2% BSA, 1:200 ITS-X, 1 μM T3, 10 μM ALK5 inhibitor II, 10 μM zinc sulfate, 

10 μg/mL of heparin, 1 mM N-acetyl cysteine (Sigma Aldrich), 10 μM Trolox (Millipore), 2 
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μM R428 (MedchemExpress) for 7-15 days. We refreshed the medium every day. Specially, 

for GSIS and KSIS assay, we dissociated cells at stage 6 using Accutase, and seeded them 

into 96-well U-bottom low attachment plates as described in Static GSIS and KSIS Assays. 

We presented the actual number of biological replicates (n) for each downstream assay in 

Table S2.

Immunofluorescence staining and confocal microscopy—We fixed cells in 4% 

paraformaldehyde solution (Thermo Fisher Scientific) for 20 minutes, washed them three 

times in PBS with 5 minutes incubation for each wash, and blocked and permeabilized 

cells in a PBS solution containing 5% horse serum and 0.3% Triton X-100 (Sigma Aldrich) 

for 1 hour at room temperature. Then, we incubated the cells with primary antibodies 

overnight at 4°C and washed them in PBS with a 5-minute incubation three times. After a 

1-hour incubation with fluorescence-conjugated secondary antibodies (Alexafluor, Thermo 

Fisher Scientific) at room temperature, we washed the cells with PBS three times. The 

detailed antibody information has been included as Table S6. Images in Figure S2A and 

S2E were taken by Inverted Microscope/Apotome (Zeiss). Images in Figure 5K were taken 

by LSM 800 confocal microscope (Zeiss) and scored using MetaMorph® image analysis 

software (Molecular Devices). We calculated mean ± SD for each assay using 3 independent 

biological replicates, and we present those data in Figure 5L.

Fluorescence-activated cell sorting—We dissociated hESC-derived cells at day 24 

into single cells using Accutase and resuspended in PBS supplemented with 0.5% BSA, 300 

nM DAPI, and 2 mM EDTA. The Flow Cytometry Core Facility in Weill Cornell Medicine 

helped conduct the sorting experiments and collect GFP+DAPI-cells by BD FACS Melody™ 

Cell Sorter. All experiments were performed with >=3 independent replicates. For RNA-seq, 

we collected 500,000 cells for each replicate. For ATAC-seq or ELISA assay, we collected 

50,000 cells per replicate. We present the actual number of biological replicates (n) in Table 

S2.

Flow cytometry analysis—We dissociated hESC-derived cells or EndoC-βH1 cells 

using Accutase. To analyze GFP expression, we resuspended the hESC-derived cells in PBS 

and used them directly for analysis. The gating strategy for the analysis of GFP+ cells is 

shown in Figure S3B. For Annexin V cellular apoptosis analysis, we stained hESC-derived 

or EndoC-βH1 cells with the APC/Annexin V apoptosis detection Kit (BD Bioscience) and 

DAPI according to manufacturer’s instructions and analyzed cells using Attune NxT Flow 

Cytometer (Thermo Fisher Scientific) within 30 minutes. The gating strategy for the analysis 

of apoptotic rate in hESC-derived β cells and EndoC-βH1 cells is shown in Figure S3B and 

Figure S6D, respectively. All experiments were performed with >=3 independent replicates. 

We present the actual number of biological replicates in Table S2 and the legends of Figure 

5H and 5J.

Static GSIS and KSIS Assays—We dissociated cells at stage 6 using Accutase and 

resuspended them in S6 medium supplemented with 10 μM Y-27632 at a final concentration 

of 300 cells/μl. Using a multichannel pipette and trough, we filled 96-well U-bottom low 

attachment plates with 100 cell suspensions in each well and spun at 300g for 5 minutes. 
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Cells were aggregated into clusters by incubating for at least 24 hours at 37°C with 5% 

CO2 and then fed every 48 hours until at least the 8th day at Stage 7. Before the static 

GSIS/KSIS assays, 6-8 islet-like clusters were combined into one well as one replicate and 

starved in S7 medium but with 5 mM glucose for 12 hours. Subsequently we removed the 

medium and washed cell clusters with fresh KRBH Buffer. We then incubated the cells in 

LG KRBH (with 0.1% BSA and 2 mM glucose) for 1 hour in an air incubator at 37°C. We 

aspirated the media and replaced it with 200 μL LG KRBH buffer or LG KRBH buffer with 

combinations of 20 mM glucose, or 30 mM KCl to each well and incubated at 37°C for 1 

hour. Plates were spun and the top 120 μl supernatants were collected. The residual medium 

was removed, and cell clusters of each well were lysed by RIPA buffer (Sigma Aldrich) 

supplemented with Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific). 

We measured insulin content in both supernatant and cell lysis using STELLUX Chemi 

Human Insulin ELISA Jumbo kit (Alpco). Stimulation index represents the fold change of 

the percent of insulin secreted upon 20 mM glucose or 30 mM KCl stimulation divided by 

the percent of insulin secreted upon 2 mM glucose stimulation. We calculated mean ± SD 

for each assay using at least 6 independent biological replicates, and we present the actual 

number of biological replicates in Table S2.

