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Abstract

Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology that is characterized by 

excessive deposition and abnormal remodeling of collagen. IPF has a mean survival time of only 

2–5 years from diagnosis, creating a need to detect IPF at an earlier stage when treatments might 

be more effective. We sought to develop a minimally invasive probe that could detect molecular 

changes in IPF-associated collagen. Here, we describe the design, synthesis, and performance 

of [68Ga]Ga·DOTA–CMP, which comprises a positron-emitting radioisotope linked to a collagen-

mimetic peptide (CMP). This peptide mimics the natural structure of collagen and detects irregular 

collagen matrices by annealing to damaged collagen triple helices. We assessed the ability of 

the peptide to detect aberrant lung collagen selectively in a bleomycin-induced mouse model 
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of pulmonary fibrosis using positron emission tomography (PET). [68Ga]Ga·DOTA–CMP PET 

demonstrated higher and selective uptake in a fibrotic mouse lung compared to controls, minimal 

background signal in adjacent organs, and rapid clearance via the renal system. These studies 

suggest that [68Ga]Ga·DOTA–CMP identifies fibrotic lungs and could be useful in the early 

diagnosis of IPF.
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Collagen is the most abundant protein in the human body.1 This abundance avails the 

extraordinary stability conferred by its hierarchical structure. Collagen is a right-handed 

triple helix consisting of three left-handed polyproline type-II (PPII) helices.1,2 Its amino 

acid sequence has a repeating triplet, XaaYaaGly, where Xaa is most commonly (2S)-proline 

(Pro) and Yaa is most commonly (2S,4R)-4-hydroxyproline (Hyp).3 The high abundance of 

Pro and Hyp residues preorganize collagen strands for helix formation, whereas the small 

glycine (Gly) residue fits into the core of the triple helix.4

In healthy tissue, collagen helices undergo extensive proteolytic remodeling for tissue 

maintenance.5 When these processes are dysregulated, excessive levels of proteolysis-

destabilized collagen triple helices are produced that can denature at biological 

temperature.6 This damaged collagen can be targeted with collagen-mimetic peptides 

(CMPs), which mimic the natural structure of collagen and can anneal to dissociated 

collagen (Figure 1).7,8 Thus, CMPs can anchor pendant molecules to tissues with damaged 

or abnormal collagen.8-11

The extracellular matrix is damaged or abnormal in a variety of fibroproliferative diseases. 

For example, pulmonary fibrosis, which is a pathology associated with a range of lung 

diseases, is characterized by dysregulated matrix metalloproteinase production.12 Idiopathic 
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pulmonary fibrosis (IPF) is the prototypic form of pulmonary fibrosis and is associated with 

particularly severe symptoms.13

We reasoned that CMPs could be noninvasive probes for detecting pulmonary fibrosis. We 

anticipated two possible means by which collagen could lose integrity. First, rapid collagen 

production and abnormal collagen remodeling in IPF lungs could lead to an incorrectly 

remodeled collagen matrix. During fibrosis, collagen triple helices might not be adequately 

interdigitated for fibril formation, yielding less stable triple helices that are more likely 

to possess dissociated domains where CMPs can anneal.14 This modality is supported by 

the correlation of an IPF phenotype with diminished collagen ordering within a tissue.15 

Tropocollagen triple helices have lower thermostability than do helices incorporated into 

higher-order structures and are unstable at 37 °C,6,14 thus increasing the propensity for IPF 

triple helices to denature in a mammal and provide binding sites for CMPs. Second, matrix-

metalloproteinases are upregulated in active pulmonary fibrosis and in the corresponding 

mouse model.16 These enzymes cleave strands in collagen triple helices, again providing 

binding sites for CMPs.12

The current paradigm for IPF diagnosis is high-resolution computed tomography (HRCT). 

