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Abstract

Background—Kir4.2 and Kir4.1 play a role in regulating membrane transport in the proximal-

tubule (PT) and in the distal-convoluted-tubule (DCT), respectively.

Methods—We generated kidney-tubule-specific-AT1aR-knockout (Ks-AT1aR-KO) mice to 

examine whether renal AT1aR regulates Kir4.2 and Kir4.1.

Results—Ks-AT1aR-KO mice had a lower systolic blood pressure (SBP) than Agtr1aflox/flox 

(control) mice. Ks-AT1aR-KO mice had a lower expression of Na+/H+-exchanger-3 (NHE3) 

and Kir4.2, a major Kir-channel in PT, than Agtr1aflox/flox mice. Whole-cell-recording also 

demonstrated that the membrane potential in PT of Ks-AT1aR-KO mice was lesser negative than 

Agtr1aflox/flox mice. The expression of Kir4.1 and Kir5.1, Kir4.1/Kir5.1-mediated K+ currents of 

DCT and DCT membrane potential in Ks-AT1aR-KO mice were similar to Agtr1aflox/flox mice. 

However, angiotensin-II perfusion for 7 days hyperpolarized the membrane potential in PT and 

DCT of the control mice but not in Ks-AT1aR-KO mice, while angiotensin-II perfusion did not 

change the expression of Kir4.1, Kir4.2 and Kir5.1. Deletion of AT1aR did not significantly affect 

the expression of αENaC and βENaC but increased cleaved γENaC expression. Patch-clamp-

experiments demonstrated that deletion of AT1aR increased amiloride-sensitive-Na+-currents in 

the cortical-collecting-duct (CCD) but not in late-DCT. However, TPNQ-sensitive-ROMK-currents 

were similar in both genotypes.

Conclusion—AT1aR determines the baseline membrane potential of PT by controlling Kir4.2 

expression/activity but AT1aR is not required for determining the baseline membrane potential 

of the DCT and Kir4.1/Kir5.1 activity/expression. However, AT1aR is required for angiotensin-II-

Corresponding Address: Wen-Hui Wang, MD, Department of Pharmacology, New York Medical College, Valhalla, NY 10595, 914 
594 4139 (phone), 914 347 4956 (Fax), Wenhui_wang@nymc.edu. 

Disclosure No

HHS Public Access
Author manuscript
Hypertension. Author manuscript; available in PMC 2025 January 01.

Published in final edited form as:
Hypertension. 2024 January ; 81(1): 126–137. doi:10.1161/HYPERTENSIONAHA.123.21389.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



induced hyperpolarization of basolateral membrane of PT and DCT. Deletion of AT1aR had no 

effect on baseline ROMK activity but increased ENaC activity in the CCD.
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Introduction

Renal inwardly-rectifying K+ (Kir) channels play several important roles in regulating 

membrane transport of the renal tubules 1, 2. Kir1.1 (ROMK) is expressed in the apical 

membrane of TAL, late DCT, CNT) and CCD 1. ROMK plays a key role in maintaining 

the function of NKCC2 activity in the TAL whereas ROMK in the DCT2, CNT and CCD 

is responsible for mediating ENaC-dependent renal K+ excretion 3. Kir4.2 and Kir5.1 are 

expressed in the basolateral membrane of PT and participate in generating the negative 

membrane potential of the PT 4, 5. Depolarization of PT membrane potential is associated 

with the inhibition of NHE3 function without altering NHE3 protein expression in Kir4.2 

knockout mice 4. In the distal nephron, Kir4.1 and Kir5.1 are expressed in the basolateral 

membrane of the DCT, CNT and CCD and play a dominant role in determining the 

negativity of the basolateral membrane potential of the distal nephrons 2, 6. Moreover, 

we and others have previously demonstrated that Kir4.1/Kir5.1 activity plays a key role in 

regulating the membrane transport in the DCT and CCD 7–9. For instance, the deletion of 

Kir4.1 in the kidney was associated with the inhibition of thiazide-sensitive NCC activity 
7, 10.

A large body of evidence has demonstrated that AT1R or mouse AT1aR plays an important 

role in the regulation of membrane transport in the PT, DCT and CCD 11–19. However, these 

studies are exclusively focused on the apical membrane transport proteins such as NHE3 

in the PT, thiazide-sensitive Na-Cl cotransporter (NCC) in the DCT and aquaporin-2 in the 

collecting duct. The role of AT1aR in the regulation of Kir-channels in the PT and distal 
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nephrons is not understood, although Kir-channels play an important role in the regulation 

of the membrane transport of these nephrons. We now hypothesize that AT1aR may also 

regulate Kir4.2 in the PT and Kir4.1 in the DCT thereby modulating NHE3 and NCC 

activity. Thus, the first aim is to examine whether AT1aR regulates Kir4.2 and Kir4.1, and 

determines the baseline membrane potential of PT and DCT. Also, previous studies have 

demonstrated that angiotensin-II stimulates ENaC activity in aldosterone-sensitive distal 

nephron (ASDN) and regulates renal K+ excretion in the distal nephron 14, 20, 21. However, 

it is not clear whether AT1aR activity regulates baseline activity of ENaC and ROMK. Thus, 

the second aim of the present study is to explore the role of AT1aR in the ASDN in the 

regulation of baseline activity of ENaC and ROMK.