Luciferase Reporter Assay—We based the construction of all luciferase vectors on the 

pGL4.23[luc2/minP] vector (Promega) which contains a firefly luciferase gene luc2 under 

regulation of a TATA-box minimal promoter (minP). From genomic DNA of EndoC-βH1 

cells, we cloned the DNA region (723bp, from chr12:49868906 to chr12:49869637) at 

the locus of T2D_fmap. FAIM2.chr12:50263148. This construct included the “A” allele at 

rs7132908. We then subcloned this into pGL4.23[luc2/minP] vector (Promega) between the 

XhoI and Bgl II restriction sites. Using PCR amplification with mutated primers, followed 

by DpnI digestion and nick ligation in E. coli111, we performed site-directed mutation 

of the plasmid to produce the same vector with the “G” allele at rs7132908. Constructs 

of all plasmids were confirmed by Sanger sequencing. The sequences of primers used to 

construct and validate each vector are shown in Table S6. For luciferase assays, we seeded 

EndoC-βH1 cells into 12-well plates at a density of 5.0 × 105 cells/well, cultured those for 

48 hours, and then transfected with firefly luciferase reporter vectors. We used a Renilla 

luciferase vector carrying the SV40 promoter, phRL-SV40 (Promega) as an internal control. 

We co-transfected cells with firefly luciferase reporters (1 μg/well) and phRL-SV40 (20 ng/

well), using Lipofectamine 2000 (Thermo Fisher Scientific), following the manufacturer’s 

instructions. Transfections were performed in triplicate for experimental group using 

constructed vectors and in quadruplicate for control group using empty vector. We harvested 

cells at 48 hours after transfection and lysed them in the passive lysis buffer (Promega). 

We measured luciferase activity of the lysates with the Dual-Luciferase® Reporter Assay 

System (Promega) according to the manufacturer’s protocols. We calculated the ratio of 

firefly/Renilla luciferase activity for each tested enhancer candidate vector and normalized 

that to the empty vector pGL4.23[luc2/minP] as the final relative luciferase intensity. We 

calculated mean ± SD for each assay using 3-4 independent biological replicates and we 

present those data in Figure 3H.
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CRISPR perturbation experiments—To perturb the transcriptional expression of 

candidate genes, we designed two different sgRNAs for each candidate gene, using 

the web resources available at http://chopchop.cbu.uib.no/. We cloned sgRNAs targeting 

RNASE1, PCSK1N, GSTA2, TAGLN3, ADCYAP1 and DHRS2 (sequences of sgRNA 

targeting regions are listed in Table S1) into dSpCas9-VPR vector (Addgene #139090) 

for gene activation. We cloned sgRNAs targeting CP, FOSB, and SYNPO into the dCas9-

KRAB vector (Addgene #139097) according to the previously described instructions82. We 

produced lentivirus expressing each CRISPRa or CRISPRi system in HEK293T cells, using 

a second-generation viral packaging system, and used the virus to infect EndoC-βH1 cells 

or EndoC-luc cells as previously described48. At 48 hours post transduction, we treated cells 

with 2 μg/mL puromycin for one week to select for infected cells, which were then used for 

downstream functional assays.

Generation of EndoC-βH1-luc cells and Nano-luc reporter assay—We produced 

lentivirus expressing proinsulin-luciferase fusion protein in 10-cm diameter dishes from 

80% confluent HEK293T cells, transfected with lentiviral packaging plasmid psPAX2 

(Addgene #12260), envelope plasmid pMD2.G (Addgene #12259) and Proinsulin-NanoLuc 

plasmid (Addgene #62057). We pooled viral supernatant harvested at 48h and 72h post-

transfection and concentrated it using Lenti-X Concentrator (Takara) according to the 

instructions. We added the virus prep to EndoC-βH1 cells in fresh culture medium (see 

Cell lines and culture conditions) with 8 μg/ml Polybrene (Sigma-Aldrich), and spun the 

cells at 800 x g for 1 hour at 30 °C. After 24 hours in the presence of virus, we placed cells 

in fresh growth media. Subsequently, we treated the infected EndoC-βH1 cells with 5 μg/mL 

blasticidin (Thermo Fisher Scientific) for one week to produce the stable EndoC-luc lines. 

To test if CP, RNASE1, PCSK1N and GSTA2 have effects on insulin translation/processing, 

we conducted CRISPR perturbation experiments in EndoC--βH1-luc cells (see CRISPR 

perturbation experiments). We dissociated EndoC--1-luc cells into single cells and counted 

them by a Countess II Cell Counter (Thermo Fisher Scientific). 10,000 EndoC-βH1-luc cells 

were lysed in 100 μl passive lysis buffer (Promega) and we then measured intracellular 

Nano-luc intensity of lysate with the Nano-Glo® Luciferase Assay System (Promega) 

according to the manufacturer’s protocols. We calculated mean ± SD for each assay using 3 

independent biological replicates and we present those data in Figure 4K-4L.

qRT-PCR—We isolated total RNA from EndoC-βH1 cells or EndoC-luc cells using the 

RNeasy Plus Mini Kit (QIAGEN), quantified RNA with a NanoDrop spectrophotometer 

(Thermo Fisher Scientific), and synthesized cDNA with a high-capacity reverse transcription 

kit (Thermo Fisher Scientific). We performed real-time qPCR with a LightCycler 480 

(Roche) instrument with LightCycler DNA master SYBR Green I reagents (Roche). Primer 

sequences specific to INS, candidate genes being tested, and the reference gene (GAPDH) 

are listed in Table S1 and S6. We determined Delta-delta-cycle threshold (DDCT) relative 

to the GAPDH and control samples. We calculated mean ± SD for each assay using 3 

independent biological replicates, and we present those data in Figure 4I-J and Figure 

S6A-C.

