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Abstract

Purpose: Deep learning (DL) models have achieved state-of-the-art medical diagnosis 

classification accuracy. Current models are limited by discrete diagnosis labels but could yield 

more information with diagnosis in a continuous scale. We developed a novel continuous severity 

scaling system for Macular Telangiectasia Type II (MacTel) by combining a DL classification 

model with Uniform Manifold Approximation and Projection (UMAP).

Design: We used a DL network to learn a feature representation of MacTel severity from discrete 

severity labels, and applied UMAP to embed this feature representation into 2 dimensions, thereby 

creating a continuous MacTel severity scale.

Subjects: A total of 2003 OCT volumes were analyzed from 1089 MacTel Project participants.
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Methods: We trained a multi-view DL classifier using multiple B-scans from OCT volumes to 

learn the discrete 7-step Chew et al. MacTel severity scale. The classifiers’ last feature layer was 

extracted as input for UMAP, which embedded these features into a continuous 2D manifold. The 

DL classifier was assessed in terms of test accuracy. Rank correlation for the continuous UMAP 

scale against Chew et al. was calculated. Additionally, the UMAP scale was assessed in the kappa 

agreement against 5 clinical experts on 100 pairs of patient volumes. For each pair of patient 

volumes, clinical experts were asked to select the volume with more severe MacTel disease, and 

compared against the UMAP scale.

Outcome Measures: Classification accuracy for the DL classifier, and kappa agreement vs 

clinical experts for UMAP.

Results: The multi-view DL classifier achieved top-1 accuracy of 63.3% (186/294) on held-out 

test OCT volumes. The UMAP metric shows a clear continuous gradation of MacTel severity 

that has a Spearman Rank Correlation of 0.84 with the Chew et al. scale. Furthermore, the 

continuous UMAP metric achieved kappa agreements of 0.56–0.63 with 5 clinical experts, which 

was comparable to inter-observer kappas.

Conclusions: Our UMAP embedding generated a continuous MacTel severity scale, without 

requiring continuous training labels. This technique can be applied to other diseases, and may 

lead to more accurate diagnosis, improved understanding of disease progression and key imaging 

features for pathologies.

Precis

Deep learning can achieve state-of-the-art disease severity classification using optical coherence 

tomography scans. We demonstrate that features identified by deep learning can be embedded into 

a continuous scale to allow more refined disease tracking.
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Introduction

Macular Telangiectasia Type II (MacTel) is a progressive, bilateral macular disease of 

unknown etiology that affects the neuroretina and capillary network. The first widely used 

MacTel severity grading system was created by Gass and Blodi in 1993 by analyzing 

color fundus photography and fluorescein angiography.1 With increased usage of optical 

coherence tomography (OCT) in clinical practice, Chew et al. and the MacTel Research 

Consortium created a new grading system of MacTel in 2022 that incorporates disease 

features from new ophthalmic imaging modalities including spectral domain OCT (SD-

OCT) and fundus autofluorescence (FAF). This severity classification system has 7 distinct 

severity classes which correspond to MacTel progression and visual acuity.2 Discrete 

severity scales are used by clinicians to characterize a patient’s MacTel disease severity 

better, discuss progression, and categorize subtypes, but they have limitations. For instance, 

a discrete scale does not allow for differentiation in severity between patients of the same 
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class, or a single patient’s progression within the same class over time. Additionally, there 

may be difficulty with inter-rater reliability, with one study finding low inter-rater reliability 

among expert clinicians between Gass-Blodi classes for patients with less severe MacTel 

pathology.3 A continuous severity scale derived from imaging data may allow clinicians 

to have a more granular rating system to better assess and quantify a patient’s disease 

progression. However, developing this continuous scale with human expertise alone is 

challenging.

Deep learning, specifically using neural networks, has been extremely successful when used 

to predict disease severity in ophthalmology.4–6 The neural network models are able to learn 

latent representations of the input data, which are features of the data that are not directly 

observable, but only appear in the deeper layers of the network. These latent representations 

are then used by the model to perform the final task. If a model is trained to perform a 

task like classification of disease severity, the latent representations of input data within the 

model’s network should have some important characteristics that allow distinction between 

images from different classes of severity.7 The latent representations from the network are 

not constrained to discrete classes of the classification task, and contain information that 

may be used to generate a continuous scale of disease severity.

In this work, we set out to develop a continuous grading scale for MacTel severity with the 

goal of creating a more granular grading system. To achieve this, we trained a convolutional 

neural network to predict MacTel severity based on the most current grading scheme, the 

Chew et al. 7-class grading scheme, from multiple OCT B-scans of the same patient. 

