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Abstract

DNA and RNA play fundamental roles in various cellular processes, where their three-dimensional 

(3D) structures provide information critical to understanding the molecular mechanisms of their 

functions. Although an increasing number of nucleic acid structures and their complexes with 

proteins are determined by cryogenic electron microscopy (cryo-EM), structure modeling for 

DNA and RNA remains challenging particularly when the map is determined at a resolution 

coarser than atom-level. Moreover, computational methods for nucleic acid structure modeling 

are relatively scarce. Here, we present CryoREAD, a fully automated de novo DNA/RNA atomic 

structure modeling method using deep learning. CryoREAD identifies phosphate, sugar, and base 

positions in a cryo-EM map using deep learning, which are traced and modeled into a 3D 

structure. When tested on cryo-EM maps determined at 2.0 to 5.0 Å resolution, CryoREAD built 

substantially more accurate models than existing methods. We also applied the method to cryo-EM 

maps of biomolecular complexes in SARS-CoV-2.

Introduction

Determining the three-dimensional (3D) structures of macromolecules, such as protein, 

DNA, RNA, as well as their complexes, is fundamental in molecular biology because 3D 

information enables mechanistic understanding of their biological function. Structures can 

also provide critical clues in drug design 1 and the engineering of biomolecules 2,3. Although 

an increasing number of biomolecular structures are being determined every year, most 

of the structures are from proteins, and 3D structure information of DNA and RNA is 

significantly scarcer. In the Protein Data Bank (PDB) 4, DNA and RNA structures only 

*Corresponding author. dkihara@purdue.edu.
Author Contributions Statement
DK conceived the study. XW designed and implemented CryoREAD and computed results. GT designed the core strategy of 
molecular structure building pipeline and participated in implementing the algorithm. All the authors analyzed the results. XW drafted 
the manuscript 1and DK edited it. All the authors read and approved the manuscript.

Competing Interests Statement
The authors declare that there are no competing interests.

Code Availability
The source code of CryoREAD is made available at https://github.com/kiharalab/CryoREAD41. The webserver is available at https://
em.kiharalab.org/algorithm/CryoREAD, where user can simply upload the map and get the structures without installment. User 
can also on Google Colab Notebook Webserver at https://bit.ly/CryoREAD. A detailed tutorial for CryoREAD is available at https://
kiharalab.org/emsuites/cryoread.php.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2024 November 01.

Published in final edited form as:
Nat Methods. 2023 November ; 20(11): 1739–1747. doi:10.1038/s41592-023-02032-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/kiharalab/CryoREAD
https://em.kiharalab.org/algorithm/CryoREAD
https://em.kiharalab.org/algorithm/CryoREAD
https://bit.ly/CryoREAD
https://kiharalab.org/emsuites/cryoread.php
https://kiharalab.org/emsuites/cryoread.php


present in fewer than 10% of the database entries, among which more than 70% are protein-

nucleic acid complexes.

Reflecting this imbalance in the number of determined structures of proteins and nucleic 

acids, most biomolecular structure modeling software is primarily designed for proteins 
5–7. This is also true for software for cryogenic electron microscopy (cryo-EM) 8. Due 

to its typically lower-resolution nature than X-ray crystallography, cryo-EM needs specific 

software that can model structures from medium to low resolution maps. Various advanced 

structure modeling tools 9–12 have been developed for cryo-EM, but again most of them 

are primarily designed for protein structures and not for DNA/RNA structure modeling. 

Typically, experimental scientists have to manually model nucleic acid structures with 

graphical molecular modeling software 13,14. Modeling nucleic acid structure is particularly 

challenging 15 because structures are more flexible and local structure patterns of nucleic 

acids, particularly RNA, are more diverse than proteins. Finding proper base pairings is 

often not trivial as they can happen both inside the same chain and across different chains. 

Modeling becomes even more complicated when nucleic acid RNA and protein interactions 

are involved in the structure.

Existing related methods for RNA structure modeling for cryo-EM include RCrane 16 and 

auto-DRRAFTER 17. RCrane 16 is an interactive software, which helps users to iteratively 

select phosphate, sugar, and base positions from candidates and build the full atomic 

structure from the selections. Auto-DRRAFTER 17 requires users to provide a parameter for 

low-pass filter to specify the region of RNA in the map. Their target maps are those which 

include only RNAs of up to around 400 nucleotides. It also requires accurate secondary 

structure information of RNA that are determined by experiment. Therefore, there is a 

pressing need for an automated, efficient tool to determine DNA/RNA structures.

To address these challenges, here we developed CryoREAD (Cryo-EM DNA/RNA dE novo 

Atomic structure moDeling), a fully automated de novo DNA/RNA structure modeling 

method for cryo-EM maps of a medium resolution range, 2.0 Å to 5.0 Å. To the best 

of our knowledge, this is the first deep learning-based method for fully automated de 
novo DNA/RNA structure modeling. CryoREAD first identifies potential positions of 

phosphates, sugars, and nucleobases in a cryo-EM map using a deep neural network that 

captures characteristic local density patterns of these moieties. Subsequently, identified 

sugar positions are connected to form the backbone structure. Then, the nucleic acid 

sequence is mapped along the backbone by considering predicted base types along the 

backbone path. Finally, a full atom model including nucleotide bases is constructed. We first 

tested CryoREAD on a dataset of EM maps determined at 2.0 Å to 5.0 Å resolution, which 

includes 11 DNA entries, 55 RNA entries and 2 DNA/RNA mixed entries. We observed that 

85.7% of the atoms on average were placed correctly within 5 Å (coverage), and 52.5% 

of nucleotides were correctly identified. We further tested the method on 61 maps that 

include RNA from SARS-CoV-2. The modeling results showed a similarly high level of 

accuracy for 58 maps that had associated atomic structures deposited by the authors. For the 

three remaining maps without associated structure models, we provide models generated by 

CryoREAD.
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Results

Overview of CryoREAD

CryoREAD detects phosphate, sugar, and base positions in a cryo-EM map using deep 

learning and builds a backbone model based on the detected positions, which is finally built 

into a full atom model. Fig. 1 illustrates the main steps of the algorithm.

Structure Detection by Deep Neural Network.

To start the structure modeling procedure, the probability of phosphate, sugar, and base at 

each grid position of an input density map is computed by a deep neural network. The input 

map is scanned with a 643 Å3 box with a stride of 16 Å along the map grid of an interval of 

1 Å. The box takes density values at each grid point in the box as input features and outputs 

the probabilities that heavy atoms of protein, sugar, phosphate, and base for each grid point. 

The network architecture consists of two networks, stage 1 and stage 2, where the stage 2 

network further refines the initial stage 1 output by considering the probabilities assigned 

by the stage 1 network. For the stage 1 network, we designed a cascaded two stage U-Net 

architecture 18,19 with deep supervision. We provided the network architecture in Extended 

Data 1.

Backbone Structure Tracing.

The next logical step is tracing the backbone of the nucleic acid from the structure classes 

detected by the deep neural network. It consists of two sub-steps: clustering grid points 

with detected structure classes to choose representative nodes and connecting representative 

nodes classified as sugar to construct backbone structure candidates. The clustering aims to 

reduce the number of grid points and to identify representative points for a structure class. 

Clustering was applied for all but protein class (i.e. seven classes in total; sugar, phosphate, 

base, and four bases, which are A, C, G, U/T). For sugar and phosphate, we selected grid 

points with a predicted probability of 0.1 or higher. For (general) base and base types, a 

probability cutoff of 0.25 was used to prescreen grid points. Then, we applied mean-shifting 

algorithm 10,20 to the selected representative grid points, which identifies a reduced number 

of local points that have relatively high predicted probability and can thus be assumed 

representative of their local regions.

Then, the representative nodes of the sugar prediction are connected into a graph. Only 

sugar nodes were used to trace the backbone since the detection accuracy for sugar was 

higher than phosphate and considering sugar was sufficient for tracing. Edges are connected 

between sugar nodes depending on the sugar probability of the nodes and the distance 

between them. Then, we traced the backbones of nucleic acids with a Vehicle Routing 

Problem (VRP) solver 21. The VRP is similar to the Traveling Salesman Problem (TSP), but 

it uses multiple “vehicles” instead of a single “salesman” to connect edges in a graph while 

minimizing connecting costs. We found VRP is more suitable since a map may include 

multiple nucleic acid chains. For more technical details see Methods.
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Sequence Assignment to Sugar Backbone Paths.

The third step is to assign nucleic acid sequences to sugar nodes in the paths. This process 

has two sub-steps, first to assign base sequence fragments to paths, then to assemble 

assigned sequences. In the initial base sequence assignment, sugar backbone paths are cut 

into segments of 20 representative nodes by a sliding window with a stride of 2, which are 

aligned with the nucleic acid sequence to identify the top 20 candidate sequence fragments 

using a dynamic programming algorithm. Subsequently, the assigned sequence fragments 

are assembled by a constraint programming (CP) 22 solver, which maximizes the sum of the 

probability score of sugar nodes with the assigned bases while satisfying constraints that are 

required for consistency of overlapping path segments and nucleic acid sequences.

DNA/RNA Atomic Structure Modeling.

Up to this step, the structure consists of the sugar backbone and bases that are assigned 

to representative sugar nodes. Then, to the sugar nodes, phosphate and base nodes that are 

in close proximity and satisfy a distance condition are added to the model (see Methods). 

Next, a full-atom nucleotide 3D structure of the standard conformation is superimposed to 

each triangle of sugar, phosphate, and base nodes. Finally, the structure is further refined by 

applying phenix.real_space_refine 23 on predicted RNA regions followed by all_atom_refine 
in Coot 13. This is a fully automated process.

Computational Time.