The median survival of IPF ranges from 2–5 years from diagnosis,17 emphasizing the need 

for early detection of IPF when treatments might be more effective. Clinical trial data with 

two approved antifibrotic therapies showed a benefit in patients with more preserved lung 

function and imply greater benefit if disease could be treated earlier, which would require 

early detection.18,19 We sought to leverage positron emission tomography (PET) to achieve 

this goal, as this modality is known for its high sensitivity and ability to detect molecular 

markers. Developing a collagen-specific PET tracer could serve as a complementary tool 

to conventional HRCT. For example PET could be valuable in the early detection of IPF, 

especially in patients at high risk for the disease, such as those with a family history of IPF20 

or interstitial lung abnormalities.21 Moreover, in cases where HRCT cannot distinguish 

between fibrosis and nonfibrotic inflammation, a biopsy is required to identify signs of 

fibrosis histologically.22 Unfortunately, biopsy carries risks of morbidity and mortality and 

only samples a tiny fraction of the lung.23 The direct visualization of damaged collagen 

as a molecular signature of fibrosis has the potential to identify fibrosis throughout the 

entire lung. Other collagen-targeted PET probes have been developed for minimally invasive 

pulmonary fibrosis detection;14,24-26 however, these probes generally bind to intact rather 

than damaged collagen.

We sought to enhance existing IPF diagnostic techniques by designing a novel, minimally 

invasive probe to detect molecular changes in IPF-associated collagen. Design criteria 

led us to [68Ga]Ga·DOTA–CMP, which is detectable by PET/MR, an imaging modality 

that delivers a lower radiation dose than PET/CT while supplying multifaceted MR 

details on soft tissue anatomy. [68Ga]Ga·DOTA–CMP contains the peptide (Gly-Ser)2-Gly-

(flp-Hyp-Gly)7, where flp refers to (2S,4S)-4-fluoroproline. This peptide can anneal to 

damaged collagen triple helices (Figure 2A).8,27 Importantly, this peptide resists homotrimer 

formation, a process that competes deleteriously with forming a triple helix with damaged 

collagen.8,27,28 That resistance is due to a steric clash between a 4S-substituted and a 

4R-substituted proline residue in each register of a triple helix.29,30 The nonnatural residue 
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flp differs from the natural residue Pro only by the replacement of a single H atom with F, 

and the H-flp-OH amino acid is not toxic to human cells.8

As a control, we synthesized a compositional isomer (CI), [68Ga]Ga·DOTA–CI, which 

contains the peptide (Gly-Ser)2-Gly-(Hyp-flp-Gly)7 (Figure 2B). The Hyp⟷flp sequence 

permutation interferes with the stereochemical requirements for forming a collagen 

helix.31,32 Accordingly, this peptide cannot anneal to damaged collagen, despite its amino 

acid composition.8

The N-terminal Gly-Ser-Gly-Ser-Gly sequence serves as a flexible, hydrophilic linker for 

conjugation to the radioisotope chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic 

acid (DOTA). We selected DOTA because of the high stability of its complex with 68Ga, a 

positron-emitting radioisotope that does not require a cyclotron for generation.33,34 68Ga has 

a half-life of 68 min, providing an ideal half-life for PET imaging while requiring a dose that 

is low enough to mitigate total radiation exposure.35 This isotope decays into 68Zn, which 

is an essential trace element.36 68Ga has been widely applied in the clinical community for 

PET, facilitating clinical translation.37,38

The two peptides were synthesized via automated microwave-assisted Fmoc-mediated solid-

phase peptide synthesis (Scheme S1) and purified by reversed-phase high-performance 

liquid chromatography (RP-HPLC). The purified peptides were conjugated to NHS-ester-

activated DOTA at the N-terminus. Following conjugation, the DOTA–peptide conjugates 

were purified by preparative RP-HPLC. Their purities were verified with analytical 

RP-HPLC (Figure S1) and matrix-assisted laser desorption/ionization–time-of-flight mass 

spectrometry (Figure S2).

The structure of DOTA–CMP was assessed by circular dichroism (CD) spectroscopy. 

