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Abstract

Accumulation of ectopic pericardial adipose tissue has been associated with cardiovascular 

complications which, in part, may relate to adipose-derived factors that regulate vascular responses 

and angiogenesis. We sought to characterize adipose tissue microvascular angiogenic capacity 

in individuals undergoing elective cardiac surgeries including aortic, valvular, and coronary 

artery bypass grafting. Pericardial adipose tissue was collected intraoperatively and examined 

for angiogenic capacity. Capillary sprouting was significantly blunted (2-fold, p<0.001) in subjects 

with CAD (age 60±9 years, BMI 32±4 kg/m2, LDL-C 95±46 mg/dl, n=29) compared to age-, 

BMI-, and LDL-C matched individuals without angiographic obstructive CAD (age 59±10 

years, BMI 35±9 kg/m2, LDL-C 101±40 mg/dl, n=12). For potential mechanistic insight, we 

performed mRNA expression analyses using quantitative RT- PCR, and observed no significant 

differences in pericardial fat gene expression of pro-angiogenic mediators vascular endothelial 

growth factor-A (VEGF-A), fibroblast growth factor-2 (FGF-2), and angiopoietin-1 (angpt1), or 

anti-angiogenic factors soluble fms-like tyrosine kinase-1 (sFlt-1) and endostatin. In contrast, 

mRNA expression of anti-angiogenic thrombospondin-1 (TSP-1) was significantly upregulated (2-

fold, p=0.008) in CAD compared to non-CAD subjects, which was confirmed by protein western-

immunoblot analysis. TSP-1 gene knockdown using shRNA lentiviral delivery significantly 

improved angiogenic deficiency in CAD (p<0.05). In conclusion, pericardial fat in subjects 
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with CAD may be associated with an anti-angiogenic profile linked to functional defects in 

vascularization capacity. Local paracrine actions of TSP-1 in adipose depots surrounding the heart 

may play a role in mechanisms of ischemic heart disease.
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Introduction

Excessive build-up of ectopic adipose tissue surrounding the heart has been associated with 

cardiovascular complications, but mechanisms are incompletely understood. Accumulation 

of increased pericardial adipose tissue (PAT), in particular, has been linked to incident heart 

failure and coronary artery disease (CAD), independent of conventional risk factors.1,2 

Pericardial adipose tissue has been shown to exhibit pro-inflammatory characteristics3 

and immune dysregulation in PAT has been linked to the prevalent CAD. 4 Pericardial 

adipose depots also harbor cells of vascular origin, and whether differential phenotypes 

in microvascular regenerative capacity exist in the pericardial adipose tissue of humans 

has not been previously examined. Thus, our primary objectives were to characterize 

angiogenic properties of PAT in subjects with and without ischemic heart disease, and test 

the hypothesis that imbalances in pro- and anti-angiogenic mediators may identify potential 

regulators of angiogenesis that could play a role in myocardial ischemia.

Methods

Study population

Forty-one consecutive men and women undergoing elective cardiothoracic surgery at Boston 

Medical Center were recruited into the study. Surgeries were coronary artery bypass grafting 

(CABG, n=29), aortic valve replacement (AVR, n=5), mitral valve replacement (MVR, n=4), 

ascending aortic aneurysm repair (n=2), and unroofing of a coronary myocardial bridge 

(n=1). Subjects undergoing non-CABG surgeries (n=12) all had no obstructive CAD by 

angiography. Prior to surgery, clinical characteristics, including age, BMI, hypertension 

prevalence, and diabetes mellitus history were recorded. Fasting blood samples were drawn 

and analyzed for total cholesterol, LDL-C, HDL-C, triglycerides, HbA1c, and creatinine 

levels, and aliquots stored at −80°C for further studies. During the cardiovascular operation, 

adipose tissue specimens were collected from the anterior pericardium and processed 

immediately. Pericardial fat was defined as adipose tissue located outside (external to) the 

fibrous pericardium from which samples were collected, 4,5 and distinct from epicardial fat 

that is the tissue layer situated between the myocardium and visceral pericardium, which 

was not examined. Specimens were procured using scissors rather than electrocautery to 

avoid thermal tissue damage. Pregnant individuals were not eligible for surgery and thus 

excluded. Left ventricular ejection fraction was derived from clinical echocardiograms. The 

study was approved by the Boston University Medical Center Institutional Review Board, 

and written consent was obtained from all participants.
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Fat pad angiogenesis assays

Pericardial adipose tissue samples collected during cardiothoracic surgery were immediately 

placed in sterile EBM-2 Endothelial Cell Basal Medium-2 (EBM-2; Lonza, cat # CC-3156). 