Material and Methods

All supporting data and detailed methods including animal preparation, electrophysiology, 

western blot, fluorescence immunostaining, RNAscope and qRT-PCR are available within 

the article and its online supplementary file.

Generating Ks-AT1aR KO mice

Mice expressing Pax8-rtTA and tet-on LC-1 transgene were crossed with Agtr1a-floxed 

mice (originally created in Coffman’s lab in Duke Iniversity) to generate inducible Ks-

AT1aR KO mice11. Agtr1a gene deletion was conducted in 8-week-old male/female (m/f) 

mice homozygous for floxed Agtr1a gene and heterozygous for Pax8-rtTA/LC-1 transgene 

by providing doxycycline (5mg/ml, 5% sucrose) in the drinking water for 2 weeks. This was 

followed by at least 2 additional weeks without doxycycline treatment before performing 

experiments. Littermate mice of the same age and genetic background drinking 5% sucrose 

were used as controls (Agtr1aflox/flox). Tail DNA was PCR amplified and the primers for 

genotyping are shown in table s1. The method for dissecting tubules, metabolic cage and 

measurement of AT1aR mRNA levels by qRT-PCR are described in supplementary material.

Patch-clamp experiments

A Narishige electrode puller (Narishige, Japan) was used to make the patch-clamp pipettes 

from Borosilicate glass (1.7-mm OD). The resistance of the pipette was 2 MΩ when it was 

filled with solution containing (in mM) 140 KCl, 1.8 MgCl2 and 10 HEPES (titrated with 

KOH to pH 7.4).

Measurement of Kir4.1/Kir5.1-mediated K+ currents—We have used the whole-cell 

recording to measure Ba2+-sensitive Kir4.1/Kir5.1-mediated K+ currents in early DCT 

(DCT1) and late DCT (DCT2). An Axon 200A patch-clamp amplifier was used to record 

the whole-cell K+ currents, which were low-pass filtered at 1 KHz, digitized by an Axon 

interface (Digidata 1440A). The pipette solution contains (in mM) 140 KCl, 2 MgCl2, 1 

EGTA and 5 HEPES (pH 7.4) with 0.5 mM MgATP, whereas the bath solution contains (in 

mM) 140 KCl, 1.8 CaCl2, 1.8 MgCl2, and 10 HEPES (pH 7.4). Because ROMK (Kir1.1) is 

expressed in the apical membrane of DCT2 but not DCT1 22, we used 400 nM Tertiapin-Q 

(TPNQ) (Sigma-Aldrich) in split-open DCT2 to block ROMK and then added 1 mM Ba2+ 

to measure whole-cell Kir4.1/Kir5.1 mediated K+ currents of DCT2. Fig. s1A is a gap-free 
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recording showing TPNQ-sensitive currents (ROMK) only in DCT2 but not in DCT1 while 

Ba2+ -sensitive and TPNQ-insensitive whole-cell K+ currents (Kir4.1/Kir5.1) in both DCT1 

and DCT2 (clamped at −60 mV). Fig.s1B is a whole-cell voltage-clamp recording showing 

Ba2+-sensitive Kir4.1/Kir5.1 currents of DCT2 measured with step-protocol from −100 to 60 

mV in the presence of 400 nM TPNQ by subtracting the total currents from Ba2+-insensitive 

currents. Data were analyzed using the pClamp Software System 9 (Axon).

Measurement of inward-to-outward current reversal potential (I-reversal 
potential)—For measuring I-reversal potential, an index of cell membrane potential, using 

perforated whole-cell voltage-clamp in PT or DCT, the isolated PT or DCT was super-fused 

with a bath solution containing (in mM) 140 NaCl, 5 KCl, 1.8 CaCl2, 1.8 MgCl2, and 10 

HEPES (pH 7.4). The pipette was filled with 140 mM KCl pipette solution and was then 

backfilled with amphotericin B (20 mg/0.1ml). After forming a high-resistance seal (>2 

GΩ), the membrane capacitance was monitored until the whole-cell patch configuration was 

formed. The voltage at which the inward currents were zero was the I -reversal potential 

determined by a ramp protocol from −100 to 100 mV.

Measurement of ROMK and ENaC—We used an Axon 200A amplifier to measure 

whole-cell TPNQ-sensitive K+ currents (ROMK) and amiloride-sensitive Na+ currents 

(ENaC) using gap-free protocol in the split-open DCT2 and CCD of m/f control and Ks-

AT1aR KO mice. Detailed method for measuring TPNQ-sensitive (ROMK) and amiloride-

sensitive Na+ (ENaC) currents is described in supplemental material.