Then we used uniform manifold approximation and projection (UMAP) to perform a 

dimensionality reduction of the latent features from the lower levels of the network to create 

a continuous severity scale. The new severity scale was evaluated against expert clinical 

grading to assess for validity.

Method

Data

This study was conducted in accordance with the Declaration of Helsinki. The subjects 

studied were from the MacTel Project. The MacTel Project is a collaboration of 49 clinical 

sites in 7 countries. Each participant in the MacTel Project was 18 years of age or older 

enrolled into the Natural History Study after a diagnosis of MacTel was confirmed on 

clinical examination at the study sites based upon on stereoscopic color fundus photographs, 

optical coherence tomography (OCT), fluorescein angiography and fundus autofluorescence 

images which were graded by the Reading Center at Moorfields Eye Hospital, London, UK. 

Each participating clinical site obtained approval from their institutional review board (IRB) 

or independent ethics committee for the protocol and each participant provided written 

informed consent.

We obtained 2,003 (Heidelberg Spectralis) OCT volumes from 1,089 participants in the 

MacTel Project. All OCT volumes imaged a 6mm*6mm area centered at the macula. 

However, the volume rasters varied between 49, 97 and 261 B-scan slices, with 97 the 

most common. Moreover, volume B-scan resolutions varied between 384px * 496px, 512px 
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* 496px, 784px * 496px, and 1024px * 496px. Volume scans that did not conform to 49, 97, 

261 were rejected, resulting in 78 participants removed.

The 2,003 OCT volumes were matched to the closest clinical measurements within a 

6 month window of the scan capture. The clinical measurements, derived from OCT 

scan features -OCT pigmentation, OCT hyper-reflectivity, presence of inner segment/outer 

segment (IS/OS) break, and neovascularization - were used to determine the 7 stage MacTel 

severity score from Chew et al., using their decision tree model reproduced in Supplemental 

Figure 1. Sample OCTs for the 7 Chew et al. grades are provided in Figure 2.

The data was split 70-15-15 in terms of training, validation and test at the patient level. 

To standardize B-scan resolutions, all B-scans were center cropped to be 384px * 384px. 

Vertical center cropping was achieved by detecting the ILM and RPE layers, and centering 

vertically around these layers. Horizontal cropping was performed by trimming from the 

center of the B-scan. The demographics of patients for each data partition along with the 

prevalence of the 7 Chew et al. grades at eye visit level are given in Table 1. We note that 

97 participants were included in the study that only had OCT volumes, but no clinical scores 

and thereby no Chew et al. grades. These OCT volumes were used along with some OCT 

volumes from the test dataset for clinical validation.

Deep Learning Classifier

We adapted an EfficientNet-B0 to classify the OCT volumes to the 7 stage Chew et 

al. grades. Specifically, 20 central B-scans from the 97 raster OCT volumes and the 20 

anatomically equivalent B-scans from the 49 and 261 OCT volumes, were used as inputs for 

EfficientNet-B0. The intuition for using multiple scans as input is to incorporate volumetric 

information that may not be necessarily captured by any individual scan; similar multi-

view approaches have been previously used in8,9. This input tensor was collapsed from 

5 dimensions Batch(B), View(V), Channel(C), Height(H), Width(W) to into 4 dimensions 

B*V, C, H, W. EfficientNet-B0 then learnt a mapping between the input and the 7 class 

target labels using the cross entropy loss.

Once the multiview classifier was trained and model parameters tweaked on the validation 

dataset, the classifier was frozen. All train, validation and test data were run through the 

classifier so that the tensor from the final feature layer of the classifier could be extracted 

for UMAP Embedding. A detailed schematic of the DL training process and feature layer 

extraction is provided in Supplemental Figure 3.

UMAP Embedding

UMAP10 was applied to the extracted feature vectors to produce a lower dimensional 

interpretation of the feature vectors. Specifically, a 2D UMAP embedding, using the 

umap-learn 0.5.2 package for python 3.6.12 with non-default parameters min-dist=0.01, 

n_components=2, random_state=42 (full UMAP parameters are provided in the supplement, 

along with an ablation study using PCA embedding in Supplemental Figure 4), was fitted to 

the extracted feature vectors without any knowledge of the Chew et al. grades. The resulting 

2D UMAP embedding is plotted and then color-coded for Chew et al. grades in Figure 5. A 

1D continuous metric was extracted from the 2D UMAP embedding by fitting an Ordinary 

Wu et al. Page 4

Ophthalmology. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Least Squares line to the embedding. Then for any point in the 2D UMAP embedding, its 

1D UMAP metric is calculated by projecting it onto the line, and computing the distance of 

the projected point to the most severe MacTel diagnosis endpoint of this line. Supplemental 

Figure 6 is added to illustrate the method.