Adipose tissues were minced with scissors and digested with 1 mg/mL collagenase type II 

(Worthington Biochemical, cat # LS004176) for 15–30 minutes at 37° C in a shaking water 

bath. The tissues were strained in a 100μm nylon filter and washed once with EBM-2 media. 

Specimens of 1–2 mm2 were embedded in 200μL per well Matrigel (Corning, cat # 354230) 

in 48-well plates on ice and incubated for 45 min at 37° C for polymerization. Following 

polymerization, 0.5mL media was added per well, and media was replaced on days 2, 4, and 

6. Angiogenic sprouts growing from the central fat pad were quantified on day 7 along the 

periphery using a10x magnification microscope, as previously described. 6

TSP-1 silencing using shRNA

Pericardial adipose tissue specimens from subjects with CAD were transfected with TSP-1 

silencing shRNA lentiviral particles (Santa Cruz, sc-36665-V) or negative control shRNA 

Lentiviral Particles-A without TSP-1 silencing (Santa Cruz, sc-108080) according to the 

manufacturer’s protocol. Lentivirus particles 1×105/ml were added to Matrigel before tissue 

implantation. Collagenase-digested tissues were embedded in 60μL Matrigel per well in a 

96-well plate and then polymerized for 45min at 37° C. Following polymerization, 0.2mL 

media per well was added with 1×105/ml lentivirus particles and 5ug/ml polybrene for 

3 days. Angiogenic sprouts growing from the central fat pad were quantified on day 7 

along the periphery using a 10x magnification microscope, and tissues were stored for 

gene expression. To assess cell viability for each condition, we employed the trypan blue 

hemocytometer methodology.

Real-time quantitative polymerase chain reaction (RT-qPCR)

Adipose tissue samples were collected in an RNA-stabilizing solution (Ambion, 

cat#AM7024) and preserved at −80 °C until RNA isolation. Total mRNA was isolated 

using the RNeasy Lipid Tissue Mini Kit (Qiagen, cat# 74804). RNA was reverse 

transcribed using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 

cat# 4368814) and pre-amplified using TaqMan™ PreAmp Master Mix Kit (Applied 

Biosystems, cat# 4384267). Quantitative PCR was performed for the expression of 

vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor-2 (FGF-2), and 

angiopoietin-1 (Angpt1), soluble fms-like tyrosine kinase-1 (sFlt-1), endostatin (COL18A1), 

thrombospondin-1 (TSP-1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

genes (Table 1) using iTaq™ Universal Probes Supermix (BIO-RAD, cat# 1725134) in 

ViiA™ 7 Real-Time PCR System. Expression data for all target genes were normalized to 

GAPDH, analyzed using the ΔΔCt method, and expressed as a fold difference of expression 

in specimens from non-CAD subjects.

Western Immunoblot Analyses

Proteins were extracted from frozen adipose tissue by homogenization in liquid nitrogen 

in 1X lysis buffer (Cell Signaling, cat#9803) with a protease and phosphatase inhibitor 

cocktail (Thermo Scientific, cat#78440 ). Protein was measured using Bradford’s method 
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and normalized. 10 μg of total protein was subjected to electrophoresis using SDS-

polyacrylamide gel and blotted to nitrocellulose membranes using the Bio-Rad Transblot 

Turbo Transfer system. The membranes were blocked with 5% bovine serum albumin in 

TBST and incubated overnight at 4°C with primary antibodies to thrombospondin-1 and 

GAPDH (1:1000 dilution; Sigma, St Louis, MO). The membranes were washed three times 

and incubated on a shaker at room temperature for 1 h with horseradish peroxidase (HRP)-

conjugated secondary antibody. After washing, chemiluminescence (Pierce™ ECL Western 

Blotting Substrate, Thermo Scientific™, cat#32209) was used to detect HRP enzyme 

activity. Densitometric analysis of bands was performed using ImageQuant™ LAS 4000 

biomolecular imaging system (GE Healthcare, Pittsburg, PA). Protein levels were quantified 

using the Image Studio Lite 5.2 software, and values were normalized to GAPDH.