Xue et al. Page 22

Cell Metab. Author manuscript; available in PMC 2024 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://chopchop.cbu.uib.no/


INSGFP/w MEL1 genotyping, quality control, and imputation—We genotyped the 

parental INSGFP/w MEL1 hESC line used for generating the isogenic hESC lines using 

the Infinium Omni2.5Exome-8 BeadChip array v1.3 (Illumina, San Diego, CA) at the 

NHGRI Genomics Core facility, resulting in a call rate of 99.7% (out of 2,612,357 SNPs). 

Using novoalign v2.07.11 (http://www.novocraft.com/products/novoalign), we mapped the 

array probe sequences to the GRCh37 (hg19) genome assembly and filtered variants with 

ambiguous probe alignments as previously described in Currin et al..112 We combined 

the INSGFP/w MEL1 genotypes with 15 samples genotyped on the same chip and 2,504 

samples from 1000G project phase 3 release113. We removed variants not in the 1000G 

Phase 3 release panel, with missing genotypes in >1 of the 16 genotyped samples, that 

are likely palindromic variants with MAF>0.4 in the 16 genotyped samples, or with a 

genotype distribution that deviates from Hardy-Weinberg equilibrium (P-value<1x10−4). 

After filtering the genotypes, we used the remaining 1,589,371 SNPs for genotype 

imputation on the Michigan TOPmed Server (Minimac v485). In total, we generated imputed 

genotypes of all SNPs (r2>0.3) included in the TOPmed panel for the analysis described in 

ATAC-seq allelic imbalance analysis.

RNA isolation, sequencing, and processing—For the 20 KO and 2 WT hESC 

lines described in Generation of isogenic hESC lines, we selected and expanded clones, 

differentiated hESCs into hESC-β cells (see β-cell differentiation protocol of hESCs), 

and generated RNA-seq data on the purified hESC-β cells (Table S2). We selected a single 

clone for the KO lines and two clones for the WT lines (Table S2). For each clone, 

we performed the differentiation and RNA-seq experiment in 3-4 replicates (Table S2). 

For each replicate, we extracted and purified total RNA from the FACS-sorted hESCs-β 
cells (see Table S2) using the Absolutely RNA Nanoprep kit (Agilent Technologies), 

quantified with a NanoDrop spectrophotometer (Thermo Fisher Scientific). We used the 

Weill Cornell Genomics Core to sequence the purified RNA. Briefly, we evaluated the 

quality of RNA samples using the Agilent bioanalyzer (Agilent Technologies), generated 

cDNA libraries using TruSeq RNA Sample Preparation (Illumina) and sequenced the cDNA 

libraries using an Illumina NovaSeq 6000 with 2x51 bp cycles (Illumina). We aligned 

the processed reads to the GRCh38 genome assembly using STAR v2.73a86 with default 

parameters and quantified expression levels of Gencode v19 genes (Ensembl release 103) 

using GoRTs (v1.3.687; Table S7). Finally, we generated a raw read count matrix of gene 

by library and a normalized mRNA expression matrix of transcripts per million (TPM). On 

average, we generated 36,586,780 (13,273,689-123,518,245) paired-end reads per library, 

of which 84.36% were uniquely aligned to the genome. Out of the aligned reads, 79.42% 

were unambiguously assigned to unique genes, emphasizing the quality of these data. For 

sequencing statistics, see Table S7.

RNA-seq quality control—To assess the reproducibility of RNA-seq data from replicate 

libraries, we normalized the gene expression using log2(counts per million total reads 

[CPM]) and calculated Pearson correlation of pair-wise replicate libraries. We did not 

identify any outlier (minimum Pearson's r≥0.95) and used the resulting data for downstream 

analysis.
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To assess the contamination of the total RNA isolated for RNA-seq, we combined the 

aligned reads across replicate libraries and flagged duplicate reads in the bam files using 

GATK v4.1.9.0 MarkDuplicates88 with default options. Using the “view” function from 

Samtools v1.989,90 with option “-F 3840”, we removed duplicate reads as well as those 

reads that mapped to supplementary/secondary alignments. Finally, using the INSGFP/w 

MEL1 genotypes (see INSGFP/w MEL1 genotyping, quality control, and imputation) as the 

reference panel, we used verifybamID v1.1.191 with options --ignoreRG --precise --self 

--maxDepth 100 to identify clones with RNA that was likely contaminated (FREEMIX>5%) 

or did not match reference genotypes (CHIPMIX>5%). We did not identify any problematic 

clones.

ATAC-seq library preparation, sequencing, and processing—We used the FACS-

sorted hESC-β cells described in RNA isolation, sequencing, and processing to perform 

ATAC-seq and prepared samples according to Weill Cornell Medicine Epigenetics Core 

facility protocol114. Briefly, we sorted 50,000 INS-GFP+ cells, washed them with 1000 μl 

of ice-cold PBS, and resuspended the pellets in 25 μl of ice cold 1X ATAC Buffer [20mM 

Tris-HCl (pH 7.4), 20mM NaCl and 6mM MgCl2]. We incubated the samples for 5 minutes 

on ice, thoroughly mixed in 25 μl of ice cold ATAC-Detergent-buffer [20mM Tris-HCl (pH 

7.4), 20 mM NaCl and 6 mM MgCl2, 0.2% Igepal CA-630 (Sigma Aldrich), 0.2% Tween 

20 (Sigma Aldrich) and 0.02% Digitonin (Promega) and continued incubating the samples 

on ice for another 3 minutes. After incubation, we centrifuged the samples and collected 

the pellets. Next, we resuspended the pellets in the following transposase mixture: 25 μl 2X 