Evaluation

The classifier was evaluated on the test dataset using top-1 accuracy. The 1D continuous 

UMAP derived metric was compared against Chew et al. grades in terms of Spearman rank 

correlation. The Spearman rank correlation is used as Chew et al. grades are discrete so that 

a Pearson correlation is not a good metric of the correspondence between the continuous 

UMAP metric and the Chew et al. grades.

The consistency of the UMAP metric was validated by sampling. Specifically, the UMAP 

metric for each Chew et al. stage was compared against that of all stages, by sampling 100 

pairs of volumes from each combination of stages. Then the UMAP metric for each volume 

was calculated and the delta difference between the pair of UMAP metrics was computed.

Five clinical experts were recruited to clinically validate the continuous UMAP metric. 

Four experts were retinal specialists with 10+ years of sub-specialty retinal experience, and 

the fifth was a reading center technician with 15+ years of MacTel experience. The five 

experts were presented with 100 pairs of OCT volumes and asked to choose if volume 1 

had more severe MacTel (1), if volume 2 had more severe MacTel (2), or if they could not 

tell the difference (0). The 100 volume pairs were sampled to be: a) 35 volumes with 1-step 

difference in Chew et al. severity grade, b) 35 volumes with the same Chew et al. severity 

grade, and c) 30 longitudinal pairs from the same patient and same eye from different time 

points (time between volume pair ranged from 2.8 to 4.3 years). Only the 30 longitudinal 

pairs came from the same patient and same eye, but from different time points. The time 

between the volumes for the longitudinal data ranged from 2.75 to 4.25 years. The 70 

volume pairs with the same, and 1-step difference, severity in the Chew et al. classification 

were from different patients and not necessarily the same eye as MacTel is diagnosed at the 

eye level. The inter-observer kappas for MacTel severity for all three setups were computed 

based on the experts’ outputs of (0,1,2). Next, the UMAP metric was used to judge MacTel 

severity on these 100 volume pairs, outputting (0,1,2) like the clinical experts. Finally, the 

UMAP metric’s kappa was computed against all observers.

Results

The multiview DL classifier achieved top-1 accuracy of 63.3% (186/294) on the test OCT 

volumes for a 7 class problem. The test dataset confusion table is given in Supplemental 

Figure 7, and shows mostly diagonal (63.3%) or correct top-1 predictions, with the miscalls 

coming in adjacent or at worst 2 grades away.

The 2D embedding, in Figure 5, shows a clear continuous gradation of MacTel severity. 

The 1D continuous UMAP severity metric extracted from this 2D embedding was found to 

have a Spearman Rank Correlation of 0.84 with Chew et al. grades. An interactive tool was 

developed to show the UMAP embedding along with 3 central OCT slices, the reference IR, 
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autofluorescence (FAF) and blue reflectance (BR) images captured at the same time where 

available. A video capture of the interactive tool is provided in the Supplemental Materials.

More importantly, the continuous UMAP metric achieved kappa agreements of 0.590 to 

Grader 1 on all 100 volume pairs. Overall, it performed comparably to all graders on all 100 

volume pairs, on the 35 one-grade difference pairs, on the 35 same class pairs and the 30 

longitudinal pairs (Figure 8). For 1 grade difference pairs, the UMAP scale achieved a kappa 

of 0.771 with Grader 1, and is comparable to the inter-observer kappas for this setup.

To investigate if there were more granular signals in MacTel than discernible by the 7-stage 

Chew et al. scale, we presented 5 clinical experts with 35 pairs of OCT volumes that had 

the same Chew et al. stage (5 pairs of volumes from each of the 7 stages), and asked 

them to determine, if possible, the OCT volume corresponding to more severe MacTel. 

The clinical experts achieved substantial kappa agreement between 0.45 and 0.6, which is 

evidence of more granular MacTel stages that is not captured by the current 7-stage scale, 

and which suggests the usefulness of finer scales. Our UMAP metric achieved comparable 

kappa (0.481) to the clinical experts on this task, demonstrating substantial agreement with 

clinical experts and suggesting that it is a suitable continuous scale that can capture more 

granular MacTel severity differences.

To understand disagreements between the UMAP scale and the clinical experts, we 

computed the absolute delta in UMAP metric between the volume pairs and plotted them 

against severity agreement between clinical expert and UMAP (blue), disagreement (red) 

and when clinicians was agnostic between the pair (green) in Figure 9, it is clear that most 

disagreements occur where the UMAP metric’s absolute delta are close to zero.