Enzyme-linked immunosorbent assay (ELISA)

Total protein was measured from previously collected plasma in a subset of subjects with 

available samples for analyses. Soluble thrombospondin-1 concentration was measured 

using commercially available ELISA kits (R & D systems, cat# DTSP10) according to 

the manufacturer’s instructions and normalized to total protein. Data were expressed as a 

fold difference compared to the non-CAD group.

Statistical Analysis

Data are expressed as the mean ± SD in tables. Student’s unpaired t-tests and 

one-way ANOVA were used to compare angiogenic capacity and clinical parameters, 

including plasma TSP-1 concentrations between groups that were normally distributed. 

Non-parametric Mann-Whitney tests were used to compare group differences in gene and/or 

protein expression that were non-normally distributed, as assessed by Kolmogorov-Smirnov 

methodology. The Holm-Sidak correction was performed for any potential multiple testing 

in gene expression analyses. Chi-square tests were used to compare frequency proportions. 

Regression analyses were performed with angiogenesis as the dependent variable in subjects 

with and without CAD, and clinical covariates including age, BMI, LDL-cholesterol, 

triglycerides, HbA1c, diabetes mellitus, hypertension, and LVEF. Graphic data are presented 

as mean ± SEM unless otherwise indicated. A value of p <0.05 was considered significant 

for all analyses.

Results

Clinical Characteristics

A total of 41 subjects were recruited for the study. Clinical characteristics of all subjects are 

displayed in Table 2, which comprised of individuals with CAD undergoing CABG (n=29) 

compared to non-CAD populations that included AVR (n=5), MVR (n=4), ascending aortic 

aneurysm repairs (n=2), and unroofing of a myocardial bridge (n=1). Seventy three percent 

of subjects were male. There were no significant differences in age, BMI, total cholesterol, 

and LDL-C between subjects with vs. without obstructive CAD. Individuals with CAD had 

a slightly lower left ventricular ejection fraction and higher prevalence of diabetes mellitus 

and HbA1c levels.
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Microvascular angiogenic capacity is reduced in ischemic heart disease

Angiogenic sprouting capacity quantified ex-vivo for up to 7 days was diminished in the 

pericardial fat tissue of subjects with CAD by approximately 2-fold, compared to individuals 

without CAD (Figures 1a and c, p<0.001). The extent of angiogenic impairment was 

not different between subjects with and without concomitant diabetes mellitus (Figure 

1b). Regression analyses using clinical covariates did not demonstrate any significant 

associations independent of CAD. P values for all variables tested were as follows: age 

(p=0.14), BMI (p= 0.17), LDL cholesterol (p=0.71), triglycerides (p=0.7), HbA1c (p=0.31), 

DM (p=0.5), HTN (p=0.59) and LVEF (p=0.9).

Quantitative PCR, Western immunoblot, and ELISA analyses

We examined the expression of several transcripts of interest that have been shown to be 

key regulators of angiogenic processes. As shown in Figure 2 (2a, 2b, and 2c), there were 

no significant differences in pro-angiogenic VEGF-A, FGF-2, or Angpt-1 in the PAT of 

subjects with vs. without CAD. 7–9 Similarly, no significant differences were observed in 

anti-angiogenic endostatin and sFlt-1 expression (Figures 2e and 2f). 10–12 In contrast, anti-

angiogenic TSP-1 expression was significantly upregulated by over 2-fold in the pericardial 

fat of CAD subjects (p=0.008, Figure 2d). TSP-1 mRNA expression was confirmed at 

the protein level by immunoblot analysis (p<0.05, Figure 3a). In contrast, there were no 

differences in plasma concentrations of circulating TSP-1 between subjects with vs. without 

CAD (Figure 3c) in exploratory studies in a subset of individuals with available blood 

samples for analyses.