We provided computational time of each step of CryoREAD for 11 maps of different sizes. 

Depending on the size of the nucleotides in the map, it took about 0.25 (for a small RNA of 

72 nt.) to 11 hours (over 4000 nt.) to process by CryoREAD. Details are in Extended Data 2.

Structure Modeling Performance Evaluation

We evaluated the performance of CryoREAD on an independent dataset of 68 maps 

determined at resolutions between 2.0 Å and 5.0 Å. These structures are not redundant 

with the training and validation data we used (see Methods). The list of maps in the dataset 

is provided in Supplementary Table 1_Testing. The number of nucleotides included in the 

maps ranged from 57 to 4,286, and the number of DNA/RNA chains ranged from 1 to 6 

(Extended Data 3). The dataset covers both large RNA/DNAs that have lengths over 2,500 

nucleotides as well as small ones with fewer than 200 nucleotides in maps at different 

resolutions.

First, we discuss the accuracy of detecting structural classes in nucleic acids by deep neural 

networks. Fig. 2a shows the detection performance of the structural classes by the 2-stage 

deep networks. A nucleotide moiety was considered as correctly detected if the majority 

of the atoms in the moiety were correctly detected. Performance evaluated at the grid level 

is provided in Extended Data 4. 90.1%, 82.9%, and 89.8% of sugar, phosphate, and base 

moieties, respectively were detected correctly. For base fine-grained detection, individual 

base types, A, U/T, C, G, were detected at 55.0%, 53.0%, 65.4%, and 80.7%, respectively. 

Comparing results from the stage 1 and 2 networks, a clear improvement was observed from 

the stage 2 network, except for detecting adenine. The improvement by the stage 2 network 

is consistent with our previous works 11,24, where results of neighboring boxes helped 
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improve detection accuracy. Results for individual maps are provided in Supplementary 

Table 2_moiety stage 2. Supplementary Table 2_grid stage 2 also includes individual map 

results for grid-based accuracy as well as cluster-averaged results, where results of maps 

in the same clusters are averaged. In Extended Data 5, we examined nucleotide moiety 

accuracy relative to the map resolution. Base detection accuracy was stable to the map 

resolution (Extended Data 5a). Detecting purine bases, adenine and guanine, which have two 

rings, were less affected to the map resolution than single-ring nucleotides (Extended Data 

5b, 5c). When individual base types were considered, the accuracy stayed at over 0.8 until a 

resolution of about 3.5 Å it and started to decrease as the resolution worsened.

Next, we examine the backbone level accuracy of constructed structure models in the 

subsequent panels, Fig. 2b to 2g. We computed recall and precision of sugar and phosphate 

nodes in the Sugar-Phosphate-Base (S-P-B) conformation that were used to build the atomic 

detailed structure (Fig. 1, the last step). The recall of sugar and phosphate basically reports 

the fraction of sugar and phosphate moieties in the nucleic acids in the map that were 

modelled correctly (see Methods), while the precision of sugar and phosphate reports the 

fraction of correctly modeled moieties in a modelled structure (Methods). In Fig. 2b, sugar 

and phosphate moieties were detected at high recall, 0.910 and 0.814, respectively. The 

precision values were comparable to the recall values (Fig. 2b). Sugars were detected with 

a higher recall than phosphate, which was the reason that we used sugar nodes to trace the 

backbone in the initial step. The recall of all sugar and phosphate atoms, which we later 

call the backbone-level recall, was 0.857. As shown in Fig. 2c, detection did not deteriorate 

sharply with lower map resolutions. Also, the detection did not depend on the number of 

nucleic acids in the maps (Fig. 2d).

We further evaluated base sequence assignment accuracy in Fig. 2e and 2f. In Fig. 2e we 

show how the base recall correlates with the backbone recall. The average base recall is 

0.525. It has an apparent correlation with backbone recall when examined for individual 

maps. For maps that have higher than 0.8 backbone recall, the average base recall is 

0.556. Fig. 2f shows the base assignment performance relative to the map resolution. The 

base recall has a slightly stronger dependence on the resolution than the backbone atom 

assignment. At a resolution around 3 Å, the sequence recall is about 0.6, which went down 

to about 0.5 for maps at a resolution around 5 Å. We show two values for sequence recall, 

one that considers all the nucleotides in the nucleic acid sequences in the map and the 

other which only considers nucleotides in the reference structure that have a corresponding 

nucleotide in the model with an average atom pair distance of less than 5 Å. On average, 

the sequence recall (match) is higher by 0.06 than the sequence recall (Extended Data 6). 

In Extended Data 7, we further show the sequence matching accuracy of individual bases. 

Compared to nucleotide moiety accuracy shown in Extended Data 5, sequence matching 

accuracy has less dependency to the map resolution because sequence alignment often can 

fix incorrectly detected base types.

The last step in the modeling procedure is structure refinement. The refinement is aimed at 

correcting stereochemistry of the structure model, including removing atom clashes (defined 

as non-bonded atom pairs closer than 3.0 Å), placing covalently bonded atoms at a proper 

distance, and helps to make regular base pairs. The reduction of atom clashes is evident in 
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Extended Data 8. Consequently, we observed improvement of RMSD to the native structure 

(the structure in PDB) in Fig. 2g. The average improvement of RMSD was 0.10 Å (from 

3.29 Å to 3.19 Å). The largest improvement observed was from 3.29 Å to 2.79 Å. RMSD 

between the center of predicted bases and the corresponding native bases in matched regions 

(base RMSD) was 3.10 Å (Supplementary Table 3_with sequence after refine).

Fig. 3 showcases examples of nucleic acid structure models built by CryoREAD, where 

“DNA/RNA structure” is the native structure manually built by the authors of the cited 

paper, “Structure model by CryoREAD” refers to the structure automatically built by 

CryoREAD. The highly accurate detection by deep learning in CryoREAD provide strong 

foundations for further structure modeling. The first example (Fig. 3a) is the DNA-protein 

complex structure of hairpin-forming complex (HFC) (EMD-7480) 25, which includes six 

DNA chains totaling 212 nucleotides (nt) and forms a DNA hairpin structure by rotating and 

deforming coding-flank DNAs. The model generated by CryoREAD captured the overall 

topology of the DNA chains well, notably including the interaction sites of proteins and 

DNA, which are crucial for the function of this complex. The backbone recall was 0.862 

for this model. Fig. 3b is an example of a complex with 14 proteins and a relatively small 

RNA of 63 nt (EMD-4868) from poxvirus RNA polymerase complexes 26. Despite the small 

density of the RNA, CryoREAD was able to detect the location of RNA accurately and 

model it. The backbone recall was 0.905.

In Fig. 3c, we show a map where RNA is the only determined macromolecule, a glyQS t-

box-tRNAGly complex (EMD-20416), which includes 230 nt 27. This map is challenging for 

modeling since the resolution is low, 4.9 Å. CryoREAD detected backbone conformations 

well (the third panel from the left), but the atom structure model had several disconnections 

(the right panel). On the other hand, the backbone recall was maintained at 0.841. The last 

example (Fig. 3d) is a bacterial pre-50S ribosomal precursor complexed with ribosomal 

silencing factor RsfS and GTPase ObgE/CgtA 28. This large complex includes 3702 aa and 

3016 nt, and the map (EMD-12217) is determined at 2.4 Å resolution. Despite the large size, 

CryoREAD was able to separate RNAs from proteins, resulting in a full atom model with a 

high backbone recall of 0.910. As shown in the Fig. 3d, the detected sugars and phosphates 

traced the backbone structures of RNAs well.

In Extended Data 9, we provide modeling results of six EM maps of ribosomal subunits. 

In all these six cases, CryoREAD produced RNA structure models from the entire map, 

while the authors of the EMDB entries have built structure models for only local density 

regions that were most relevant to their biological discussion. Evaluation of our models 

was performed only for RNAs that have associated structures and included in the provided 

statistics. Backbone recall of RNAs with the reference structure built by the authors of 

the entries ranged from 0.856 to 0.914. Additionally, we also evaluated our RNA models 

in unfilled density regions by comparing against relevant structures built for different 

maps found in PDB by sequence similarity search. There, the backbone recall values were 

between 0.784 and 0.847, which were similarly high as the overall benchmark results.
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Modeling of SARS-CoV-2-related structures

We further applied CryoREAD to 61 EM maps of SARS-CoV-2 related structures (see 

Methods). The list of maps is shown in Supplementary Table 4. The structures in the maps 

include RNAs and proteins that are involved in translation, replication, maintaining the 

structure, and drug interactions of SARS-CoV-2. We applied CryoREAD as it is, using the 

same trained model as were trained in the benchmark study discussed above. Thus, no new 

training was performed for the SARS-CoV-2 map dataset. All but 3 among 61 maps have 

associated atomic structures in PDB. The number of nucleotides in these maps ranged from 

19 to 5,982, and the number of RNA chains ranged from 1 to 7.

In Fig. 4a, we examined the modeling performance of CryoREAD on 58 maps that have 

associated atomic structures. The average backbone recall was 0.818 with sequence match 

of 0.649, and sequence recall of 0.544, which are consistent with the benchmark dataset 

discussed in Fig. 2. The recall values depended on the map resolution similar to what we 

observed in the benchmark dataset (Fig. 2f). The results of individual maps are provided in 

Supplementary Table 5_with sequence after refine.

In the subsequent four panels, we presented examples of atomic structure models by 

CryoREAD. The first example (Fig. 4b) is CoV-2-Nsp1-40S complex (EMD-11320, 

resolution: 2.8 Å), which includes 1704 nt-long 18S ribosomal RNA. This structure has 

been solved by multiple groups 29–31 to understand the mechanism of how the host innate 

immune function is depressed because of the inhibition of translation by non-structural 

protein 1 (Nsp1) of SARS-CoV-2. Despite the large size, the RNA structure is well modelled 

with a backbone recall of 0.909. Particularly, the interaction site with Nsp1(within 10 Å) 

was modelled with a high backbone recall of 0.913.