Statistical analysis

We used software (Sigma plot 14) for the statistical analysis. For analyzing the values 

between two groups we used t-test, and for comparisons of the values within the same 

group, we used paired t-test. We used one-way or two-way ANOVA for analyzing results of 

more than two groups, and Holm-Sidak test was used as post-hoc analysis. P-values <0.05 

were considered statistically significant. Data are presented as the mean ± SEM.

Results

We have generated an inducible kidney-tubule-specific (Ks)-AT1aR deficient mice by 

crossing mice expressing Pax8-rtTA and tet-on LC-1 with Agtr1aflox/flox mice. Since no 

reliable AT1aR antibody is available 23, we measured Agtr1a mRNA levels in the renal 

cortex by qRT-PCR with the primers and method described previously by Coffman’s 

group 24. Fig.1A is an agarose gel showing Agtr1a mRNA expression in renal cortex of 

Ks-AT1aR KO mice and Agtr1aflox/flox mice (control). Fig.1B is a bar graph with scatter 

plots summarizing quantitative analysis of Agtr1a mRNA expression levels showing that 

Agtr1a mRNA to GAPDH mRNA expression in Ks-AT1aR KO mice decreased by 80±5% 

in comparison to Agtr1aflox/flox mice (n=5), an indication of AT1aR deletion. The deletion 

of AT1aR in renal tubules was also confirmed by examining Agtr1a mRNA-expression (red 

dots) with RNAscope-technique (Fig.1C and Fig.s2a) and it is apparent that Agtr1a mRNA 

was almost absent in the renal tubule of Ks-AT1aR-KO mice (Table s3 shows quantification 

analysis). We have also measured BP and heart rate with tail-cuff method in m/f control 
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and Ks-AT1aR KO mice (n=8 for each group). Fig.1D is a scatter plot showing that the 

SBP of Ks-AT1aR KO mice (male, 102±3 mmHg; female, 101±3 mmHg) was lower than 

the control mice (male, 119±3 mmHg; female 115±2 mmHg). Also, the diastolic BP was 

lower in the Ks-AT1aR-KO than the control mice (Table s4). However, we did not find 

significant difference for heart rate in two genotypes. We next performed the metabolic 

cage study for analyzing body weight (BW), food/water intakes, urinary Na+ (UNa) /K+ 

(UK) excretion rate, and plasma Na+ and K+ concentrations in both male(m)/female(f) 

genotypes (Fig.1E). It is apparent that food/water intakes, urinary Na+/K+ excretion and 

plasma Na+/K+ concentrations were similar between the two genotypes. These results are 

consistent with previous study showing that plasma Na+ and K+ levels were similar between 

the control and global-AT1aR KO mice 25. However, the plasma aldosterone levels in both 

genders were higher in Ks-AT1aR KO than Agtr1aflox/flox mice. Also, plasma Ang-II levels 

were slightly higher in male Ks-AT1aR-KO mice than the control, although the difference 

was not significant (Fig.s2b). But, it should be noted that the plasma Ang-II level may not 

reflect the renal Ang-II level. 26

Since AT1aR expression in renal tubules is predominantly located in the PT under control 

conditions 27, we first examined whether deletion of renal AT1aR altered the expression of 

Kir4.2, a major renal Kir-channel expressed in basolateral membrane of the PT 4. Fig. 2A is 

a western blot (Fig.s3 shows an uncut gel) showing the expression of Kir4.2, p(S552)NHE3 

and total NHE3 in m/f control, 4, 28 and Ks-AT1aR KO mice and Fig.2B is a scatter 

blot summarizing the normalized band density of Kir4.2, pNHE3 and NHE3 expression 

(4 m/4f mice). Kir4.2 expression (40 kDa monomer) was lower in Ks-AT1aR KO mice 

(69±3% control vale for male and 63±5% control value for female) than the corresponding 

control mice. We have also examined the expression of Kir4.2 with fluorescence microscope 

(Fig. S4). We confirmed the previous report that Kir4.2 immunostaining is exclusively 

located in the PT4. However, the difference of fluorescence staining intensity of Kir4.2 was 

not obvious between the control and Ks-AT1aR KO mice, although we observed a sharp 

basolateral staining of Kir4.2 only in the control mice. Like PT-specific AT1aR KO mice 
11, 12, the expression of pNHE3 (71±4% of the control value for male and 70±5% of the 

control value for female) and total NHE3 (66±4% of the control value for male and 65±5% 

of the control value for female) was lower in Ks-AT1aR KO mice than Agtr1aflox/flox mice. 