Furthermore, we investigated the UMAP metric’s absolute delta by experimental setup in 

Supplemental Figure 10. The 1 grade different Chew et al. classes have the biggest UMAP 

metric delta, and are correspondingly easier to grade, with graders agreeing most with the 

UMAP metric. This is also borne out by the high kappa agreements in Figure 8. When 

the Chew et al. class is the same for both volumes, the UMAP metric’s absolute delta 

are smaller leading to more disagreement. Finally, the longitudinal setup had the smallest 

UMAP metric’s absolute, leading to most disagreement, and this illustrates why kappa 

agreement for the longitudinal setup was lower for the other setups in Figure 8.

The UMAP metric consistency experiment results are shown in Supplemental Figure 11. 

The lower diagonal plots show the delta UMAP metric for each Chew et al. grade versus 

each other. The leading diagonal is the delta UMAP metric for the same Chew et al. grades, 

and exhibit a symmetric unimodal distribution around 0. The off diagonals are the less 

severe stages vs more severe stages, and the delta UMAP metric is shifted more and more 

negative as the steps between Chew et al. stages increases. This shows the UMAP metric is a 

consistent continuous metric scale.

Discussion

Our multi-view classifier and UMAP embedding generated a continuous severity scale for 

MacTel, without requiring continuous training labels. The UMAP severity scale had a high 
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Spearman rank correlation with the current discrete MacTel grades. More importantly, the 

UMAP scale achieved high kappa agreements against clinical experts, especially in the same 

Chew et al. grades and longitudinal setups. This shows that both clinicians and the UMAP 

severity scale can distinguish more granularly among MacTel cases within the same discrete 

scale.

Many diseases in medicine have a discrete severity scale with ordinal bins representing 

corresponding degrees of disease progression. However, these ordinal bins cannot represent 

continuous scale biology. Li et al attempted to create a continuous severity scale for 

retinopathy of prematurity and knee osteoarthritis using deep learning models. Their model 

was successful, but required manual labeling of 100 images in an ordinal scale of increasing 

severity for both disease domains in order to train their models. Our method, on the other 

hand, does not require any additional manual labeling to assess severity, but instead used 

existing clinical labels to generate latent representations that were used to generate the 

severity scale. Although latent representations have been used to study diseases in medical 

imaging, they have not been used to create continuous severity scales.7

Continuous severity scales may better represent underlying biological variation, and should 

be able to accurately reflect existing grading scales. In this study, we found that there was 

a high kappa agreement between graders as well as between the grader and UMAP grading 

when evaluating 1 grade different Chew et al. pairs. This suggests that the UMAP is reliable 

for finding the differences between eyes of the existing clinical grading criteria. When 

comparing kappa agreement among eyes of the same Chew grade, there was less agreement 

between graders and the UMAP, specifically among eyes that had a delta close to zero in the 

UMAP space. Among these eyes, there was also lower intergrader agreement for these eyes, 

so perhaps the disagreement does not reflect the UMAP being incorrect, but rather, that there 

is little agreement on which is more severe disease when the eyes are within the same Chew 

class among experts.

Vision outcomes in patients with MacTel may not change over the course of 2 years but 

there may be underlying pathological changes within that time.11 Ideally, a continuous 

severity scale would be able to capture longitudinal changes within the same Chew grade 

that a clinician may be able to detect, but the traditional discrete severity grading scale 

cannot. Picking up longitudinal changes could allow for improved patient counseling and 

studying of disease. In our study, we attempted to compare the agreement of the physician 

raters with each other and with the UMAP scale. The longitudinal setup had relatively lower 

kappa agreements among the clinical experts and the UMAP scale suggesting that it was 

the hardest task, and which was borne out by the difference in UMAP scale metrics. Even 

for this difficult task, inter-observer and UMAP kappa were comparable and on the order of 

0.3–0.5, which is substantially above a random chance kappa of 0. Although there was no 

general consensus on the severity among experts, the agreement of the UMAP with experts 

suggests that the UMAP metric is accurately assessing longitudinal changes. Therefore, the 

UMAP metric provides an easy way to provide a continuous scale diagnosis of MacTel, 

which can differentiate even minor changes in MacTel severity.
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This study has some limitations. First, the continuous UMAP scale only applies to subjects 

with MacTel. It does not differentiate between MacTel and other retinal diseases. Second, 

the UMAP embedding was extracted from a supervised network, and required training 

labels. Therefore to replicate this continuous embedding workflow for other diseases or 

biological systems requires labeled data. Third, the 2D UMAP embedding for MacTel was 

linear, and allowed a straight-forward extraction of 1D continuous scale. The UMAP was 

trained using only OCT data. It is not known whether the same result would be obtained by 

training the UMAP with visual acuity as the only outcome. The Chew et al. grade requires 

multimodal imaging for the clinician label. It is not known whether a UMAP trained with all 

imaging modalities would achieve better performance.