The next example (Fig. 4c) is Nsp7-Nsp8-Nsp12 SARS-CoV2 RNA-dependent RNA 

polymerase (RdRp) in complex with template:primer dsRNA and favipiravir-RTP 

(EMD-11692, res. 2.5 Å) 32. The 21 nt-long template:primer RNA duplex in this complex 

helps to explain the binding mode of favipiravir-RTP at the catalytic site of RdRp. The 

CryoREAD model (the right panel) was able to identify and trace the double strand RNA, 

although the model had some missing nucleotides. The backbone recall was 0.773.

Fig. 4d is an interesting case where the authors of the entry provided three density maps 

of the same macromolecules, COVID-19 RNA-dependent RNA polymerase pre-translocated 

catalytic complex (EMD-30275, EMD-30283, EMD-30284, res. 2.93 Å, 3.03 Å, 3.12 Å, 

respectively) 33. The authors discussed that they observed two conformations existed for 

this complex and determined the complex structure from a map of mixed conformations 

(EMD-30275, PDB ID: 7C2K). For this map, the atomic structure model by CryoREAD had 

a backbone recall of 0.831. Although the authors did not build structure models for maps of 

two individual conformations (EMD-30283 and EMD-30284), we went ahead and modeled 

the structures by CryoREAD followed by structure refinement with COOT 13. Comparing 

the two RNA structures from the two maps, we observed the model for the conformation 

I (the model from EMD-30283, the middle panel in Fig. 4d) has fragmented RNA in one 

strand, because it is likely to be in a transition state where RNA is being polymerized, which 

is in a good agreement with the authors’ discussion in the paper 33. On the other hand, our 
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model for conformation II (EMD-30284, the right panel), the state after the elongation has 

progressed, has a longer RNA by six nucleotides, which also agrees with what the authors 

speculated.

The last example, Fig. 4e, is SARS-CoV-2 nsp132-RTC (EMD-22160, resolution: 3.5 Å) 

and SARS-CoV-2 nsp131-RTC (EMD-22270, resolution 4.0 Å) 34. The authors of the entries 

only built the atomic structure from EMD-22160, which has a higher resolution (3.5 Å). 

The conformation of nsp13 in the two maps has some difference, but RNA structures are 

expected to be the same. We used CryoREAD to build models from the two maps. Our 

model for EMD-22160 had a backbone recall of 0.844 when compared to the structure 

deposited by the authors (6XEZ). CryoREAD was also able to build a model from the 4.0 Å 

map (EMD-22270), which resulted essentially the same structure with proper base pairing. 

When compared our model from EMD-22270 with the authors’ structure (6XEZ) by fitting 

into EMD-22270, the backbone recall was 0.751.

Comparison with Existing Modeling Methods

We compared the modeling performance of CryoREAD with the map_to_model in Phenix 
35. This tool is mainly for protein structures and not specifically designed for nucleic acid 

structures, but we used Phenix as a reference since it is a popularly used tool and there 

are no de novo structure modeling methods specific for DNA/RNA to the best of our 

knowledge. Thus, the purpose of this comparison is solely to characterize CryoREAD but 

not for rigorous competitive evaluation.

In Fig. 5, we show the backbone recall and the sequence recall of CryoREAD and Phenix. 

For Phenix, we provided two models, those which were built from input of the entire map 

(orange), which was the same input as CryoREAD, and models for local regions of the 

maps after predicted non-DNA/RNA regions were masked out (blue, Phenix (Mask)). We 

ran Phenix masked because it was often observed that Phenix built fragmented structure 

models (i.e. small structure coverage Extended Data 10a) in the entire map including non-

DNA/RNA regions. Thus, in general, Phenix models built from masked maps were more 

accurate than from maps without masks (Extended Data 10b). CryoREAD showed higher 

values than Phenix for both backbone recall (Fig. 5a) and sequence recall (Fig. 5b). The 

average backbone recalls of CryoREAD, Phenix (Mask), and Phenix were 0.857, 0.536, and 

0.438, respectively. The average sequence recalls of CryoREAD, Phenix (Mask), and Phenix 

were 0.525, 0.208, and 0.174, respectively. Recall values relative to the map resolution 

are shown in Extended Data 10c and 10d. Phenix models results of individual maps are 

provided in Supplementary Table 6 (“with mask” tab for Phenix(Mask), “without mask” tab 

for Phenix).

We also compared CryoREAD with auto-DRRAFTER 17. Note that auto-DDRAFTER has a 

different assumption and setting: It is a part of an integrated experimental and computational 

RNA structure modeling pipeline and thus users need to specify the location of RNA in 

the map if the map contains proteins (RNA-protein complex). It also assumes that accurate 

secondary structure information from experiments is available. In the original manuscript 

of auto-DRRAFTER auto-DRRAFTER was tested on relatively short RNAs with less than 

about 400 nucleotides. Therefore, we selected 11 maps from our testing dataset, which have 
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RNA of a length up to 400 nucleotides. The 11 maps included ten maps of RNA-protein 

complexes and one map with only RNA. auto-DRRAFTER was ran in four different 

settings: with the map region segmented with the optimal low-pass filtering threshold to 

include only RNA (excluding proteins) or using a low-pass filter to include the entire 

map region (only small noise regions are removed); With correct or predicted secondary 

structure information. Detailed results are provided in Supplementary Table 7_RNA. Out 

of 11 maps, seven maps were not processed by auto-DDRAFTER by any low-pass filter 

threshold values we tried because it was not able to assign RNA helical structures into the 

map with confidence. The rest of the four maps included three maps with a RNA-protein 

complex and one with only RNA. Even when the local map region of RNA (Supplementary 

Fig. 1) and correct secondary structure information were provided, the average backbone 

recall and sequence recall were 0.509 and 0.218, respectively, which were lower than results 

of CryoREAD, 0.910 and 0.580, respectively. We also ran auto-DRRAFTER on ten maps 

that include DNA of less than 400 nucleotides from our testing dataset (see Supplementary 

Table 7_DNA). We provided the local map region of DNA excluding proteins and ground 

truth secondary structure information. Out of ten maps, four maps were not processed by 

auto-DRRAFTER. The average backbone and sequence recall for the rest of six maps by 

auto-DRRAFTER were 0.135 and 0.053, respectively, while CryoREAD had 0.827 and 

0.391, respectively.

Discussion

We have developed CryoREAD, a deep learning-based method for de novo DNA/RNA 

atomic structure modeling for cryo-EM maps. At the target resolution range of CryoREAD, 

which is 2 Å to 5 Å, it is often difficult to model nucleic acid structures by conventional 

tools. But key structure elements of nucleic acids, phosphates, sugars, and bases can be 

detected by deep learning, which greatly enhances modeling capability. Deep learning is 

particularly accurate in separating proteins and nucleic acids in an EM map as was also 

demonstrated in our earlier work, Emap2sec+ 24. The modeling process is fully automated, 

and no human intervention is needed. We believe resulting structure model will serve as 

an excellent starting point for biologists to apply structure refinement and manual detailed 

modeling as we showed in the RNA structure modeling for SARS-CoV-2 (Fig. 4).

Although CryoREAD was shown to work well overall, it would be appropriate to 

discuss limitations observed in the current version. Relative to the backbone accuracy, the 

assignment of nucleotide sequence has room for improvement. As shown in Fig. 2a, deep 

learning identifies base positions with high accuracy; however, base type detection is less 

accurate. At relatively low resolution, distinguishing base types becomes more difficult and 

affects the sequence matching accuracy. However, CryoREAD provides accurate nucleic 

acid structures even for maps at lower resolutions and base assignment in the model will 

be a good starting point for manual sequence assignment. Also, we observed that the final 

structure model often has gaps in the backbone and incorrect base pairing conformations 

specially for large structures that are generally difficult to model. For such cases, manual 

refinement using existing tools, such as COOT, would be effective for improvement. In 

general, CryoREAD is intended to quickly provide the initial starting model for building 

nucleic acid structures, from which users can examine and further manually refine. 
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Currently, we do not use predicted secondary structure information for nucleic acids in 

CryoREAD since the accuracy of predictions is not high enough. However, if the accuracy 

of predicted secondary structure information improves in the future, we plan to integrate it 

into CryoREAD.

As more structures are being determined by cryo-EM, accurate and easy-to-use modeling 

tools would substantially facilitate the structural determination process, allowing biologists 

to focus more on biology rather than technical steps in modeling. We believe CryoREAD 

will be a useful and powerful tool for nucleic acid structure modeling, filling the area where 

available tools are scarce, in the era of cryo-EM structural biology.

Methods

Constructing benchmark dataset

We prepared a dataset of experimental cryo-EM maps for training, validation, and testing 

of CryoREAD. First, from EMDB of June 10th, 2021, we downloaded cryo-EM maps that 

were determined at a resolution from 2 Å to 5 Å and had the corresponding PDB entries that 

contain nucleic acid structures with more than 20 nucleotides. This initial set consisted of 

1,384 maps. To ensure sufficient quality of structure models in the PDB entries, we required 

the EM map and simulated maps from the structures in the PDB entry computed for the 

map’s resolution had a cross-correlation of densities of 0.65 or higher 24. This step reduced 

the number of maps to 548.

To handle the redundancy of the maps, we clustered maps with complete linkage considering 

sequence identity of proteins and nucleic acids in the maps. Two maps were clustered into 

the same group if any protein chains from the two maps have 30% or larger sequence 

identity over 50% coverage or DNA/RNA chains share 80% or larger global sequence 

identity. This clustering procedure resulted in 108 clusters of maps.