TD Buffer (Illumina), 2.5 μl TDE1 (Illumina), 16.5 ul PBS, 0.5 ul Digitonin (1%), 0.5 ul 

Tween-20 (10%), and 5 ul H2O. We incubated the suspended cells at 37°C for 30 minutes in 

a thermomixer (Benchmark) set to 500 rpm. We added 250 μl of Zymo DNA binding buffer 

to the suspension and purified the tagmented DNA with Zymo DNA clean and concentrator 

(Zymo research) according to manufacturer’s instructions. We submitted the samples to 

the Weill Cornell Medicine Epigenetics Core facility for library preparation according 

to a previously published method115 and NovaSeq SP (800M reads) 2x50 cycles (PE50) 

sequencing. We trimmed adaptor sequences using CTA (vO. 1.2) and aligned the trimmed 

reads to the GRCh38 genome assembly using BWA-MEM v0.7.17-r1194 with the - M 

option.92 On average, we generated 94,307,193 (70,146,700-111,259,636) reads per library, 

of which 96.84% aligned to the genome as primary alignments. After removing duplicate 

reads with GATK v4.1.9.0 MarkDuplicates and filtering for autosomal, properly paired reads 

with mapping quality ≥30 with samtools v1.989,90, we retained 63,255,116 uniquely aligned 

primary reads per library (minimum of 47,329,535) for downstream analyses (Table S7).

Using the filtered reads, we called ATAC peaks as described in Rai et al..116 Briefly, we 

converted the aligned BAM files to BED files using the bamtobed function from bedtools 

v2.26.093 and called peaks using MACS2 v2.2.7.194 with options “--nomodel --shift -100 

--extsize 200 -B --keep-dup all”, removing candidate peaks that overlap with ENCODE 

blacklists117 and controlling for a false discovery rate (FDR) of 5%. For each hESC-β line 

(20 KO and 2 WT), we merged peaks across replicates and retained peaks present in ≥2 

replicates. Next, we created a master set of peaks by merging peaks across all 22 lines, 

generating 208,945 peaks. Finally, we used this master set of peaks to quantify the number 
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of reads mapping to the peaks within each library using the “multicov” function from 

bedtools v— with the option “-q 30” and the aligned BAM files, generating the accessible 

chromatin region count matrix.

ATAC-seq quality control—We used FastQC and MultiQC to generate 

and aggregate QC metrics across libraries. We evaluated the base 

quality scores (“per_base_sequence_quality_scores”) and sequence quality scores 

(“per_sequence_quality_scores”), and detected all samples passed MultiQC thresholds 

with “pass”. To assess reproducibility across hESC-β line replicates, we normalized the 

peak count matrix (see ATAC-seq library preparation, sequencing, and processing) using 

log2(CPM) and calculated the pairwise Pearson correlation of the normalized counts 

between replicates for each hESC-β line. We identified no outlier libraries (Pearson 

correlation coefficients ≥0.97). Finally, we identified potential contamination or sample 

swaps in the isogenic hESC lines by combining the filtered, aligned reads (see ATAC-seq 

library preparation, sequencing, and processing) across replicates (merge function from 

Samtools v1.989,90) and using verifybamID v1.1.191 with options “--ignoreRG --precise --

self -maxDepth 100” on the merged reads and INSGFP/w MEL1 genotypes (as the reference 

panel). We identified no contamination (all lines with FREEMIX<5%) or sample swaps (all 

lines with CHIPMIX<3%).

Identification of differentially expressed genes and differentially accessible 
regions in KO hESC-β cells compared to WT cells—We tested for differential 

expression and accessibility in the KO hESC-β cells compared to the WT cells (see 

Table S2) using DESeq2 v1.32.0.95 For each set of comparisons, we retained features 

(e.g., genes or chromatin regions) with CPM≥0.5 in ≥50% of the replicate libraries across 

the KO and WT lines (>=3). To identify shared differences between the KO line and 

both WT lines, we used the Wald test implemented in DESeq2 with default options to 

compare the KO line against each WT line and meta-analyzed the results using the rem_mv 

function from MetaVolcano v1.10.096 with default parameters. We performed multiple 

hypothesis correction using the Benjamini-Hochberg procedure118 and considered features 

with ∣FC∣>1.5 and FDR<5% to be differentially expressed or accessible.

To test for differential expression, we used the gene expression matrix described in 

RNA isolation, sequencing, and processing. To test for differential chromatin accessibility, 

we used the accessible chromatin region count matrix described in ATAC-seq library 

preparation, sequencing, and processing.

T2D effector genes—We downloaded a list of 257 T2D predicted effector 

genes generated by integrating the results from three different approaches, namely, 

“Curated T2D effector gene prediction”, “Effector index predictions”, and “Integrated 

classifier predictions” (https://t2d.hugeamp.org/method.html?trait=t2d&dataset=egls, 

accessed October 1, 2022) and considered them as the “T2D effector genes”.

Enrichment of gene sets in KO hESC-β cells compared to WT cells—We tested 

for gene sets enriched in the KO hESC-β cells compared to WT cells using fgsea v1.20.0.97 

Using the differential expression results from each KO line (see Identifying differentially 
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expressed genes and differentially accessible regions in KO hESC-β cells compared to WT 

cells), we ranked genes by the meta-analysis log2(FC) in descending order. We performed 

gene set enrichment analysis using fgsea with default parameters, the ranked gene list, and 

gene sets from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (obtained 

from the R package msigdbr v7.5.198). We performed multiple hypothesis correction using 

the Benjamini-Hochberg procedure118 and considered gene sets with FDR<5% as enriched.