The notion that deletion of AT1aR decreased NHE3 activity was also confirmed by the 

observation that NHE3-inhibitor (S3226)-induced natriuresis was significantly smaller in 

Ks-AT1aR-KO mice than the control (Fig.s5). Since Kir4.2 has been shown to interact with 

Kir5.1 to form the basolateral K+ channel in the PT 4, 29, decreased Kir4.2 expression is 

expected to depolarize PT membrane potential. This notion is supported by measuring I- 

reversal potential of the PT (an index of PT membrane potential). Fig.2C is a typical trace of 

the whole-cell voltage clamp showing I-reversal potentials of the PT in Ks-AT1aR KO mice 

(red) and in Agtr1aflox/flox mice (black). Fig.2D is a scatter plot summarizing each data point 

of total 8 measurements (4 tubules from 3 male mice and 4 tubules from 3 female mice) 

and the mean value (including m/f mice). The mean value of I-reversal potentials of the PT 

(−51±1 mV) in the control mice is significantly more negative than Ks-AT1aR KO mice 

(−37±2 mV). Thus, deletion of AT1aR decreased the expression of Kir4.2 and depolarized 

the PT membrane potential.
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We next examined whether deletion of AT1aR affects the expression of Kir4.1 and Kir5.1, 

two major renal Kir-channels in the basolateral membrane from the DCT, CNT to CCD 2, 6. 

Fig.3A is a western blot (Fig. s6 shows an uncut gel) showing the expression of Kir4.1 and 

Kir5.1 in m/f Ks-AT1aR KO mice and Agtr1aflox/flox mice. It is apparent that the deletion 

of AT1aR either did not decrease (male) or even slightly increased (female) the expression 

of Kir4.1 and Kir5.1 comparing to Agtr1aflox/flox mice. However, the modest increase in 

Kir4.1 of female AT1aR-KO mice may have no physiological significance because Kir4.1/

Kir5.1-mediated-K+ currents were similar between female control and AT1aR-KO-mice 

(Fig. 3B and 3C). Fig3B is a set of whole-cell recordings showing Kir4.1/Kir5.1-mediated 

K+ currents measured with step protocol from −100 to 60 mV in DCT1 of male control and 

Ks-AT1aR KO mice. Fig.3C is a scatter plot showing each data point measured at −60 mV 

in DCT1 and DCT2 of m/f control and Ks-AT1aR KO mice (4 tubules from 3 male mice 

and 4–5 tubules from 3 female mice) and the mean value (including m/f mice). Because 

there is no significant difference between the two genders, we pooled the results. The Kir4.1/

Kir5.1-mediated K+ currents of the DCT1 (control, 1269±31 pA; AT1aR KO, 1298±59 

pA) and DCT2 (control, 1192±45 pA; AT1aR KO, 1214±37 PA) were similar between two 

genotypes. We next measured the I-reversal potentials of the DCT in two genders. Fig. 

3D is a set of recordings showing I-reversal potential of DCT1 and DCT2 measured with 

whole-cell voltage-clamp. Fig.3E is a scatter plot summarizing each data point measured in 

the DCT1 and DCT2 from m/f Ks-AT1aR KO and Agtr1aflox/flox mice (4–5 tubules from 3 

male mice and 4–5 tubules from 3 female mice) and the mean value (including m/f mice). 

We observed similar membrane potentials in DCT1 (control, 63±1 mV; AT1aR KO, 62±1 

mV) or DCT2 (control, 61±1 mV; AT1aR KO, 62±1 mV) between two genotypes. Finally, 

immunostaining images have also demonstrated a similar Kir4.1 expression in the control 

and Ks-AT1aR KO mice (Fig. s7). Thus, AT1aR is not required for determining the baseline 

activity of Kir4.1/Kir5.1 in the DCT.

To examine whether stimulation of AT1aR was able to increase the expression of Kir4.1, 

Kir4.2 and Kir5.1, and to hyperpolarize the membrane in both PT and DCT, we treated 

the control mice with angiotensin-II through subcutaneously installed osmotic pump for 7 

days at 200 ng/Kg/min by following the method published previously19. It was reported 

that neither renal cortical angiotensinogen abundance nor urinary angiotensinogen excretion 

was altered in the mice received Ang-II perfusion at 200 ng/Kg/min for 3 days. Moreover, 

we observed that Ang-II perfusion for 7-days did not raise the BP (data not shown), 

although plasma Ang-II levels in WT mice with Ang-II perfusion were higher than untreated 

mice (Fig.s2b). After the treatment of angiotensin-II, the renal tissues were harvested for 

the immunoblot and for the electrophysiological experiments. Fig. 4A is a western blot 

(Fig.s8 shows uncut gel) showing the effect of angiotensin-II perfusion on Kir4.2, Kir5.1, 

Kir4.1 and NHE3. Fig. 4B is a bar graph with scatter plots summarizing the experiments. 

We observed that angiotensin-II perfusion had no significant effect on the expression of 

Kir4.2, Kir5.1 and Kir4.1. In contrast, angiotensin-II perfusion significantly increased the 

expression of pNHE3, NHE3, tNCC and pNCC (Fig.4A and Fig. s8). We next measured the 

I-reversal potentials in the PT and DCT of m/f control mice. Fig.4C is a set of recordings 

showing I-reversal potentials measured in the PT and DCT1 of male control mice (Fig. s9 

shows the recording in female mice). Fig. 4D is a bar graph with scatter plots summarizing 
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the results of the above experiments in m/f Agtr1aflox/flox mice. As expected, angiotensin-II 

perfusion hyperpolarizes the membrane potential of PT from −49±1 mV to −63±2 mV 

(5–6 tubules of 3 male mice) and from −50±2 mV to −62±3 mV (5–6 tubules of 3 female 

mice). Angiotensin-II perfusion also hyperpolarizes DCT membrane from −61±1 mV to 

−74±1 mV (n=5 tubules of three male mice) and from −61±2 mV to −73±2 mV (5 tubules 

of three female mice). Moreover, angiotensin-II-induced hyperpolarization of PT and DCT 

depends on AT1aR because angiotensin-II has no effect on the membrane potential of PT 

and DCT in Ks-AT1aR KO mice (Fig.s9). Thus, although AT1aR determines the baseline 

basolateral membrane potential only in the PT, AT1aR is required for angiotensin-II-induced 

hyperpolarization of the basolateral membrane in both PT and DCT.