From the 108 clusters, we randomly selected 27 clusters (68 maps) for the testing set. Then, 

from the remaining maps we removed ones that are similar to the testing maps using the 

same criteria as the previous step, which resulted in 79 clusters (290 maps). These maps 

were used for training and validation. We applied this additional step of eliminating similar 

maps because a different cluster may still contain similar maps as the clustering was done 

with complete linkage. Out of the 79 clusters, we randomly selected 63 clusters (238 maps) 

for training and validation of the stage 1 network (Extended Data 1) and 16 clusters (52 

maps) for training and validation of the stage 2 network. The 290 maps in the training and 

validation sets included 61 maps with DNA, 156 maps with RNA, and 21 maps with both 

DNA and RNA. 52 maps for the stage 2 network contained 25 maps with DNA, 24 maps 

with RNA, and 3 DNA and RNA. The testing dataset consisted of 11 maps with DNA 55 

maps with RNA, and 2 maps with both DNA and RNA. The list of entries of the datasets is 

available as Supplementary Table 1.

If a map had a different grid size from 1.0 Å we interpolated the grid size to 1.0 Å by 

trilinear interpolation of the density. The density values in a map were normalized to [0.0, 

1.0] with a minimum-maximum normalization. All negative values in a map were set to 0, 
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and 0 was used as the minimum value for normalization. We used the 98th percentile density 

value as the maximum value, and any density values above that were set to 1.0.

From each map, boxes of a size of 643 Å3 were collected by scanning the box across a map 

along three axes with a stride of 16.0 Å. We assigned each grid point in the box with a label 

that were taken from the closest heavy atoms of the closest residue/nucleotide located within 

2.0 Å. If a grid point is close to more than two heavy atoms, the closest heavy atom was 

used to provide the label. If no heavy atoms were found within 2.0 Å of a grid point, the 

point was assigned as background. A box was discarded if less than 0.1% of the grid points 

have DNA/RNA atom assignment.

Constructing dataset of SARS-CoV-2

First, from the list of SARS-CoV-2 related entries in PDB (https://rcsb.org/covid19), 

we selected structures that were determined by cryo-EM and have a map resolution 

between 2 Å to 5 Å. Then, we discarded entries that have less than 10 consecutive 

nucleotides. This resulted in 56 cryo-EM maps. We performed the same search also 

in EMDataResource (https://www.emdataresource.org/) and obtained 56 maps. These two 

searches were conducted on August 10th, 2022. The 56 maps from EMDataResource 

included 3 maps that do not have associated structure models. The two sets have 51 maps 

in common; thus, resulted in 61 unique maps in total. Among them 58 maps with deposited 

structures were used to assess the accuracy of modeling. All these maps contain RNA.

CryoREAD was not newly trained specifically to this dataset. No human intervention was 

performed when applying CryoREAD to the maps in this dataset. The list of entries is 

provided in Supplementary Table 4.

Training the deep neural network of CryoREAD

CryoREAD has two networks, stage 1 and stage 2 (Extended Data 1). As mentioned in the 

previous section, we allocated 238 maps for training and validation of the stage 1 network. 

These maps were split into 80% (190 maps) and 20% (48 maps) for training and validation, 

respectively. The same split of 80% (41 maps) and 20% (11 maps) were applied to the 52 

maps allocated for the stage 2 network. The stage 1 network takes density values in an 

EM map extracted in a box of 643 Å3 as input and outputs eight 643 Å3 boxes through the 

cascaded network (Extended Data 1a), which has a probability of having atoms of proteins, 

phosphate, sugar (ribose or deoxyribose), base, and four types of bases (A, C, G, U/T) at 

each grid point, respectively. For each batch of training, we randomly sampled 16 boxes 

from the 190 maps, which totaled around 63,000 and 13,000 boxes used in an epoch for 

training and validation, respectively.

For training the stage 2 network, we used 52 maps that do not have overlap with maps used 

for stage 1 training and validation. After the training of the stage 1 network is completed, 

we input each of the 52 maps to the stage 1 network and obtained the output of probability 

values for each grid point of each map. Then, the output probability values were used as 

input for the stage 2 network. The size of the input box for the stage 2 network is the same, 

643 Å3. The stage 2 network has a UNet++ architecture 18,19, which outputs the probability 

of eight structural classes. The batch size was 32 and the total number of training and 
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validation boxes for the stage 2 network was around 8,000 and 2,000, respectively. Both 

stage 1 and 2 networks were trained through 10 epochs.

We used the Dice loss 36:

LDice = 1 − 2 * ∑i = 1
N pigi

∑i = 1
N pi

2 + ∑i = 1
N gi

2 + ϵ

L = 1
BC ∑k = 1

B ∑j = 1
C LDice k, j

(1)

LDice represents the Dice loss of a predicted box P  and a corresponding ground truth box 

G; N is the total number of grid points inside the box; pi ∈ P  is the predicted probability 

of the i-th grid point in the predicted box; gi ∈ G is the binary ground truth of the i-th grid 

point, where 1 denotes the existence of such structure in the grid point and 0 indicates no 

such structures; ϵ is a smoothing factor with value of 1e-6; L is the overall loss of a batch of 

B examples with C class detection; LDice k, j  represents the dice loss of k-th example’s j-th 

class detection.

For the training of the stage 1 network, we tested combinations of a learning rate of [2e-5, 

2e-4, 0.002, 0.02, 0.2] with a L2 regularization weight of [1e-6, 1e-5, 1e-4, 0.001, 0.01, 

0.1] using the Adam optimizer 37. Among the combinations, the learning rate 2e-4 with 

L2 regularization parameter of 1e-5 showed the best grid-wise accuracy of 81.6% on the 

validation set, although the performances with different combinations were similar. We used 

the same hyper-parameters for training the stage 2 network.

Training and validation of the stage 1 network took about 10 days using around 80,000 

data. Training and validation of the stage 2 network took about 17 hours with around 

10,000 box data. The computations were performed on two paralleled NVIDIA Titan RTX 

24 GB GPU connected via NVLink. The training and validation loss along epochs are 

shown in Supplementary Fig.2. As the validation loss is almost stable at around 9–10 

epochs, we stopped the training at 10 epochs. We also extended training up to 30 epochs 

(Supplementary Fig.2b) but did not observe a substantial decrease of validation loss.

Computing representative nodes with mean shift algorithm

Grids with larger than 0.1 probability values for sugar, phosphate, and 0.25 for base, and 

four base types, A, C, G, and U/T were clustered to identify representative nodes using 

the mean-shift algorithm. The mean-shift algorithm 20,38 is a non-parametric clustering 

algorithm commonly used for image processing. We use the mean-shift algorithm because 

it was successfully applied in our previous work on the MAINMAST algorithm for protein 

structure modeling from cryo-EM 10. We assume that computed probabilities correspond 

well to the atom distribution of the molecular structure in the cryo-EM map. Therefore, 

the identified representative nodes by this clustering step are expected to locate around the 

center of the corresponding moiety.
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Mean shift iteratively updates the locations and densities (computed probability values, in 

this case) of the input points. Given a grid point x, the function determines the weight of 

nearby points for re-estimation of the mean. The point x is iteratively updated following 

xt + 1 = f xt  until convergence when xt + 1 − xt
2

≤ δ with δ set to 0.001. Here the updating 

function f is shown in Eq. (2).

f x =
∑xi ∈ N x K x − xi ϕ xi xi

∑xi ∈ N x K x − xi ϕ xi

(2)

where N x  is the neighborhood of x, a set of grid points satisfied xi − x 2 ≤ 2 * σ; K p
is a Gaussian kernel function with bandwidth σ, as shown in Eq.(3); ϕ x  is the probability/

density value of the grid point x; xi indicates the position of i-th neighbor grid point of x.

K p = exp ( − 1.5‖ p2
σ ‖)

(3)

where the σ is the bandwidth set as 3.

Meanwhile, we also update the density value of the point x following Eq. (4).

ϕ(x) = 1
N x ∑xi ∈ N x K x − xi ϕ xi

(4)

where ϕ x  is the updated density/probability of x, N x  is the number of neighborhood 

grid points of x.

For different detections, we applied the mean-shift algorithm for any grid points with a 

probability ϕ x ≥ ξ, where ξ is a threshold set to 0.1 for sugar and phosphate detection, 0.25 

for base detection to reduce the number of false negatives.

After the mean-shifting algorithm, we first normalized all the grid points with min-max 

normalization following Eq. (5).

ϕ x = ϕ x − ϕmin
ϕmax − ϕmin

(5)

where ϕmax/ϕmin are the maximum/minimum density/probability value of the converged 

shifted points. Points are removed if the normalized density/probability ϕ x ≤ ζ with ζ set as 

0.05. Next, any shifted points that are closer than a threshold distance (2.0 Å) are clustered, 

and the grid point with the maximum density/probability is selected as the representative 
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node of the cluster. This process is iterated until the selected representative nodes converge. 

The remaining points are called as representative nodes.

Constructing a sugar graph

Identified sugar nodes by the mean-shifting algorithm are connected to form a graph. Given 

two nodes zi from cluster Ci of original grid points and zj from cluster Cj, they are labeled as 

adjacent and connected with an edge if any pair of xi ∈ Ci and xj ∈ Cj are originally adjacent 

at their initial point position, xi
0 and xj

0. An edge is removed in the following operation: Five 

points are sampled along the edge between zi and zj at even intervals. If the base probability 

of the closest grid point to any of the five points is larger than 0.5, this edge is discarded 

because it is highly likely that the edge connection is incorrect. For example, they may be 

sugars across different chains in double stranded DNA or RNA. Next, two sugar nodes, zi

and zj are further connected if they satisfy a distance condition, zj − zi ≤ R, where R was set 

to 10 Å and if all the evenly-sampled five points along the edge have the sugar probability of 

0.1 or higher and also if none of them have a base probability over 0.5. The resulting graph 

is denoted as GS.