TSP-1 antagonism augments angiogenic capacity in CAD subjects

To examine the pathophysiological significance of TSP-1, we employed a shRNA lentiviral 

delivery approach ex vivo to downregulate its expression in the adipose tissue of subjects 

with CAD. As shown in Figure 4, shRNA targeting TSP-1 significantly reduced its gene 

expression in PAT (4a) and was associated with an improvement in angiogenic responses 

(4b) in subjects with CAD (p<0.05). We also examined cell viability using a trypan 

blue hemocytometer and observed no significant differences with 95% viability for each 

condition.

Discussion

In the present study we demonstrate, to our knowledge for the first time, reduced 

angiogenic capacity in the pericardial adipose tissue of subjects with CAD compared to 

individuals without ischemic heart disease, independent of age, BMI or LDL-C levels. 

We identified tissue up-regulation of anti-angiogenic TSP-1 at mRNA and protein levels 

in subjects with CAD, while typical pro-angiogenic factors including VEGF-A were not 

differentially expressed. Lentiviral TSP-1 silencing induced recovery of vascularization 

capacity providing evidence for functional plasticity of human pericardial adipose tissue. 

The findings also raise the possibility that anti-proliferative signaling in adipose depots 

surrounding the heart may play paracrine roles in mechanisms of cardiovascular disease.
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Pericardial adipose tissue is a metabolically active endocrine depot that overlies the external 

surface of the fibrous pericardial layer, with similar embryonic origins as visceral fat, 

supplied by non-coronary vasculature, 13 and anatomically distinct from epicardial fat. 5 

Pericardial adipose can comprise up to 70% of total cardiac fat, and has been shown 

to correlate with intra-abdominal visceral fat volume, metabolic syndrome components, 

insulin resistance, and coronary artery calcifications, 14–20 21 and is frequently also termed 

paracardial fat. The accumulation of both epicardial and pericardial fat around the heart, that 

share similar transcriptional profiles, have been linked to cardiovascular risk. 1,20,22 PAT is 

emerging as an independent parameter of cardiovascular risk and has been associated with 

coronary atherosclerosis, 1,23,24 myocardial dysfunction, 25–27 and incident heart failure, 
28 however mechanisms remain poorly understood. It is recognized that dysfunctional fat 

has the capacity to release an array of factors that can negatively modulate vascular and 

myocardial function, and has been associated with inflammation and oxidative stress. 4,29 A 

prevailing hypothesis is that the pericardium may be exerting paracrine regulatory control 

over adjacent coronary vascular beds. Microarray studies show that in subjects with CAD, 

pro-inflammatory signatures are upregulated in pericardial fat compared to subcutaneous 

adipose tissue 22 and individuals without CAD. 4 While the angiogenic profile of PAT has 

not been studied extensively, its ability to express angiogenic effectors has been examined 

in the context of potential therapeutic use. 30 Resident stem cells collected from adipose 

tissue surrounding the heart are capable of regulating microvascular endothelial function ex 
vivo, 31 and mesenchymal stromal cells derived from the PAT of cardiac surgery patients 

display angiogenic potential. 32 Moreover, we analyzed available sequencing data in a 

published smaller cohort (n=5, GSE179397) and found increased expression of TSP-1 by 

nearly 1.7-fold in the PAT of patients with CAD (Ensembl ID ENSG00000137801). 4 Our 

results are concordant with those data, and in addition we presently demonstrate functional 

deficits in angiogenic capacity in conjunction with TSP-1 overexpression.

TSP-1 is a multi-domain matrix glycoprotein which can interact with numerous ligands 

including structural components of extracellular matrix, growth factors, receptors, proteases, 

and cytokines. 33 TSP-1 has been shown to be a natural inhibitor of neovascularization, 34,35 

acting through the CD36/p38 MAPK mitogen signaling pathway that promotes endothelial 

cell apoptosis 36 and the CD47/cGMP pathway that leads to inhibition of angiogenesis. 37 