We next examined whether deletion of AT1aR affected the baseline ROMK activity by 

measuring TPNQ-sensitive-K+ currents (ROMK) in the DCT2 and initial CNT (DCT2/CNT) 

and in the CCD with the whole-cell recording. Fig.5A is a set of traces showing TPNQ-

sensitive ROMK-mediated-K+ currents measured with gap-free protocol at −40 mV in the 

DCT2/CNT (top panel) and in the CCD (bottom panel) of male control and Ks-AT1aR KO 

mice. Fig.5B is a scatter blot summarizing the results of the above experiments measured 

at −40 mV in the DCT2/CNT and CCD of m/f control and Ks-AT1aR KO mice. The mean 

TPNQ-sensitive ROMK currents were 1008± 65 pA in DCT2/CNT (6 tubules of four m/f 

Agtr1aflox/flox mice) and were 940±67 pA (5–6 tubules of three-four m/f AT1aR KO mice). 

Thus, deletion of AT1aR had no effect on ROMK channel activity in DCT2/CNT. The 

similar results were obtained in the CCD because ROMK currents in the CCD were similar 

in both genotypes (465±36 pA, 5–6 tubules of four m/f control mice; 444±27 pA, 4–5 

tubules of three m/f AT1aR KO mice).

We next examined ENaC expression/activity in the control and Ks-AT1aR KO mice. Fig. 6A 

is a western blot showing the expression of αENaC, βENaC and γENaC of m/f control and 

Ks-AT1aR KO mice (Fig.s10 shows an uncut gel). Deletion of AT1aR did not significantly 

affect the expression of αENaC and βENaC but slightly increased expression of cleaved 

γENaC. We have also used the whole-cell-recording to measure the amiloride-sensitive 

Na+ currents in the DCT2/CNT and in the CCD. Fig. 6B shows two sets of the traces 

measured with the gap-free protocol at −60 mV in the DCT2/CNT and in the CCD of male 

control and Ks-AT1aR KO mice, respectively. The mean amiloride-sensitive Na+ currents 

in DCT2/CNT in Agtr1aflox/flox mice were 210±9 pA (5 tubules from three male mice 

and 7 tubules from five female mice) were similar to Ks-AT1aR KO mice ( 229±16 pA, 4 

tubules from three m/f mice) (Fig.6C). However, the mean amiloride-sensitive Na+ currents 

in the CCD of Ks-AT1aR KO mice (90±7 pA, 4–5 tubules from three m/f mice) were larger 

than Agtr1aflox/flox mice ( 50±4 pA, 5 tubules from three male mice and 6 tubules from 

four female mice). Thus, deletion of AT1aR increased ENaC activity in the CCD but not 

in the DCT2/CNT, presumably induced by high aldosterone levels (Fig. 1D). This view is 

also supported by the observation that spironolactone-treatment abolished the difference of 

amiloride-sensitive Na+-currents of the CCD between two genders (Fig.s11).
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Discussion

Mouse AT1aR is considered to be the closest homologue to the human AT1R and plays 

an important role in mediating the effect of angiotensin-II on renal function 30. Although 

AT1aR mRNA in mouse renal tubules is predominantly expressed in the PT under the 

control conditions 27, 31, a large body of functional evidence has suggested the presence of 

AT1aR at protein level in the DCT and CCD 14, 15, 20, 32–35. For instance, angiotensin-II 

has been shown to stimulate NCC activity in the DCT and ENaC in the CCD 33–37. 

Global knockout of AT1aR has been shown to decrease blood pressure and to inhibit NHE3 

expression/activity 13, 38. Similar phenotypes have been observed in PT-specific AT1aR KO 

mice which have low systolic blood pressure and decreased NHE3 expression/activity 11, 12. 

Now we have also shown that Ks-AT1aR KO mice had lower systolic blood pressure and 

NHE3 expression than the control mice. However, the main novel finding of the present 

study is to demonstrate that deletion of AT1aR in renal tubules decreased the expression of 

renal Kir4.2 and depolarized the membrane potential of the PT, suggesting that AT1aR plays 

a key role in determining the baseline membrane basolateral membrane potential through 

controlling the expression of Kir4.2. Kir4.2 interacts with Kir5.1 to form basolateral Kir4.2/

Kir5.1-heterotetramer which determines the negativity of PT membrane potential 4, 5. The 

role of Kir4.2 in determining the PT membrane potential has been previously confirmed by 

Bignon et al showing that Kir4.2-KO mice had a lower PT membrane potential than the 

corresponding control mice 4.