Backbone Tracing Using Vehicle Routing Problem Solver

The next step is to trace the backbone(s) of nucleic acids in the map from the sugar graph. 

We formulate this task as a Vehicle Routing Problem (VRP) 39, which is a variation of the 

Traveling Salesman Problem (TSP). In VRP multiple vehicles are used, rather than a single 

salesman, as moving agents, to visit a set of nodes. All nodes are allowed to be visited up 

to once by any vehicles. A VRP solver aims to maximize the number of visited nodes in 

the input graph while minimizing the total costs of routes by all the vehicles. As multiple 

vehicles are used, multiple, non-overlapping paths will be identified in the graph. We found 

the setting of VRP fits well with our problem where we aim for identifying the backbone 

of multiple nucleic acid chains in a map. We used a VRP solver in the OR-tools package 

(https://developers.google.com/optimization/).

We identify paths in a sugar graph GS, which has N nodes, (x1, x2, …, xN), where each node 

denotes a sugar node. A node xi is either included in a path or not included in any of the 

paths. When a node is connected, the cost is added that reflects the length of edges to the 

node and the probability value assigned to the edge. On the other hand, a penalty is added if 

a node is not visited by any vehicles thus not included in paths. As required also in TSP, all 

nodes are only allowed to be visited up to once. The global objective of VRP is to minimize 

the following cost:

Cost = ∑
i = 1

Np

∑
j = 1

L i − 1
wi, j + Pdrop ∑

k = 1

N
dropk

(6)

where Np is the number of vehicles to traverse the graph, which is set as floor of N
100 , i.e. the 

maximum integer that does not exceed N
100 ; L i  is the number of edges traveled by the i-th 
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vehicle, which connects L i − 1 edges; wi, j indicates the cost of forming the j-th edge by the 

i-th vehicle. The edge weight wij = w e  used in Eq. 6 is defined as follows:

w e =
de
pe

, if e ∈ GS

2 * W + de

(7)

where de is the length of edge e; pe is the minimum probability value among evenly sampled 

10 points along the edge. Thus, forming an edge with two nodes at a large distance and 

a low probability costs more. W  is the maximum value of w e = de
pe

 among all the edges 

e ∈ GS . The second condition allows a connection with two nodes that are not included in Gs

but at a higher cost with distance smaller than R = 10.

In the second term of Eq. 6, Pdrop is the drop penalty cost for nodes without visits by 

any vehicles and thus not included in backbone paths. dropk = 1 if xk is not visited by any 

vehicles; otherwise, dropk = 0 . Pdrop is defined as

Pdrop = max w e + R

(8)

where w e  is defined in Eq. 7 and R = 10. With this setting, if a node that is not 

included in Gs and has de = R = 10 is included in a path, for example, it pays a cost of 

2* W + 10 = 2 W + R  according to Eq. 7. On the other hand, if it is not included in any 

path, it pays a drop penalty of max w e + R = most probably 2* W + R + R = 2W + 3R
will be charged.

An example of the backbone tracing is shown in Supplementary Fig. 3. It illustrates how the 

sugar graph Gs is constructed for an EM map and the backbones are traced. The VRP solver 

was able to trace the backbone of two RNA molecules. Comparison of number of nodes 

before and after VRP process are shown in Supplementary Fig. 4. The drop ratio of nodes is 

within 5% for most targets.

Sequence Fragment Assignment

The path(s) constructed in the previous step were scanned with a sliding window of a 

length of L (= 20) with a stride of s (= 2), and path fragments were generated. Each of the 

path fragment will be aligned with each of the DNA/RNA sequences in the map. For each 

path fragment, 2 * C * K possible sequence assignments are kept, where C is the number of 

DNA/RNA sequences, and 2 comes by considering both forward and reverse directions of 

DNA/RNA, and K is the number of top scoring alignments kept.

Given a fragment of length L and a single DNA/RNA chain of length M, sequence 

alignment was performed with a dynamic programming algorithm. Rewards for a position 
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in an alignment is defined with a matching reward and gap penalty values that consider 

geometry constraints:

r i, j =

0 if i = 0
−999999 if j = 0 and i ≠ 0

max
r i − 1, j − 1 + p i, j − GP1 prev i , i

r i − 1, j − GP2 prev i , i
r i, j − 1 − SP i, j

(9)

where r i, j ∈ ℝ L + 1 × M + 1  is a 2D reward matrix; i is the index of nodes in the path 

fragment, j is the index of the DNA/RNA sequence. An open gap for DNA/RNA sequence 

matching is not encouraged by requiring a large penalty of −99999 . Dynamic programming 

chooses the optimal actions among three choices: matching of i and j (reward of matching 

with a potential geometry penalty, GP1), skipping the node i (with a potential geometry 

penalty, GP2), skipping the nucleotide j (with a sequence penalty, SP). p i, j  indicates the 

reward of matching i and j; GP1 prev i , i  and GP2 prev i , i  are the node gap penalties 

considering the geometry constraint. prev i  is the node of the previous alignment before 

i to obtain the reward of r i − 1, j − 1  or r i − 1, j ; SP i, j  is the sequence gap penalty 

considering the previous alignment.

Matching score for a path position i and a sequence position j: p i, j  is a reward for matching 

i and j defined as p i, j = 100 * prob i S j , where 100 is the weighting factor to balance 

the reward and the penalty, prob i S j  is the probability of node i for the base type of S j , 

computed by the deep neural network. GP1 prev i , i  is a gap penalty assigned if the distance 

of node of the previous alignment position prev i  and node of i is too close or too far, which 

is defined as follows:

GP1 k, i = lp * D k, i − dmean
2 if D k, i ≤ dmin or D k, i ≥ dmax

0 otℎerwise

(10)

where lp is a node gap penalty set as 10; D k, i  is the distance between the k-th node and 

the i-th node; dmean is the mean distance between two consecutive nucleotides in nucleic acid, 

which is set as 7; dmin is the minimum distance allowed for two consecutive nodes, which is 

set as 4; dmax is the maximum distance allowed for two consecutive nodes, which is set as 10.

Skipping node i: When skipping node i, we consider the distance between node of previous 

alignment prev i  and node of i to decide a gap penalty. GP2 prev i , i  is defined as,

GP2 k, j =
0 if D k, i ≤ dmin or D k, i + 1 ≤ dmax

lp * D k, i − dmean
2

(11)
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where D k, i  is the distance between the k-th node and the i-th node; lp, dmean, dmin, dmax share 

the same value as inEq. (8).

Skipping nucleotide j: When skipping a nucleotide j, a sequence gap, defined as following, 

will be applied.

SP i, j = sg if SGC i, j − 1 ≤ 2
sg * SGC i, j − 1 + 1 otℎerwise

(12)

where sg is the sequence gap penalty set as 25; SGC i, j − 1  is the accumulative number of 

sequence alignment gap to obtain r i, j − 1 .

Once the dynamic programming scores, r i, j ∈ ℝ L + 1 × M + 1 , are all computed, the top 

K scoring sequence assignments are collected.

Sequence Fragment Assembly

Identified sequence-node fragment alignments are assembled. For each node path fragment, 

2 * C * K alignments with nucleic acid sequences are obtained. We applied constraint 

optimization/programming (CP) 22 to solve the assembly problem. CP aims to find feasible 

solutions out of a very large set of candidates with arbitrary constraints. The goal of CP 

is to maximize the sum of r i, j , which have been collected in the previous alignment step 

under two constraints, which we call the node fragment-based constraint and the sequence-

based constraint. We used the cp_solver library available at https://developers.google.com/

optimization/cp/cp_solver.

Node fragment-based Constraints.

The first constraint is assuring the uniqueness of the sequence alignment for a node path 

fragment; i.e. only one sequence assignment is selected for the same node fragment. We 

check the overlap of all the pairs of node fragments and apply two more constraints for 

overlapping pairs. Two overlapping fragments cannot be selected together if their sequence 

assignments are from two different directions, forward and reverse or from two different 

chains. Also, for an overlapping node region of two fragments, their sequence assignments 

must have at least 80% identity and the sequences. The sequence of higher matching score 

will be selected.

Sequence-based constraint.

If two alignments of a sequence fragment and a node fragment do not have overlap in node 

fragments but have an overlap in their sequence assignments they are not selected together 

because it is not physically possible to match neighboring sequence regions to different 

locations in a map. The two sequence regions are considered as having overlap if the overlap 

is longer than 20% of the assigned sequence length (the shorter of the two).

To increase the base assignment accuracy and coverage, once the CP solver outputs the 

assembly result, two post processing steps are applied. First, for a region in the node paths 
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that are covered by overlapping sequence fragments, we align the assigned nucleic acid 

sequences against the region once again and update the sequence assignment. Next, for short 

regions in the node paths that are not yet covered by nucleotide sequences, which typically 

happen as a short sequence assignment gap between two assigned regions, we align the 

region with the nucleic acid sequences and assign the highest scoring sequence to fill the 

gap.