Finally, our methodology would have relevance to other diseases with complex 

pathophysiology and large clinical imaging datasets that are currently constrained by 

discrete human labels of disease severity. For example, a similar OCT scan analysis 

can be applied to age-related macular degeneration (AMD)12. Furthermore, it may apply 

to non-ophthalmic diseases with abundant routine clinical images, such as the potential 

to develop a continuous severity scale for COVID-19 from chest x-rays13 or chest 

CT14, for stroke severity from MRI15, and for continuous bowel inflammation severity 

from histopathology16. Future research will determine if these continuous severity scales, 

harnessed to linked clinical and multi-omic information and advanced data analysis 

and prognostic modeling will unlock previously unsuspected biological mechanisms and 

associations and new diagnostic and therapeutic approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 2. 
A sample central OCTs for each of the 7 Chew et al.2 MacTel severity stages, order by least 

severe (leftmost column) to most severe (rightmost column)

Wu et al. Page 10

Ophthalmology. Author manuscript; available in PMC 2024 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
2D UMAP embedding of MacTel OCT volumes. The Chew et al.2 severity grade colors 

were added after embedding and shows a clear trend of least severe (green) to most severe 

(brown) from the top left to the bottom right in this UMAP embedding.
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Figure 8. 
Kappa agreement to Grader 1 for all 100 volume pairs, 35 pairs that were 1 Grade different 

on the discrete Chew et al.2 scale, 35 same grade pairs, and 30 longitudinal pairs. UMAP 

achieved comparable kappa to Grader 1 as the other clinical experts.
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Figure 9. 
Graders (Grader 1–5) and UMAP metric agreement on 100 volume pairs vs absolute delta 

in UMAP metric for the volumes. Most disagreement (red) occurs when the absolute delta 

in UMAP metric is close to zero. Uncalled (green) are cases where graders could not 

distinguish between MacTel severity in the volume pair.
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Table 1.

Demographics breakdown by data partition. Raw numbers are given as well as percentage of partition in 

parenthesis.

Category Condition Split

Train Validation Test Unlabelled

Patient Total 647 133 134 97

Sex

Male 237 (36.63%) 49 (36.84%) 47 (35.07%) 29 (29.90%)

Female 409 (63.21%) 83 (62.41%) 86 (64.18%) 51 (52.58%)

Unknown 1 (0.15%) 1 (0.75%) 1 (0.75%) 17 (17.53%)

Age

Mean 61.64 62.46 61.50 62.03

Std 11.55 11.01 11.01 10.10

10% Percentile 47.35 46.23 46.99 49.60

25% Percentile 55.56 56.60 56.08 56.72

50% Percentile 62.64 63.48 62.84 62.06

75% Percentile 69.39 70.69 68.74 69.89

90% Percentile 75.10 74.20 74.05 75.00

Race

White 587 (90.73%) 121 (90.98%) 121 (90.30%) 69 (71.13%)

Asian 22 (3.40%) 4 (3.01%) 3 (2.24%) 4 (4.12%)

Black/African 11 (1.70%) 1 (0.75%) 1 (0.75%) 1 (1.03%)

American Indian 3 (0.46%) 1 (0.75%) 1 (0.75%) 0 (0.00%)

Pacific Islander 0 (0.00%) 0 (0.00%) 1 (0.75%) 0 (0.00%)

Other 23 (3.55%) 5 (3.76%) 6 (4.48%) 6 (6.19%)

Unreported 1 (0.15%) 1 (0.75%) 1 (0.75%) 17 (17.53%)

Ethnicity

Not Hispanic or Latino 610 (94.28%) 129 (96.99%) 125 (93.28%) 77 (79.38%)

Hispanic or Latino 31 (4.79%) 3 (2.26%) 8 (5.97%) 2 (2.06%)

Unknown 6 (0.93%) 1 (0.75%) 1 (0.75%) 18 (18.56%)

Eyes
Unique Eyes 1313 270 275 217

Total Scans 1431 278 294 975

Chew et al. grades

0 381 80 80 0

1 382 63 78 0

2 194 36 20 0

3 312 74 81 0

4 66 13 13 0

5 75 5 19 0

6 21 7 3 0

Unknown 0 0 0 975
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