PT basolateral membrane potential provides the driving force for HCO3
− exit through 

electrogenic 1Na+/3HCO3
− cotransporter (NBCe1). Thus, depolarization is expected to 

inhibit HCO3
− exit thereby causing HCO3

− retention inside PT cells. High intracellular 

HCO3
− concentrations are expected to alkalinize the intracellular pH thereby inhibiting 

NHE3, which plays an important role in the maintain Na+ and HCO3
− absorption in 

the PT 39, 40. The notion that the basolateral K+ channel activity of the PT is able to 

regulate NHE3 function is also suggested by the finding that deletion of Kir4.2 in the PT 

inhibited HCO3
− absorption in the PT, presumably due to depolarization of PT basolateral 

membrane-induced inhibition of NHE3
4. Because NHE3 expression in Kir4.2 KO mice was 

similar to the control mice, the finding suggests that AT1aR plays a role in modulating 

baseline Na+ and HCO3
− absorption in the PT not only through modulating NHE3 protein 

expression but also by PT membrane potential. Not only determining PT baseline membrane 

potential, AT1aR is also responsible for angiotensin-II perfusion-induced hyperpolarization 

of the membrane potential of the PT since the deletion of AT1aR abolishes the effect of 

angiotensin-II. Also, we confirmed the previous finding that stimulation of renal AT1R by 

angiotensin-II perfusion stimulates the NHE3 41, 42
. We speculate that angiotensin-II induced 

hyperpolarization of PT should increase Na+-HCO3
− transport by NHE3.

AT1aR plays an important role in mediating Na+ and HCO3
− absorption in the PT through 

NHE3 43, 44. This is supported by previous finding using micro-perfusion technique showing 

that the baseline HCO3
− absorption was decreased by about one-third in global AT1aR KO 

mice comparing to the control 44. However, we have observed that urinary Na+ excretion 

(ENa) in Ks-AT1aR KO mice was similar to the control mice. We speculate that Na+ 

transport in the nephron segments other than PT may compensate decreased Na+ transport 
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due to NHE3 inhibition thereby maintaining a normal baseline renal Na+ reabsorption. 

This view is also supported by the finding that amiloride-sensitive Na+ currents in the 

CCD is increased in the Ks-AT1aR KO mice. Moreover, the effect of AT1aR-deletion on 

baseline ENa may be different between mouse models in which whether Agtr1a gene is 

deleted by conditional knockout or constitutive deletion. Zhou et al have reported that the 

mice (B6.129P2 background) with constitutive deletion of AT1aR in the PC had increased 

baseline-ENa 17.

The second finding of the present study is that angiotensin-II perfusion hyperpolarized 

the DCT membrane potential, an effect was completely absent in Ks-AT1aR KO mice. 

This suggests that AT1aR in the DCT mediates angiotensin-II-induced stimulation of Kir4.1/

Kir5.1. Since Kir4.1/Kir5.1 activity of the DCT determines the NCC activity/expression 
2, we speculate that angiotensin-II perfusion-induced stimulation of Kir4.1/Kir5.1 should 

contribute the stimulatory effect of angiotensin-II on NCC 14. We need additional 

experiments to prove this hypothesis. Although the stimulation of AT1aR activates the 

Kir4.1/Kir5.1 of the DCT, AT1aR may not be essential for determining the baseline activity 

of Kir4.1 and Kir5.1 in the DCT because deletion of AT1aR had no effect on Kir4.1/Kir5.1 

activity/expression and DCT membrane potential. This is in sharp contrast to AT1aR of 

the PT which determines the baseline activity of Kir4.2/Kir5.1. We speculate that dietary 

K+-intake or plasma K+-concentration rather than AT1aR is the primary factor determining 

the baseline Kir4.1/Kir5.1 expression/activity in the DCT. It is well documented that Kir4.1/

Kir5.1 of the DCT is a key member of “K+-sensor-system’ in the kidney 6, 45. A large body 

of evidence have indicated that DCT Kir4.1/Kir5.1 and NCC work in concert with ENaC 

and ROMK in the ASDN to regulate renal K+ excretion and maintaining K+ homeostasis 
6, 7, 45, 46. Because plasma K+ concentrations were similar between the control and AT1aR 

KO mice, deletion of AT1aR had no effect on baseline Kir4.1/Kir5.1 activity/expression 

in DCT. The mechanism by which Ang-II stimulates Kir4.1 and Kir4.2 is not explored. 

AT1aR activation is known to increase phospholipase-C-dependent PtdIns(4,5)P2 generation 

which is a potent stimulator of inwardly-rectifying-K+ channel 47–49, Further experiments 

are required to explore whether PtdIns(4,5)P2 or other factors mediates the effect of 

angiotensin-II on Kir4.1 or Kir4.2.