TSP-1 also hinders vascular proliferation by acting as a scavenger for FGF-2 and VEGF-A. 
38,39 TSP-1 can upregulate monocyte binding, promote TGF-β expression, and inhibit nitric 

oxide signaling 40 to support atherosclerosis, and patients with acute coronary syndromes 

display elevated plasma TSP-1 levels. 41 Growing evidence suggests that TSP-1 plays a role 

in various cardiovascular disorders and has been considered as a therapeutic target. 33

Reparative angiogenesis is a fundamental physiological process that involves growth of 

new blood vessels from preexisting networks that is essential for tissue recovery following 

ischemic injury both in CAD and peripheral arterial disease. Angiogenic insufficiency 

impairs vascular collateralization and worsens ischemia. 42,43 As such, there has been 

great interest in therapeutic angiogenesis to salvage ischemic damage, although most trials 

involving growth factor delivery in the form of proteins or genes encoding targets such as 

VEGF and FGF to date with have been largely negative. 44 While our manuscript does not 

directly address this issue, it touches upon the notion that perhaps the therapeutic focus 
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could be on anti-angiogenic factors rather than pro-angiogenic monotherapies. Upregulated 

TSP-1 expression is manifest in the heart, vasculature, and kidneys of diabetic and obese 

individuals as well as experimental rodent models. 45–47 Preclinical work has demonstrated 

that TSP-1 deletion in mice protects against leptin-induced atherosclerosis. 48 Collectively, 

these data underscore TSP-1 as a potential target for mitigating vasculopathy that deserves 

consideration.

There are several limitations of our study to consider. First, our findings are observational 

and do not provide a causal role of TSP-1 in ischemic heart disease. Second, the precise role 

of pericardial fat in regulating the coronary vasculature remains undefined. Conceptually, 

it is possible that abnormalities in PAT stem partly from “inside-out” atherosclerotic 

signaling that extends out to surrounding adipose tissue rather than vice versa. However 

anti-angiogenic upregulation locally would be counterintuitive under conditions of ischemia. 

Third, the primary driver of TSP-1 overexpression in subjects with CAD remains unclear. 

Fat depots regulate their expansibility via cross-talk with resident progenitor and endothelial 

cells, and adipose tissue dysfunction commonly seen in obesity may be associated with 

microvascular dysfunction.49 Fourth, ex vivo assessment of angiogenic capacity may not 

recapitulate the in vivo microenvironment. However, we point out that we utilized freshly 

isolated samples from living subjects rather than rely on autopsy specimens. Moreover, we 

provide direct pathophysiological evidence of TSP-1 control of vascularization capacity in 

tissues surrounding the human heart that has not been previously described. Lastly, we did 

not find up-regulation of TSP-1 in the plasma of CAD subjects which may, in part, relate 

to our small sample size that may be underpowered, and also suggests that local paracrine 

actions may be tissue-specific.

In conclusion, pericardial fat in subjects with CAD is associated with increased TSP-1 

expression that is linked to functional defects in angiogenic potential. Local paracrine 

actions of TSP-1 in adipose depots surrounding the heart may play a role in mechanisms of 

ischemic heart disease that warrants additional investigation.
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Nonstandard Abbreviations and Acronyms:

Angpt1 angiopoietin-1

ApoE apolipoprotein E

a.u. arbitrary units

AVR aortic valve replacement
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BMI body mass index

CABG Coronary artery bypass grafting

CAD coronary artery disease

CD47/cGMP Cluster of Differentiation 47/ cyclic guanosine 

monophosphate

CD36/p38 MAPK Cluster of Differentiation 36/p38 mitogen-activated protein 

kinases

COL18A1 collagen type XVIII alpha 1 chain

EAT epicardial adipose tissue

EBM-2 EBMTM-2 Endothelial Cell Basal Medium-2

ELISA enzyme-linked immunosorbent assay

FGF-2 fibroblast growth factor-2

GAPDH glyceraldehyde-3-phosphate dehydrogenase

HbA1c Hemoglobin A1c

HDL-C high-density lipoprotein cholesterol

hMSC human mesenchymal stromal cells

HRP horseradish peroxidase

LDL-C low-density lipoprotein cholesterol

MVR mitral valve replacement

PAT pericardial adipose tissue

PCR polymerase chain reaction

RT-qPCR real-time quantitative PCR

sFlt-1 soluble fms-like tyrosine kinase-1

shRNA short hairpin RNA

TBST Tris-buffered saline with Tween

TSP-1 thrombospondin-1

VEGF-A vascular endothelial growth factor-A.
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Figure 1: CAD is associated with reduced angiogenic capacity in pericardial adipose tissue.
a) PAT angiogenic capillary growth is blunted in subjects with CAD compared to the 