β-cell gene expression specificity scores—We used a single cell RNA-seq dataset of 

12 libraries prepared from human pancreatic islets of one donor39 to assess islet cell type 

specific expression of genes. We collected sequence reads of 16,028 cells representing major 

endocrine and exocrine cell types. We normalized the raw read counts by library size and 

transcript length for each cell and generated a TPM matrix of cell barcode by gene. Next, we 

applied CELLEX v1.2.2101 to derive cell type specificity scores using the TPM matrix and 

cell type labels.

Enrichment of differentially expressed genes in β-cell specific genes—We 

binned protein coding genes into 10 groups with equal number of genes where we have 

β-cell expression specificity scores (>0) using the single cell RNA-seq data from 39 (see 

β-cell gene expression specificity scores). This approach defines the genes in bin 1 to be 

highly specific to β cells and those in bin 10 the least specific. We included genes that are 

expressed ubiquitously (specificity score = 0) into the bin 10. Next, we tested enrichment of 

differentially expressed genes in each bin per KO line using Fisher’s exact test (fisher.test 

function of R stats package; v4.1.2). We performed multiple hypothesis correction using the 

Benjamini-Hochberg procedure118 per KO line and considered gene sets with FDR<5% as 

enriched.

Association between chromatin accessibility/gene expression and cellular 
traits—To identify associations with insulin content, apoptotic rate, differentiation 

efficiency, glucose-induced insulin secretion (GSIS), and KCl-induced insulin secretion 

(KSIS), we performed differential chromatin accessibility and gene expression analysis 

across all samples. Since sequencing replicates and phenotypic assay replicates were not 

paired, we summed the feature (i.e., accessible chromatin regions or genes) reads and 

averaged the cellular assay results across replicates. We standardized the cellular trait 

values, removed features with low signal—keeping accessible regions and genes with CPM 

≥0.5 in ≥50% of samples—and used DESeq2 v1.32.095 to test for an association between 

each feature and cellular trait. For each omics feature type and cellular trait pair, we 

removed tests where the regression was driven by an outlier(s) (minimum Cook's distance 

P-value<0.01119), used the Benjamini-Hochberg procedure118 to control for the number of 

tests, and considered tests with ∣FC∣>1.5 and FDR<5% to be associated.

Enrichment of differentially expressed genes at differentially accessible 
regions—For each KO line, we tested for enrichment of DEGs nearby DARs (see 

Identifying differentially expressed genes and differentially accessible regions in KO hESC-

β cells compared to WT cells). Briefly, we performed a Fisher’s exact test (fisher.test 

function of R stats package; v4.1.2) to evaluate the enrichment of DARs out of all ATAC-seq 
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peaks that overlap with DARs where the transcription start site (TSS) is within a specified 

window size. For TSSs, we used the genomic coordinates defined in the NCBI RefSeq 

release (NCBI RefSeq table; GRCh38 assembly) from UCSC Genome Browser (https://

genome.ucsc.edu/)99. We tested using 5kb, 10kb, 25kb, 50kb, and 100kb window sizes. For 

each window size analysis, we applied the Benjamini-Hochberg procedure118 to correct for 

multiple hypotheses testing across all KO lines. We considered DARs to be enriched around 

DEGs at 5% FDR.

Association of gene expression and chromatin accessibility—Using the paired 

RNA-seq and ATAC-seq data for each hESC-β replicate, we tested for associations between 

gene expression and chromatin accessibility. We removed any gene or ATAC peak with 

CPM≤0.5 in ≥50% of all 67 libraries to focus on shared features across all KO lines and 

considered gene-peak pairs where the peak was within 50kb of either side of the gene TSS, 

which was derived from NCBI RefSeq release (NCBI RefSeq table; GRCh38 assembly) 

from UCSC Genome Browser (https://genome.ucsc.edu/).99 For each gene-peak pair, we 

used the qtl_test_lmm function from LIMIX v1.0.17100 to fit a linear regression to model the 

inverse-normalized peak counts as the dependent variable and the inverse-normalized gene 

expression as the independent variable. We controlled for the FDR across all gene-peak tests 

using the BH procedure.118 To explore the effects of different window sizes, we also tested 

for associations using 5kb, 25kb, and 100kb windows around the gene TSSs to identify 

gene-peak pairs. For the gene expression and chromatin accessibility data, we used the 

counts matrices described in Association between chromatin accessibility/gene expression 

and cellular trait.

Effects of T2D GWAS credible set of SNPs on transcription factor (TF) 
footprints—To assess the effect of SNPs on regulatory elements, we performed a TF 

footprint analysis in the merged ATAC-seq peaks for each cell line individually. We scanned 

the peak regions with position weight matrices (PWMs) of the directly determined TF motifs 

included in Cis-BP v2120 using “Find Individual Motif Occurrences” (FIMO) v5.4.1102 with 

default options. Next, we used CENTIPEDE v1.2104 to call footprints for each FIMO scan 

result in combination with the corresponding ATAC-seq aligned bam file. This approach 

allowed us to measure the number of transposase Tn5 integration events at a region ±100bp 

from each motif occurrence. We defined a motif occurrence to be bound by the respective 

TF if the CENTIPEDE posterior probability was ≥0.95 and its coordinates were fully 

contained within an ATAC-seq peak. We further considered any T2D 99% credible set SNP3 

overlapping such a motif occurrence to be potentially disrupting the binding site of the 

respective TF.