Building Atomic Structure

To the constructed sugar node backbone, we add the closest phosphate node for two 

consecutive sugar nodes if the sum of their distances is within 14 Å. The sugar-phosphate 

backbone is constructed from the phosphate and sugar node assignments. Next, base nodes 

are associated with each sugar-phosphate pair by selecting the closest base node. The 

three nodes of Sugar, Phosphate and Base (SPB) allow for the initial atomic nucleotide 

assignment. We assign the standard nucleotide structures taken from PDB to each SPB 

based on rigid transformation. For the rigid transformation, the phosphate node in the 

SPB and the phosphate center in the standard nucleotide, the normalized direction vector 

from the phosphate node to the sugar node in the SPB and the vector from the phosphate 

center to the sugar center in the nucleotide structure, and the normalized vector from the 

phosphate node to the base node in the SPB and the vector from the phosphate center to 

the base center in the nucleotide structure, are aligned. Finally, the structure is refined with 

phenix.real_space_refine 23 on predicted RNA regions followed by all_atom_refine in Coot 
13.. The phenix command used was “phenix.real_space_refine [model structure] [EM_Map] 

resolution=[map_resolution]”.

Evaluation Metrics

Here we summarize the evaluation metrics used in this study.

Moiety-Level Accuracy: A moiety was considered to be correct if the majority of 

atoms in the moiety is correctly detected. An atom was considered as correctly detected 

if the majority of the grid points closer than 2 Å to the atom have correct structure class 

assignment.

Recall: Recall of sugar and phosphate was computed as the fraction of sugar atoms (C1’, 

C2’, O2’ for RNA, C3’, O3’, C4’, O4’, C5’) and phosphate atoms (P, OP1, OP2, O5’, OP3’) 

that were closer than 5 Å to a matched sugar or phosphate node for each nucleotide, which 

were then averaged over all the nucleotides in the map. Here matched sugar/phosphate node 

was with average distance within 5 Å between the node and corresponding atoms.

Backbone recall considers atoms from both sugar and phosphate.

To compute sequence recall, first we identified a nucleotide in the model that corresponds 

to each nucleotide in the reference structure by assigning the nucleotide in the model that 

has the closest average atom distance, then checked if the bases are identical or not. Then 

we computed the fraction of the identical bases over all the bases in the reference structure. 
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Sequence recall match only considers nucleotides in the reference structure that have a 

corresponding nucleotide in the model (an average atom pair distance of less than 5 Å).

Precision: Precision of sugar and phosphate nodes is defined as the fraction of nodes that 

are within 5 Å to its corresponding atoms of its closest nucleotides. 5 Å was used as the 

cutoff because it is shorter than the average distance between adjacent phosphate atoms, 

which is 6.0 Å. We only considered sugar and phosphate atoms in the model that are closer 

than 10 Å to any atoms in the reference structure.

Similar to sequence recall, sequence precision is defined as the fraction of the identical bases 

over all the bases in the model. sequence precision (match) only considers nucleotides in the 

model structure that have a corresponding nucleotide in the reference (an average atom pair 

distance of less than 5 Å).

Comparison with Phenix and Auto-Drrafter

For Phenix, we ran map_to_model in Phenix 35. For the unmasked mode running, we 

provided the original cryo-EM map file, the sequence file, resolution and symmetry 

information if it is available. For the masked mode running, we first masked protein regions 

of cryo-EM map by CryoREAD’s detection of proteins and provided masked cryo-EM map 

for Phenix to run. All other settings were the same as the unmasked mode.

For Auto-DRRAFTER17, we visually inspected the map and the corresponding deposited 

structure to find an optimal low-pass filtering threshold to include only RNA (excluding 

proteins). Then we used two different secondary structure information to run separate 

experiment: the ground truth secondary structure information from deposited structure and 

predicted secondary structure predicted by RNAFold40. As suggested in official tutorials 

(https://www.rosettacommons.org/docs/latest/application_documentation/rna/auto-drrafter), 

we provided an cryo-EM map, sequence information, secondary structure information, and 

the manually inspected threshold value as input to run auto-DRRAFTER with three rounds 

optimization to obtain a final structure.
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Extended Data

Extended Data 1. The detailed network architecture of cryo-READ.
a, the network architecture. The entire network consists of two stages of U-Net networks 

and here we show the 1st stage networks. It concatenates two U-Net architectures. They 

are 3D U-shape-based convolutional Network (UNet) with full-scale skip connections and 

deep supervisions. The channel size of different layers is also illustrated in the figure. b, 
The Encoder Block (Enc1 in panel a); c, The Merge Encoder Block (MEnc); and d, the 

Decoder Block (Dec). Conv3D, a 3-dimentional (3D) convolutional layer with the filter size 

of 3*3*3, stride 1 and padding 1. BatchNorm, a normalization layer that takes statistics in a 

batch to normalize the input data. ReLU, Rectified Linear Unit, a commonly used activation 

layer.

It is a cascaded U-net, where the first U-Net (on the left) focuses on the prediction of 

high-level detection of sugar, phosphate, base, and protein while the second U-Net (on the 

right) focuses predicting different base types: A, C, G, and T/U. The processed information 

of the 1st U-Net encoder is also passed as input for the 2nd U-Net to help its predictions 

(dashed lines in orange). We applied deep supervision to the loss on output of different 

decoder outputs, which was shown to improve the performance. The stage 2 network only 

includes the first U-Net architecture of the stage 1 network. It takes predicted probabilities of 

8*643 Å3 predictions (8 probabilities: protein, phosphate, sugar, base, and four different base 

types) from the stage 1 network and outputs the refined probabilities in a box of 8*64*64*64 

Å3.
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Extended Data 2. The running Time of CryoREAD on 11 structures of different sizes.
The experiments were carried out on a computer server with 1 NVIDIA TITAN RTX 24GB 

GPU and 24 CPUs. Here 5 colors correspond to 5 steps in CryoREAD pipeline: 1) Structure 

Detection by Deep Learning; 2) Representative Node Clustering; 3) Backbone Tracing; 4) 

Sequence Assignment; 5) Full Atom Model. The actual data point of the 11 maps are shown 

by dots.

Wang et al. Page 21

Nat Methods. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data 3. The distribution of the size of nucleic acids in the 68 cryo-EM maps in the test 
set relative to the map resolution.

Extended Data 4. Grid level detection accuracy (recall) of 8 structural classes.
A grid was assigned with a structure class that is closer than 2 Å to the grid. If there 

were multiple different structures that were within 2 Å, the closer one was assigned 
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to the grid. A detection by deep network for a grid was considered as correct if the 

probability of the correct structure class has a value over 0.5. pho, phosphate. Results 

of the stage 1 and stage 2 networks are shown. The statistics are calculated over n = 68
independent experimental EM maps, with each points values derived from Supplementary 

Table 2. For stage 1, the values of minima, maxima, center, bounds of box and 

whiskers of different categories in order: Sugar(0.333,0.893,0.729,0.601/0.804,0.333/0.893), 

Phos(0.138,0.849,0.656,0.463/0.754,0.138/0.849), 

Base(0.380,0.947,0.836,0.772/0.889,0.669/0.947), 

Protein(0.349,0.929,0.808,0.763/0.879,0.621/0.929), A-

Base(0.034,0.890,0.549,0.362/0.746,0.034/0.890), U/T-

Base(0.019,0.797,0.460,0.294/0.646,0.019/0.797), C-

Base(0.088,0.886,0.539,0.369/0.711,0.088/0.886), G-

Base(0.153,0.933,0.637,0.490/0.823,0.153/0.933), 

Overall(0.438,0.909,0.764,0.685/0.822,0.478/0.909). For stage 2, the values 

of minima, maxima, center, bounds of box and whiskers of 

different categories in order: Sugar(0.357,0.920,0.775,0.654/0.846,0.453/0.920), 

Phos(0.228,0.883,0.693,0.509/0.810,0.228/0.883), 

Base(0.408,0.952,0.858,0.795/0.905,0.695/0.952), 

Protein(0.490,0.969,0.903,0.867/0.936,0.772/0.969), A-

Base(0.013,0.893,0.501,0.296/0.745,0.013/0.893), U/T-

Base(0.024,0.824,0.479,0.291/0.682,0.024/0.824), C-

Base(0.104,0.920,0.611,0.449/0.775,0.104/0.920), G-

Base(0.237,0.951,0.737,0.609/0.858,0.237/0.951), 

Overall(0.492,0.952,0.827,0.756/0.878,0.577/0.952). For the moiety level accuracy, see Fig. 

2 in the main text.
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Extended Data 5. Nucleotide moiety-based accuracy relative to the resolution.
A nucleotide moiety was considered as correctly detected if the majority of the atoms in 

the moiety were correctly detected. The data used here is the same as those which were 

used for Fig. 2a. a. base detection accuracy relative to the map resolution. The equation 

of regression line is y = − 0.032x + 1.019 (Pearson correlation coefficient: −0.256, p-value: 

0.035, standard error:0.015). b. Moiety-based accuracy of detecting 2-ring bases (A/G). 

If A or G was detected as either A or G, it was considered as correct detection. The 

equation of regression line is y = − 0.116x + 1.239 (Pearson correlation coefficient: −0.582, 
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p-value: 1.925e-7, standard error:0.020). c. Accuracy of detecting 1-ring bases (U/T/C). 

The equation of regression line is y = − 0.191x + 1.412 (Pearson correlation coefficient: 

−0.658, p-value: 1.109e-9, standard error:0.027). d. Accuracy of detecting Adenine (A). The 

equation of regression line is y = − 0.312x + 1.712 (Pearson correlation coefficient: −0.758, 

p-value: 6.951e-14, standard error:0.033). e. Accuracy of detecting Uracil/Thymine (U/T). 

The equation of regression line is y = − 0.277x + 1.561 (Pearson correlation coefficient: 

−0.754, p-value: 1.098e-13, standard error:0.030). f. Accuracy of detecting Cytosine (C). 