non-CAD group (***P<0.001). b) In subjects with CAD, angiogenic impairment was 

similar in individuals with and without DM (p=NS by ANOVA). c) Representative images 

of preserved angiogenic growth in non-CAD subjects (left panel) compared to blunted 

proliferation in CAD (right panel). The solid black arrow represents capillary networks 

emanating from the central fat pad which is indicated by the dashed white arrow (non-CAD, 

n=11; CAD, n=25). Data are presented as mean ± SEM. *P<0.05, **P<0.01, ***P<0.0001).
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Figure 2: Expression of pro-and anti-angiogenic genes in PAT in subjects with CAD compared to 
without CAD.
There were no significant differences in pro-angiogenic gene expression for a) VEGF-A, 
b) FGF2, or c) Angpt1 (p=NS). However, anti-angiogenic d) TSP-1 was significantly 

upregulated in subjects with CAD (*p=0.008), whereas no significant differences in e) 

endostatin or f) sFlt-1 were observed (p=NS). Analyses were performed by qPCR and 

normalized to GAPDH. Data are expressed as relative fold-difference compared to non-CAD 

subjects indexed to 1 (non CAD, n=12; CAD, n=25). Data are displayed as mean ±SE.
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Figure 3: Comparison of TSP-1 protein expression in PAT and blood of CAD vs. non-CAD 
subjects.
a) PAT TSP-1 protein expression is significantly upregulated in subjects with CAD, 

quantified by Western immunoblot analysis and normalized to GAPDH. b) In a subset 

of individuals, exploratory analysis for plasma levels of TSP-1 did not demonstrate any 

significant differences, as quantified by ELISA (non-CAD, N=10; CAD, N=15). Data are 

expressed as relative fold-difference compared to non-CAD subjects indexed to 1. Data are 

displayed as mean ± SEM. * p<0.05.
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Figure 4: TSP-1 antagonism improves angiogenesis in CAD.
a) shRNA lentivirus induced a significant knock-down of TSP-1 gene expression in PAT. 

Data are expressed as relative fold-difference compared to control (sham) indexed to 1. b) 
TSP-1 silencing was associated with significant improvement in fat pad angiogenesis (n=5), 

compared to negative control lentivirus. Data are displayed as mean ± SEM. * p<0.05.
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Table 1.

Probes for qPCR

Gene Product Assay ID

ANGPT1 Hs00181613_m1

Endostatin Hs00181017_m1

FGF2 Hs00266645_m1

GAPDH Hs02758991_g1

sFLT-1 Hs01052939_m1

TSP-1 Hs00962908_m1

VEGF-A Hs00900055_m1

Am J Cardiol. Author manuscript; available in PMC 2025 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ahmed et al. Page 17

Table 2:

Clinical characteristics of the study population

Parameter Total subjects (N=41) Non-CAD (N=12) CAD (N=29) P value

Age, years 59.4±8 58.5±10 59.7±9 0.44

BMI, kg/m2 32.7±6 35.0±9 31.8±4 0.19

Total cholesterol, mg/dl 170.8±48 171.4±39 170.6±52 0.45

LDL cholesterol, mg/dl 96.5±44 101±40 94.8±46 0.47

HDL cholesterol, mg/dl 45.0±12 51.1±16 42.7±10 0.05

Triglycerides, mg/dl 125.8±70 97.0±32 139.3±80 0.08

Hypertension, (%) 90 83 93 0.33

HbA1c, % 6.3±1.5 5.6±0.7 6.5±1.6 0.03

Diabetes mellitus, % 37 17 45 0.01

Creatinine, mg/dl 0.9±0.2 1.0±0.3 0.9±0.2 0.24

Left ventricular ejection fraction, % 52±14 62±6 49±15 <0.01

Data are mean ± SD. BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; and HbA1c, hemoglobin A1c
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