Our previous experiments have demonstrated that the inhibition of AT1aR with losartan 

decreased baseline-activity of ENaC in the DCT2/CNT but to a lesser degree on ENaC in the 

CCD 20, suggesting the role of AT1aR in regulating baseline activity of ENaC in the DCT2/

CNT. However, we did not observe decreased ENaC activity in DCT2/CNT of Ks-AT1aR 

KO mice. It is possible that discrepancy between two studies is due to different time 

intervals of AT1aR inhibition. In previous experiments, amiloride-sensitive Na+ currents in 

the DCT2/CNT were measured in the mice treated with losartan for 3 days. In contrast, we 

have now measured ENaC activity in the mice at least two weeks after AT1aR deletion. 

Consequently, an increase in aldosterone may compensate for ENaC inhibition induced 

by AT1aR deletion. The argument is also supported by the finding that ENaC activity 

in the CCD was slightly increased in Ks-AT1aR KO mice, presumably due to increased 

aldosterone levels.
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List of Nonstandard Abbreviations

PT Proximal-tubule

TAL Thick ascending limb

DCT Distal convoluted tubule

CNT connecting tubule

CCD Cortical collecting duct

ROMK Renal outer medullary potassium channel

NKCC2 Type 2 Na+-K+-2Cl− transporter

Ks-AT1aR KO mice Kidney-tubule-specific-AT1aR-knockout mice
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Pathophysiological Novelty and Relevance

What is new?

• AT1aR determines the baseline Kir4.2 expression in the PT and the deletion 

of AT1aR depolarizes the PT membrane potential.

• AT1aR mediates angiotensin-II-induced hyperpolarization of PT membrane.

• AT1aR mediates angiotensin-II-induced hyperpolarization of DCT membrane.

What is relevant?

• We identify a novel mechanism by which AT1aR regulates baseline NHE3 

function by targeting proximal-tubule Kir4.2/Kir5.1 activity.

• Our study indicates that angiotensin-II-induced-stimulation of Kir4.2/Kir5.1 

in PT and Kir4.1/Kir5.1 in DCT may be involved in angiotensin-II-induced-

stimulation of NHE3 and thiazide-sensitive-Na-Cl-cotransporter.

Duan et al. Page 14

Hypertension. Author manuscript; available in PMC 2025 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clinical/Pathophysiological Implications?

AT1aR determines the baseline membrane potential of PT by controlling Kir4.2 

expression/activity but AT1aR does not determine the baseline Kir4.1/Kir5.1 activity/

expression. However, AT1aR is required for angiotensin-II-induced hyperpolarization of 

basolateral membrane of PT and DCT.
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Perspective

AT1aR plays an important role in determining the baseline expression of Kir4.2 and 

basolateral membrane potential of the PT. Since the basolateral membrane potential of 

the PT regulates electrogenic NBCe1 activity, inhibition of Kir4.2 expression/activity 

should contribute to the compromised PT membrane transport in Ks-AT1aR mice. Also, 

although AT1aR has no effect on the baseline expression of Kir4.1 and DCT membrane 

potential, angiotensin-II-induced hyperpolarization of DCT membrane should contribute 

to the stimulation of NCC. Thus, targeting Kir4.2 or Kir4.1 could offset the effect of 

angiotensin-II on NHE3 and NCC, respectively.
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Fig. 1. Ks-AT1aR KO mice are hypotensive.
(A) An agarose gel shows the expression of Agtr1a mRNA expression level in Agtr1aflox/flox 

mice and in Ks-AT1aR KO mice. The mRNA was isolated from renal cortex tissue and 

was subjected to reverse transcription. (B) A scatter plot showing the expression of Agtr1a 
mRNA to Gapdh mRNA from Ks-AT1aR KO mice in comparison to Agtr1aflox/flox mice. 

Significance is determined by an unpaired t test. (C) Images show Agtr1a mRNA expression 

(red dots) in Agtr1aflox/flox and Ks-AT1aR-KO mice. Hybridization signaling are detected 

using fast-red staining. (D) A scatter plot shows each measurement and mean value ± 

SEM of systolic blood pressure measured with tail-cuff method in male/female Ks-AT1aR 

KO mice and Agtr1aflox/flox mice. Significance is determined by two-way ANOVA. (E) A 

table shows the baseline characterization of mouse phenotypes in Ks-AT1aR KO mice and 

Agtr1aflox/flox mice. # indicates a significant difference in comparison to the corresponding 

control.
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Fig. 2. Deletion of AT1aR decreases Kir4.2 expression.
(A) A set of western blot shows the expression of Kir4.2, phosphor (P)-NHE3 (S552), 

total NHE3 and GAPDH in male/female Ks-AT1aR KO mice and Agtr1aflox/flox mice. An 

arrow indicates the band used for calculating normalized-band-density. (B) A scatter plot 

summarizes mean value (at the left column) and each data point of the normalized band 

density for male mice (blue triangle) and female mice (red circle) in AT1aR KO mice and 

Agtr1aflox/flox mice. Kir4.2 monomer at around 40 kDa was used to calculate band density. 