Enrichment of differential ATAC-seq peaks in ChromHMM—To investigate the 

enrichment of DARs in islet regulatory regions, we analyzed the regulatory features defined 

by ChromHMM45. Using the intersect function of bedtools (v2.26.0), we compared DARs 

identified in "Identification of differentially expressed genes and differentially accessible 

regions in KO hESC-β cells compared to WT cells" with each ChromHMM feature, with a 

restriction of DARs that overlapped at least 50% with a feature of interest (using option "-f 

0.5"). We conducted Fishers’ exact test (fisher.test function of R stats package; v4.1.2) to 
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evaluate the enrichment of suppressed DARs among all DARs that overlap with a feature. 

We also performed the same test in the other way around - for the enrichment of activated 

DARs for the set of features. We applied the Benjamini-Hochberg procedure118 to correct 

for multiple hypotheses across all 14 ChromHMM features. We considered a feature of 

interest in a line to have enriched suppressed/activated DARs at 5% FDR.

Enrichment of TFBSs in differential ATAC-seq peaks—We tested for enrichment 

of TF binding site motifs for 677 TFs that are expressed in WT line (TPM>0) in the 

suppressed or activated ATAC-seq peaks in each KO and WT line (see Effects of T2D 

GWAS credible set of SNPs on transcription factor (TF) footprint and Comparison of 
chromatin accessibility in KO and WT lines) using “Simple Enrichment Analysis” (SEA) 

with default options (v5.4.1)103. We performed multiple hypothesis correction using the 

Benjamini-Hochberg procedure118 and considered motifs with FDR<5% to be enriched.

ATAC-seq allelic imbalance analysis—For each line, we filtered duplicate reads, 

reads identified as secondary alignments, or reads with poor mapping quality (<30) and 

merged the aligned, paired reads across replicates using the “merge” function from samtools 

v1.9.89,90 We applied WASP v0.3.4105 to quantify allele counts while controlling for 

mapping biases at heterozygous variants in the INSGFP/w MEL1 parental line, using only 

variants with an imputation quality r2>0.3. From the allelic counts generated by WASP, 

we selected T2D 99% credible sets SNPs from Mahajan et al.3 and performed a two-sided 

binomial test (binom.test function in R v4.2.2) in each line across all variants with >=1 

total counts. To identify common effects across lines, we performed a meta-analysis using 

Stouffer’s Z-score method,121,122 weighting the Z-scores from each line by the total read 

counts overlapping the variant (sumz method from metap R package v1.8). For both line-

specific and common effect analyses, we controlled for the number of tests using the 

Benjamini-Hochberg procedure118.

We performed gene-based annotation for the imbalanced SNPs using ANNOVAR106 

(GRCh38 refSeq table).

Association between ATAC-seq allelic imbalance signals with cellular traits—
Using the allelic counts generated by WASP (see ATAC-seq allelic imbalance analysis), we 

selected T2D 99% credible sets SNPs from Mahajan et al.3 and fit a binomial regression 

(sm.GLM function with family set to sm.families. Binomial() from the statsmodels Python 

package v0.13.2) across all lines, testing for an association between allelic imbalance and 

each cellular trait. For each variant considered for allelic imbalance, we standardized the 

cellular trait values prior to fitting the regression. We included all variants in the analysis 

with >=1 count. Finally, we removed associations driven by outliers, dropping those with a 

minimum Cook's distance P-value<0.01119, and controlled for the number of tests for each 

cellular trait using the Benjamini-Hochberg procedure118.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis for functional assay—All experiments were performed with >=3 

independent replicates unless otherwise specified in the Figure legends. Unless otherwise 
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noted in the rest of the method sections, for comparisons of functional assay results, we 

calculated mean ± SD for each assay using >=3 independent biological replicates. We 

included descriptions of each statistical test and the n and P values in each Figure legend and 

related experimental method sections.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlight

• Deficiency of 20 T2D genes affects molecular and cellular phenotypes of β 
cells.

• rs7132908 affects HNF4A binding and is likely a T2D causal variant.

• Four genes are associated with insulin production and two with β-cell 

survival.

• ATAC-seq allele imbalance analysis refines 23 GWAS signals at single-SNP 

resolution.
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Figure 1. Isogenic hESC lines to evaluate the impact of loss of T2D-associated genes in β-cell 
generation, function, and survival.
(A) Schematic illustration of the experimental design. (B) Representative images of 

differentiated cells derived from WT and isogenic KO hESCs. Scale bar = 200 μm. (C) 
Quantification of the percentage of INS-GFP+ cells in the differentiated cells. (D) ELISA 

analysis of total intracellular insulin content of the purified β-like cells. (E and F) Static 

GSIS (E) and KSIS (F) of hESC-islet cells derived from WT and isogenic KO hESCs. 

The percent of insulin content under different stimulation conditions was shown in Figure 

S3A. (G and H) Representative flow cytometry analysis (G) and the quantification of the 

percentage of Annexin V+DAPI− cells (H) in INS-GFP+ cells after palmitate treatment. 