The equation of regression line is y = − 0.206x + 1.423 (Pearson correlation coefficient: 

−0.679, p-value: 1.891e-10, standard error:0.027). g. Accuracy of detecting Guanine (G). 

The equation of regression line is y = − 0.094x + 1.158 (Pearson correlation coefficient: 

−0.446, p-value: 1.367e-4, standard error:0.023).

Extended Data 6. Correlation between sequence recall and sequence recall (match).
Sequence recall (match) only considers nucleotides in the reference structure that have a 

corresponding nucleotide in the model (an average atom pair distance of less than 5 Å).
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Extended Data 7. Sequence match relative to the map resolution.
To compute sequence match, first we identified a nucleotide in the model that corresponds to 

each nucleotide in the reference structure by assigning the nucleotide in the model that has 

the closest average atom distance, then checked if the bases are identical or not. Sequence 

match only considers nucleotides in the reference structure that have a corresponding 

nucleotide in the model (an average atom pair distance of less than 5 Å). In this figure, we 

compared sequence match of the initial assignment and after the sequence alignment. The 

initial assignment considers the base type obtained by the base predictions at base nodes of 

Wang et al. Page 26

Nat Methods. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the atomic structures being developed. The initial assignment here is different from the base 

moiety accuracy reported in Fig. 2a and Extended Data 5 because Fig. 2a and Extended Data 

5 concern initial grid-based accuracy of bases by deep learning while the initial sequence 

assignment here considers accuracy of the base assignment in the modeled tertiary structure, 

where the base positions are determined in consideration of other atoms in the nucleic acids 

including phosphate and sugar positions. Seq Match is the reassigned base type by sequence 

assignment to backbone paths.

a. Overall sequence match. For initial assignment, the equation of regression line is 

y = − 0.125x + 0.984 (Pearson correlation coefficient: −0.782, p-value: 3.380e-15, standard 

error:0.012). For seq match, the equation of regression line is y = − 0.110x + 0.997 (Pearson 

correlation coefficient: −0.684, p-value: 1.230e-10, standard error:0.014). b. Sequence match 

of Adenine (A) relative to the map resolution. For initial assignment, the equation of 

regression line is y = − 0.169x + 1.045 (Pearson correlation coefficient: −0.684, p-value: 

1.307e-11, standard error:0.022). For seq match, the equation of regression line is 

y = − 0.143x + 1.040 (Pearson correlation coefficient: −0.591, p-value: 1.127e-7, standard 

error:0.024). c. Sequence match of Uracil/Thymine (U/T). For initial assignment, the 

equation of regression line is y = − 0.137x + 1.018 (Pearson correlation coefficient: −0.671, 

p-value: 3.771e-10, standard error:0.019). For seq match, the equation of regression 

line is y = − 0.132x + 1.042 (Pearson correlation coefficient: −0.680, p-value: 1.881e-10, 

standard error:0.018). c. Sequence match of Cytosine (C). For initial assignment, the 

equation of regression line is y = − 0.072x + 0.873 (Pearson correlation coefficient: −0.482, 

p-value: 3.141e-8, standard error:0.016). For seq match, the equation of regression 

line is y = − 0.074x + 0.911 (Pearson correlation coefficient: −0.452, p-value: 1.095e-4, 

standard error:0.018). d. Sequence match of Guanine (G). For initial assignment, the 

equation of regression line is y = − 0.114x + 0.997 (Pearson correlation coefficient: −0.578, 

p-value: 2.381e-7, standard error:0.020). For seq match, the equation of regression line is 

y = − 0.100x + 1.012 (Pearson correlation coefficient: −0.595, p-value: 9.017e-8, standard 

error:0.017).

Wang et al. Page 27

Nat Methods. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data 8. The number of atom clashes before and after the structure refinement.
An atom clash is defined as heavy atom pairs closer than 3.0 Å. The line shown is y = x.
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Extended Data 9. Examples of modeled atomic structure by CryoREAD for experimental maps 
without full atomic structures.
Detailed Evaluation Results are shown in Supplementary Table 3. In this figure, from 

left to right, the 3 columns correspond to 1) EM map and its corresponding structure; 

2) showing only RNA structures in the map. In addition to the RNA structure modeled 

by the authors, we also shown here homologous structures of missing RNAs in the map, 

which we searched by BLAST 1. 3) the atomic structure model by CryoREAD. a. the 

initial Shwachman-Bodian-Diamond syndrome (SBDS) protein closed state of the nascent 

60S ribosomal subunit (EMD-3145, PDB-ID: 5AN9, Resolution: 3.3 Å; protein lengths: 
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1905 aa; RNA length: 1162 nt): Backbone recall: 0.888; Sequence match: 0.696. Identified 

homologous structure (PDB-ID: 5XXB, RNA length: 3352 nt, Sequence Identity: 84.3%, 

RMSD: 1.2 Å): Backbone recall: 0.832. b. the SBDS open state of the nascent 60S 

ribosomal subunit (EMD-3146, PDB-ID: 5ANB, Resolution: 4.1 Å; protein lengths: 3025 

aa; RNA length: 1162 nt): Backbone recall: 0.871; Sequence match: 0.544. Identified 

homologous RNA structure (PDB-ID: 5XXB, RNA length: 3352 nt, Sequence Identity: 

84.3%, RMSD: 1.3 Å): Backbone recall: 0.821. c. the ELF1 accommodated state of the 

nascent 60S ribosomal subunit (EMD-3147, PDB-ID: 5ANC, Resolution: 4.2 Å; protein 

lengths: 2801 aa; RNA length: 1162 nt): Backbone recall: 0.881; Sequence match: 0.535. 

Identified homologous structure (PDB-ID: 5XXB, RNA length: 3352 nt, Sequence Identity: 

84.3%, RMSD: 1.3 Å): Backbone recall: 0.804. d. TnaC-stalled ribosome complex with 

the titin I27 domain folding close to the ribosomal exit tunnel (EMD-0322, PDB-ID: 

6I0Y, Resolution: 3.2 Å; protein lengths: 3552 aa; RNA length: 3049 nt): Backbone recall: 

0.901; Sequence match: 0.632. Identified homologous RNA structure (PDB-ID: 7D80, RNA 

length: 4761 nt, Sequence Identity: 100%, RMSD: 1.2 Å): Backbone recall: 0.834. e. 
RNC-SRP-SR complex early state (EMD-8000, PDB-ID: 5GAD, Resolution: 3.7 Å; protein 

lengths: 4087 aa; RNA length: 3049 nt): Backbone recall: 0.914; Sequence match: 0.655. 

Identified homologous structure (PDB-ID: 7D80, RNA length: 4761 nt, Sequence Identity: 

100%, RMSD: 1.0 Å): Backbone recall: 0.847. f. Structure of the 40S ABCE1 post-splitting 

complex (EMD-4071, PDB-ID: 5LL6, Resolution: 3.9 Å; protein lengths: 3429 aa; RNA 

length: 1325 nt): Backbone recall: 0.856; Sequence match: 0.586. Identified homologous 

structure (PDB-ID: 7OSM, RNA length: 1740 nt, Sequence Identity: 99%, RMSD: 1.0 Å): 

Backbone recall: 0.784.

In Extended Data 9, we show cases where only a part of the structures in an EM map was 

modelled by authors. They are maps from three different sets of EM maps of ribosomal 

subunits. The first set (panel a-c) includes three different states of eIF6 release from the 

nascent 60S ribosomal subunit 2 of Dictyostelium discoideum, where only part of 26S 

ribosomal unit is modeled by the authors. The second set (panel d-e) presents two different 

forms of 70S ribosomal subunit 3 of Escherichia coli, where the authors only modeled 50S 

ribosomal subunit but 30S ribosomal subunit was left unmodelled. The third example (panel 

f) is 40S ribosomal subunit of Saccharomyces cerevisiae, where only part of 18S ribosomal 

RNA was modeled. We filled the missing RNA structure in the maps with homologous RNA 

structure found by BLAST 1 against PDB. Sequence identities of the identified RNAs were 

84.3% to 100%. CryoREAD models for the missing RNA structures had backbone recall 

of 0.784 to 0.847, when the homologous structures were considered as reference. Backbone 

recall of CryoREAD models for RNAs with authors’ model was from 0.856 to 0.914.
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Extended Data 10. Structure model evaluation on the 68 experimental EM maps with Phenix.
a, the number of nucleotides modelled by Phenix map_to_model and CryoREAD. For 

Phenix results, two models were generated. Models from map regions that are predicted 

to include nucleic acid atoms (Phenix (Mask), blue) and models that were built from 

the entire map (Phenix, orange). b, comparison of backbone atom/sequence recall of 

Phenix (Mask) and Phenix. c, backbone atom recalls of Phenix (Mask), Phenix, and 

CryoREAD relative to map resolution. For CryoREAD, the equation of regression line 

is y = − 0.042x + 1.012 (Pearson correlation coefficient: −0.320, p-value: 0.008, standard 

error:0.015). For Phenix(Mask), the equation of regression line is y = − 0.091x + 0.877
(Pearson correlation coefficient: −0.445, p-value: 1.456e-4, standard error:0.023). For 

Phenix, the equation of regression line is y = − 0.108x + 0.839 (Pearson correlation 
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coefficient: −0.492, p-value: 2.006e-5, standard error:0.023). d, sequence recalls of Phenix 

(Mask), Phenix and CryoREAD relative to map resolution. For CryoREAD, the equation 

of regression line is y = − 0.117x + 0.961 (Pearson correlation coefficient: −0.632, p-value: 