Significance is determined by an unpair test. (C) A set of recordings showing I-reversal 

potential of the PT measured with whole-cell voltage clamp in male AT1aR KO mice (red) 

and Agtr1aflox/flox mice (black). (D) A scatter plot summarizing each data point of I-reversal 

potential of the PT in male (blue triangle)/female (red circle) of AT1aR KO mice and 

Agtr1aflox/flox mice. The mean value includes data from both genders. The significance is 

determined by an unpaired t test.
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Fig. 3. Deletion of AT1aR did not affect Kir4.1/Kir5.1-heterotetramer activity.
(A) A set of western blot shows the expression of Kir4.1, Kir5.1 and GAPDH in male/

female Ks-AT1aR KO mice and Agtr1aflox/flox mice. A scatter plot in the bottom panel 

summarizes mean value (at the left column) and each data point of the normalized 

band density for male (blue triangle)/ female mice (red circle) in AT1aR KO mice and 

Agtr1aflox/flox mice. (B) Two traces show Ba2+-sensitive Kir4.1/Kir5.1-mediated K+ currents 

measured with whole-cell-recording with step-protocol from −100 to 60 mV in DCT1 

of male AT1aR KO mice and Agtr1aflox/flox mice. (C) Two scatter plots summarize the 

experiments in which the whole-cell Ba2+-sensitive Kir4.1/Kir5.1-mediated-K+ currents 

were measured at −60 mV in the DCT1 and DCT2, respectively. Blue triangle and red circle 

represent each data point measured at male and female mice, respectively. The mean value 

of each group is shown in the middle (including both genders). (D) A set of traces show 

I-reversal potential measured with whole-cell voltage-clamp from −100 to 100 mV in DCT1 

and DCT2 of male AT1aR KO (red) and Agtr1aflox/flox mice (black). (E) Two scatter plots 

summarize the experiments in which I-reversal potential was measured in DCT1 and DCT2 

of male (blue triangle) and female (red circle) AT1aR KO mice and Agtr1aflox/flox mice. The 

mean value of each group is shown in the middle (including both genders).
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Fig.4. Chronic Angiotensin-II perfusion hyperpolarizes PT and DCT membrane
(A) A set of western blot shows the expression of Kir4.2, Kir4.1, Kir5.1, pNHE3 (S552), 

total NHE3 and GAPDH in male and female control mice treated with angiotensin-II for 

7 days (at 200 ng/min/ Kg) through an osmotic pump. An arrow indicates the band used 

for calculating normalized-band-density. (B) A bar graph with a scatter plot summarizes 

mean value and each data point of the normalized band density for male/female control mice 

treated with vehicle (blue bar) and angiotensin-II (red bar). The significance is determined 

by an unpair t test. (C) ) A set of I-reversal potential traces measured with whole-cell 

voltage clamp from −100 to 100 mV in the PT and DCT1 of male control mice treated 

with angiotensin-II for 7 days (red) and vehicle (black), respectively. (D) A bar graph 

with a scatter plot summarizes the results of experiments in which I-reversal potentials 

were measured in the PT and DCT1 of m/f control mice treated with vehicle (blue) and 

angiotensin-II (red). Significance is determined by two-way ANOVA.
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Fig. 5. Deletion of AT1aR did not affect ROMK.
(A) A set of whole-cell recordings shows TPNQ (400 nM)-sensitive K+ currents (ROMK) 

measured with gap-free-protocol at −40 mV in the DCT2/CNT and in the CCD of the 

control and Ks-AT1aR KO mice. (B) A set of scatter plots summarizes the results of TPNQ-

sensitive ROMK currents measured at −40 mV in the DCT2/CNT and in the CCD of male 

(blue triangle) and female (red circle) control and Ks-AT1aR KO mice, respectively. The 

mean value of each group is shown in the middle (including both genders). The significance 

is determined by an unpair t test.
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Fig.6. Deletion of AT1aR slightly stimulates ENaC in the CCD
(A) A set of western blot shows the expression of αENaC, βENaC, γENaC, cleaved γENaC 

(indicated by a red arrow) and GAPDH in m/f Ks-AT1aR KO mice and Agtr1aflox/flox 

mice. The normalized band density of ENaC expression (The band used to calculate the 

normalized band density is indicated by arrows) is summarized in a bar graph with a scatter 

plot (bottom panel). Since the band which has higher molecular weight than the main band 

has been shown to be aldosterone-sensitive 50, this band was used to calculate αENaC 

density. (B) A set of whole-cell recordings shows amiloride-sensitive Na+ currents (ENaC) 

measured with gap-free-protocol at −60 mV in the DCT2/CNT and CCD of the control 

and Ks-AT1aR KO mice. (C) A set of scatter plots summarizes the results of amiloride-

sensitive ENaC currents measured at −60 mV in the DCT2/CNT and in the CCD of male 

(Blue triangle)/female (red circle) control and Ks-AT1aR KO mice, respectively. The mean 

value of each group is shown in the middle (including male and female). Significance is 

determined by unpaired t test.
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