The gating strategy is shown in Figure S3B. (I) Summary of the impact of loss of T2D-

associated genes in five cellular traits of hESC-β cells. The dot indicates the gene KO 

exhibited impairment effects on its overlapping cellular trait. For panels 1C-1F and 1H, data 

are shown as mean ± SD for two independent clones (#1 and #2) of each hESC line. The 

number of biological replicates is listed in Table S2. P-values were calculated by one-way 

ANOVA followed by Dunnet’s test. The n.s. indicates a non-significant difference and * 
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symbol illustrates the significant difference of each KO line compared to the WT line. * P < 

0.05, ** P < 0.01, ***P < 0.001, ****P < 0.0001.
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Figure 2. Loss of T2D associated genes results in large scale transcriptomic and epigenetic 
changes in hESC-β cells.
(A) Summary of differential gene expression (blue) and differential chromatin accessibility 

(red) in β-like cells. (B) Enrichment of DEGs in β-cell specific genes. (C) Correlation of 

DEGs and DARs. (D) Enrichment of DEGs around DARs in varying sizes of windows. (E) 
Distribution of accessible chromatin regions associated with nearby gene expression. For 

panels 2B and 2D, we applied the Benjamini-Hochberg procedure to correct for multiple 

hypotheses testing across all KO lines and highlighted the enrichment at FDR< 0.05 with 

triangles.
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Figure 3. Fine mapping analysis of transcriptomic and epigenomic alterations in HNF4A−/− 

hESC-β cells prioritize a causal variant rs7132908 at a T2D risk locus.
(A) DEGs of the HNF4A−/− versus WT INS-GFP+ cells. Genes associated at FDR<0.05 and 

∣FC∣ > 1.5 are highlighted with blue (down regulated) or red (up regulated). (B) DARs of 

the purified HNF4A−/− versus WT INS-GFP+ cells. Chromatin accessible regions associated 

at FDR<0.05 and ∣FC∣>1.5 are highlighted with blue (lost accessibility) or red (gained 

accessibility). (C) KEGG pathways enriched with down-regulated genes in HNF4A−/− 

versus WT INS-GFP+ cells (FDR<0.05). (D) Overlap of DARs in the HNF4A−/− versus 

WT INS-GFP+ cells with islet regulatory features defined by ChromHMM45. Counts of 

overlapping DARs were adjusted by total number of respective regulatory regions (number 

of DARs overlapping a regulatory feature x 10,000/total number of regulatory regions). (E) 
Enrichment of transcription factor binding site motifs in suppressed DARs of the HNF4A−/− 

hESC-β cells. Right panel shows the top 20 most enriched TFBSs. (F) Relative distance 

of HNF4A TFBSs from the center of suppressed DARs in the HNF4A−/− versus WT 
hESC-β cells. TFBS motif abundance was generated by scanning 150bp flanking regions 

around centers of all suppressed DARs. (G) T2D credible set of SNPs at a locus on 
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chromosome 12 near FAIM2. rs7132908 overlaps a DAR and the A allele disrupts an 

HNF4A binding site. Top panel shows ATAC-seq (red) and RNA-seq (blue) read pileups 

in WT and HNF4A−/− hESC-β cells. “T2D_credible” shows two T2D credible set SNPs 

(height of the bar represents PPA). (H) Luciferase analysis to assess the functionality of the 

two credible set SNPs and an empty vector in EndoC-βH1 cell. Data was shown as mean ± 

SD. There are 3 biological replicates for each experimental group and 4 biological replicates 

for the empty vector control group. Unpaired Student’s t-test: ** P < 0.01.
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Figure 4. Cellular trait association analysis identifies potential genes controlling insulin content.
(A) Identification of genes associated with total insulin content in hESC-β cells. Genes 

associated at FDR<0.05 and ∣effect size∣>1.5 are colored (negative: blue, positive: red). 

(B-F) Linear regression analysis of total insulin content in WT or KO INS-GFP+ cells 

with RNA expression of candidate gene CP (B), FOSB (C), PCSK1N (D), GSTA2 (E) 

and RNASE1 (F). The solid line and gray area indicate the regression line and 95% 

confidence interval (CI), respectively. (G) Total insulin content of EndoC-βH1 cells with 

transcriptional inhibition of CP or FOSB. N=3 biological replicates. (H) Total insulin 

content of EndoC-βH1 cells with transcriptional activation of RNASE1, PCSK1N, or 

GSTA2. N=3 biological replicates. (I) Relative expression of INS mRNA in EndoC-βH1 

cells with transcriptional inhibition of CP. N=3 biological replicates. (J) Relative expression 

of INS mRNA in EndoC-βH1 cells with transcriptional activation of RNASE1, PCSK1N, 
or GSTA2. N=3 biological replicates. (K) Relative luciferase intensity of EndoC- βH1-luc 

cells with transcriptional inhibition of CP. N=3 biological replicates. (L) Relative luciferase 

intensity of EndoC- βH1-luc cells with transcriptional activation of RNASE1, PCSK1N, 
or GSTA2. Nano-luc intensity indicates the c-peptide content. N=3 biological replicates. 

For panels 4G-4L, data are shown as mean ± SD. P-values were calculated by unpaired 
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Student’s t-test. The n.s. indicates a non-significant difference and * symbol illustrates the 

significant difference of each genetic perturbation line compared to the control line. * P < 

0.05, ** P < 0.01, ***P < 0.001, ****P < 0.0001.
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Figure 5. Cellular trait association analysis identifies genes controlling β-cell survival.
(A) Identification of genes correlated with palmitate-induced apoptotic rate in hESC-β cells. 