7.280e-9, standard error:0.017). For Phenix(Mask), the equation of regression line is 

y = − 0.064x + 0.444 (Pearson correlation coefficient: −0.550, p-value: 1.190e-6, standard 

error:0.012). For Phenix, the equation of regression line is y = − 0.063x + 0.408 (Pearson 

correlation coefficient: −0.525, p-value: 4.254e-6, standard error:0.013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Workflow of CryoREAD.
CryoREAD consists of five main steps. 1) Structure Detection by Deep Learning: locations 

of phosphate, sugar, base, and four base types are detected by two-stage networks. 2) 

Structure Node Clustering: representative nodes are identified through clustering from 

detected grid positions. 3) Backbone Tracing: the backbone is traced by the graph 

constructed with representative sugar nodes. 4) Sequence Assignment: Sequences are 

assigned to local fragments along the backbone path, which are then assembled in the 

subsequent step. 5) Full Atom Model: full nucleotides are constructed according to triangles 
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of phosphate, sugar, and base (S-P-B) node followed by atomic structure refinement. For 

more details, see Methods.
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Fig. 2. Performance of modeling structures of nucleic acids by CryoREAD.
a. Nucleotide moiety-based accuracy of two stages of neural network. See Methods 

for the metric. The statistics are calculated over n = 68 independent experimental 

EM maps, with each points values derived from Supplementary Table 2_ moiety 

stage 2. For stage 1, the values of minima, maxima, center, bounds of box and 

whiskers of different categories in order: Sugar(0.345,0.991,0.872,0.754/0.925,0.554/0.991), 

Phos(0.075,0.966,0.772,0.517/0.875,0.075/0.966), 

Base(0.421,1.000,0.910,0.859/0.937,0.742/1.000), A-
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Base(0.055,0.953,0.588,0.417/0.815,0.055/0.953), U/

T-Base(0.000,0.880,0.524,0.307/0.728,0.000/0.880), C-

Base(0.057,0.927,0.588,0.422/0.782,0.057/0.927), G-

Base(0.057,1.000,0.718,0.550/0.876,0.348/1.000). For stage 2, the values 

of minima, maxima, center, bounds of box and whiskers of 

different categories in order: Sugar(0.421,1.000,0.929,0.864/0.964,0.734/1.000), 

Phos(0.404,0.988,0.889,0.757/0.931,0.541/0.988), 

Base(0.439,1.000,0.918,0.874/0.952,0.771/1.000), A-

Base(0.000,0.948,0.571,0.339/0.812,0.000/0.948), U/

T-Base(0.000,0.899,0.552,0.333/0.769,0.000/0.899), C-

Base(0.094,0.950,0.685,0.541/0.827,0.150/0.950), G-

Base(0.208,1.000,0.833,0.731/0.912,0.542/1.000). b. Recall and precision of sugar and 

phosphate atoms. c. Recall of detecting sugar and phosphate atoms relative to the map 

resolution. Linear regression lines are shown. For sugar atoms, the equation of regression 

line is y = − 0.048x + 1.090 (Pearson correlation coefficient: −0.361, p-value: 0.002, standard 

error:0.015). For phosphate atoms, the equation of regression line is y = − 0.041x + 0.966
(Pearson correlation coefficient: −0.301, p-value: 0.013, standard error:0.016) d. Recall of 

detecting sugar and phosphate atoms relative to the length of nucleic acids (on a logarithmic 

scale). e. Sequence assignment recall relative to the backbone recall. Sequence recall 

considers the fraction of nucleotides in the reference structure that were recovered by the 

model (see Methods). f. Backbone recall (BB), sequence recall (Seq), and sequence match 

(Seq (M)) relative to the map resolution. Sequence match only considers nucleotides in the 

reference structure that have a corresponding nucleotide in the model (an average atom pair 

distance of less than 5 Å). For BB, the equation of regression line is y = − 0.042x + 1.012
(Pearson correlation coefficient: −0.320, p-value: 0.008, standard error:0.015). For Seq, 

the equation of regression line is y = − 0.117x + 0.961 (Pearson correlation coefficient: 

−0.632, p-value: 7.280e-9, standard error:0.018). For Seq(M), the equation of regression 

line is y = − 0.110x + 0.997 (Pearson correlation coefficient: −0.684, p-value: 1.231e-10, 

standard error:0.014). The correlation between sequence recall and sequence recall (match) 

is provided in Extended Data 6. g. Backbone RMSD of models before and after the structure 

refinement. Supplementary Table 3 for details of the structure modeling performance of each 

map.
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Fig. 3. Examples of modeled atomic structure by CryoREAD for experimental maps from our 
testing set.
Detailed Evaluation Results are shown in Supplementary Table 3_with sequence after refine. 

In each row of the modeling example, five columns shown from left to right are 1) EM map 

and its corresponding structure; 2) only DNA/RNA structures of the native structure built by 

the authors of the EMDB map entry; 3) detection by deep learning network of CryoREAD. 

The colors indicating sugar, phosphate, and colors of bases are shown at the bottom of 

the figure; 4) the atomic structure model by CryoREAD. Bases are colored in red G/C 
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and blue A/U/T. 5) Superimposition of the model (blue) with the native structure (red). a. 
mouse RAG1/2 HFC complex containing partial HMGB1 linker (EMD-7480, PDB-ID:6CIJ, 

Resolution: 3.9 Å; protein lengths: 2045 amino acids (aa); DNA length: 212 nucleotides 

(nt)): Backbone Recall: 0.862; Sequence Match: 0.636; Sequence Recall: 0.552; RMSD to 

the native: 2.83 Å. b. the complete Vaccinia DNA-dependent RNA polymerase complex 

(EMD-4868, PDB-ID:6RFL, Res: 2.76 Å; protein: 6191 aa; RNA: 63 nt): Backbone Recall: 

0.905; Seq Match: 0.560; Seq Recall: 0.524; RMSD: 3.09 Å. c. the full-length Bacillus 
subtilis glyQS T-box riboswitch in complex with tRNA-Gly (EMD-20416, PDB-ID: 6POM, 

Res: 4.9 Å; RNA: 230 nt): Backbone Recall: 0.841; Seq Match: 0.530; Seq Recall: 0.465; 

RMSD: 3.26 Å. d. in vitro reconstituted 50S-ObgE-GMPPNP-RsfS particle (EMD-12217, 

PDB-ID:7BL4, Res: 2.4 Å, protein: 3702 aa; RNA: 3016 nt): Backbone Recall: 0.910; Seq 

Match: 0.706; Seq Recall: 0.661; RMSD: 3.15 Å.
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Fig. 4. Atomic structure modeling by CryoREAD for experimental maps from SARS-Cov-2 
benchmark.
a. the backbone recall (BB), sequence recall (Seq), and sequence match (Seq (M)) 

relative to the map resolution. Modeling results for the 58 maps that have associated 

structures were used. For BB, the equation of regression line is y = − 0.042x + 0.945
(Pearson correlation coefficient: −0.157, p-value: 0.239, standard error:0.035). For Seq, 

the equation of regression line is y = − 0.170x + 1.064 (Pearson correlation coefficient: 

−0.425, p-value: 0.001, standard error:0.048). For Seq(M), the equation of regression line 
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is y = − 0.182x + 1.206 (Pearson correlation coefficient: −0.460, p-value: 2.844e-4, standard 

error:0.047). The results of individual maps are provided in Supplementary Table 5_with 

sequence after refine. b. SARS-CoV-2-Nsp1-40S complex (EMD-11320, PDB ID: 6ZOJ). 

Resolution: 2.8 Å; protein lengths: 4914 aa; RNA length: 1704 nt: Backbone recall: 0.909; 

Sequence match: 0.678; Sequence recall: 0.640. From left to right, the EM map and 

the corresponding structure; only RNA structure in the PDB entry; the atomic structure 

model by CryoREAD. NSP1 of SARS-CoV-2 is shown in red. c. Nsp7-Nsp8-Nsp12 SARS-

CoV2 RNA-dependent RNA polymerase in complex with template:primer dsRNA and 

favipiravir-RTP (EMD-11692, PDB ID: 7AAP). Resolution: 2.5 Å; protein lengths: 1120 

aa; RNA length: 21 nt. Backbone recall: 0.773; Sequence match: 0.75; Sequence recall: 

0.571. d. COVID-19 RNA-dependent RNA polymerase pre-translocated catalytic complex 

(EMD-30275, PDB-ID:7C2K). Resolution: 2.93 Å; protein lengths: 1256 aa; RNA length: 

31 nt. Backbone recall: 0.831; Sequence match: 0.630; Sequence recall: 0.548. We built 

models for maps in two independent conformations, the conformation I (EMD-30283, 

Resolution: 3.03 Å) and the conformation II (EMD-30284, Resolution: 3.12 Å). We 

used COOT to refine the structure models by CryoREAD. e. SARS-CoV-2 replication-

transcription complex bound to nsp13 helicase - nsp13(2)-RTC (EMD-22160, PDB ID: 

6XEZ). Resolution: 3.5 Å; protein lengths: 2563 aa; RNA length: 70 nt. Backbone recall: 

0.844; Sequence match: 0.613; Sequence recall: 0.543. On the right is the RNA model by 

CryoREAD for SARS-CoV-2 replication/transcription complex bound to nsp13 helicase - 

nsp13(1)-RTC (EMD-22270, Resolution: 4.0 Å). No structure model was associated with 

this map.
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Fig. 5. Comparison with models by Phenix.
We ran the Phenix map_to_model tool in two settings. The default setting is to provide 

the same EM maps as input as CryoREAD (orange data points, Phenix). We also provided 

segmented regions of the map, which are voxels that are predicted to include nucleotides, i.e. 

sugar, phosphate, or bases (blue data points, Phenix (Mask)). The benchmark dataset with 

68 maps were used for these plots. a, backbone recall. b, sequence recall. Other comparison 

data are provided in Extended Data 10 and Supplementary Table 6.
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