Genes associated at FDR<0.05 and ∣effect size∣>1.5 are colored (negative: blue, positive: 

red). (B-F) Linear regression analysis of apoptotic levels in each WT or KO line with 

RNA expression of candidate genes TAGLN3 (B), ADCYAP1 (C), DHRS2 (D), CP (E) 

and SYNPO (f). The solid line and gray area indicate the regression line and 95% CI, 

respectively. (G-J) Representative flow cytometry analysis (G and I) and the percentage 

of AnnexinV+DAPI− cells (H and J) in genetic perturbed EndoC-βH1 cells after palmitate 

treatment. Gating strategy is shown in Figure S6D. N=6 biological replicates. (K and 

L) Representative Immunofluorescent staining images (K), and the percentage of cleaved-

caspase3+Insulin+ cells (L), in EndoC-βH1 cells carrying sgRNA to activate TAGLN3 or 

DHRS2. N=3 biological replicates. Scale bar = 200 μm. For panels 5H, 5J and 5L, data 

are shown as mean ± SD. P-values were calculated by unpaired Student’s t-test. The n.s. 

indicates a non-significant difference and * symbol illustrates the difference of each genetic 

perturbation line compared to the control line. * P < 0.05, ** P < 0.01, ***P < 0.001, ****P 

< 0.0001.
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Figure 6. ATAC-seq allelic imbalance analysis nominates functional candidates.
(A) Refinement of T2D GWAS signals using allelic imbalance analysis (binomial test 

from the common effect analysis). The INSGFP/w MEL1 hESC line is heterozygous at all 

credible set SNPs for 80/338 T2D association signals3. Within this group of 80 signals, 

we identified at least one SNP with allelic imbalance (FDR<5%) for 26 signals. At 18/26 

signals, we identified a single SNP with allelic imbalance, thus likely to be the causative 

SNPs driving each association signal. (B) Candidate causal SNP at the ADCY5 locus. Top 

panel: UCSC browser of ATAC-seq (red) and RNA-seq (blue) reads around the credible set 

of SNPs in INSGFP/w MEL1 hESC-β cells. Next panels: −log10(P-values) from T2D genetic 

association; PPA from statistical analysis of genetic data on the credible set; −log10(P-value) 

of ATAC-seq allelic imbalance at each of the credible set SNPs. Dashed vertical blue line 

represents the candidate functional SNP and corresponds with the position of the disruption 

(G to A change) in the predicted TFBS motif (orange arrow). (C) An example of candidate 

functional SNP at the SEC16B locus. Order of panels is as in (B). (D) Nominating the likely 

functional SNP at the RALY locus. Order of panels is as in (B). (E) Association of ATAC 
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reads imbalance at rs2284379 with total insulin content. The point size represents the total 

number of ATAC-seq reads covering the SNP position for the line.
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Table 1.

20 T2D-associated genes selected for creation of isogenic KO hESCs.

Gene Gene description T2D evidence

Expression
(TPM)

hESC-β
cells

human
islet β
cells

ABCC8 ATP-binding cassette subfamily C member 8 T2D knowledge portal effector gene30-33;T2D 
association from exome-sequencing14 53.75 31.27

APOE Apolipoprotein E T2D knowledge portal effector gene31,30 667.30 0.62

CDC123 Cell division cycle protein 123 homolog T2D knowledge portal effector3,33; T2D association 
from exome-sequencing14 69.85 12.08

CDKAL1 CDK5 Regulatory Subunit Associated Protein 
1 Like 1 T2D knowledge portal effector gene30,33 79.59 2.14

COBLL1 Cordon-bleu WH2 repeat protein like 1 T2D knowledge portal effector gene30,33;T2D 
association from exome-sequencing14 9.39 1.07

GCKR Glucokinase regulatory protein T2D knowledge portal effector gene31,30,33; T2D 
association from exome-sequencing14 51.29 0.01

GIPR Gastric inhibitory polypeptide receptor T2D knowledge portal effector gene31,30,33 90.23 3.23

HNF1A Hepatocyte nuclear factor 1-alpha T2D knowledge portal effector gene30-33 48.05 0.31

HNF4A Hepatocyte nuclear factor 4-alpha T2D knowledge portal effector gene30-33 102.97 0.66

HTT Huntingtin T2D knowledge portal effector gene32 28.73 0.66

IGF2BP2 Insulin-like growth factor 2 mRNA-binding 
protein 2 T2D knowledge portal effector gene3,30-33 103.04 1.22

KCNJ11 ATP-sensitive inward rectifier potassium 
channel 11; Kir6.2

T2D knowledge portal effector gene3,30-33; T2D 
association from exome-sequencing14 51.03 2.50

SLC16A11 Monocarboxylate transporter 11 T2D knowledge portal effector gene30-32;T2D 
association from exome-sequencing14 29.52 0.67

SLC30A8 Zinc transporter 8 T2D knowledge portal effector gene30-33; T2D 
association from exome-sequencing14 73.95 71.32

TCF7L2 transcription factor 7 like 2 T2D knowledge portal effector gene3,30-32 18.96 3.42

TGFB1 Transforming growth factor β-1 T2D association from exome-sequencing14 58.31 5.49

TLE4 Transducin-like enhancer protein 4 Nearest gene to T2D association6 10.26 1.96

TMCC2 Transmembrane and coiled-coil domains 
protein 2

T2D knowledge portal effector gene32; T2D 
association from exome-sequencing14 7.93 0.89

WDR13 WD repeat-containing protein 13 T2D association from exome-sequencing14 32.36 12.38

WFS1 Wolframin T2D knowledge portal effector gene3,32,33; T2D 
association from exome-sequencing14 163.18 7.38

PDX1 Pancreatic and duodenal homeobox 1 Reference β-cell gene 167.28 17.36
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