A solution of DOTA–CMP displayed a shallow peak at 225 nm and no cooperative 

denaturation with an increasing temperature (Figure S3). These data are consistent with 

signatures of PPII structures that do not form triple helices and confirm that DOTA–CMP 

remains to collagen strands, we recorded CD spectra of a 1:1 mixture of DOTA–CMP and 

(ProProGly)7. (ProProGly)7 was used as a proxy for damaged collagen because it bears the 

canonical XaaYaaGly motif but is too short to form a homotrimer, avoiding a confounding 

CD signal in the mixture.8,29 Additionally, (ProProGly)7 does not have a 4R-substituted 

proline residue, thereby avoiding steric clashes with the flp residues of DOTA–CMP.29 The 

CD spectra of the 1:1 mixture of DOTA–CMP:(ProProGly)7 exhibited a strong peak at 225 

nm, cooperative denaturation with increasing temperature, and a Tm value of 34 °C (Figure 

S3). These data suggest that the addition of DOTA to the N terminus of the CMP did not 

impede its ability to form heterotrimers with collagen.

Our strategy relies on the CMP being stable in sera and plasma. We assessed this stability 

in two ways. First, we incubated 5(6)-TAMRA–(Gly-Ser)2-Gly-(flp-Hyp-Gly)7-NH2 in sera. 

During a 48-h time course, we detected no degradation in human serum and only slight 

degradation in mouse serum (Figure S4). Then, we radiolabeled DOTA–CMP with 64Cu 

by adapting a known procedure.39 (The 12.7 h half-life of 64Cu provides a longer time 

course for this analysis than does 68Ga.) We observed no degradation or proteolysis 
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of 64Cu·DOTA–CMP over 21 h in human plasma, as analyzed with instant thin-layer 

chromatography (Figure S5). This high stability in serum and plasma is consistent with 

that of other CMPs.40

Next, we radiolabeled DOTA–CMP and DOTA–CI with 68Ga,39 giving the desired product 

with ≥90% radiochemical yield as determined by radio-HPLC (Figure S6). We assessed 

the ability of the two 68Ga-labeled conjugates to detect IPF in vivo by using a validated 

mouse model of IPF.41,42 To create the model, we injured male C57BL/6 mice with a 

single transtracheal instillation of bleomycin in phosphate-buffered saline (PBS) (Figure 

S7A).14 Fourteen days later, the mice developed pulmonary fibrosis, which was confirmed 

by histopathological analyses. Those analyses revealed excessive interstitial deposition 

of collagen as demonstrated by staining collagen with Picrosirius red as well as the 

destruction of lung architecture (Figure S8).14,42 As a control, sham animals, which received 

transtracheally administered PBS, were healthy and showed no signs of pulmonary disease 

(Figure S6), in line with previously reported results.14 Mice were injected in their tail 

vein with [68Ga]Ga·DOTA–CMP or [68Ga]Ga·DOTA–CI (50–150 μCi) and imaged with 

4.7 T PET/MR. After imaging, the mice were sacrificed for ex vivo analysis 90 min 

after administration of the probes. PET imaging showed that [68Ga]Ga·DOTA–CMP was 

not retained in the lungs of sham mice and displayed a nearly undetectable signal in all 

satellite organs (Figure 3). Background signal was observed in the kidneys and bladder, 

which are involved in renal excretion of the probe following its rapid elimination from 

the blood (estimated t1/2 = 6.3 min). In comparison to sham mice, [68Ga]Ga·DOTA–CMP 

was taken up in the lungs of IPF mouse models (Figures 3, S9, and S10). Comparable 

biodistribution was observed in satellite organs. In vivo quantification of the decay-corrected 

PET signal in the lungs averaged over 50–60 min revealed that [68Ga]Ga·DOTA–CMP 

had a 4.9-fold higher lung uptake in IPF mouse models than sham mice, P < 0.001 

(Figure 4A). Additionally, the ratio of specific uptake in the right lung to nonspecific 

uptake in muscle (RLMR) was compared in sham and bleomycin-injured mice injected with 

[68Ga]Ga·DOTA–CMP. The RLMR was also found to be 2.6-fold higher for bleomycin-

injured mice compared to sham mice (Figure 4B). Following imaging, mice were sacrificed 

and dissected, and the uptake of probe in individual excised organs was quantified with 

a gamma counter. Minimal background signal was observed in satellite organs, excluding 

those required for expected renal excretion (Figure S11).

To examine the specificity of [68Ga]Ga·DOTA–CMP further, we performed a paired study of 

mice injected with both [68Ga]Ga·DOTA–CMP and the control probe, [68Ga]Ga·DOTA–CI 

(Figure S7B). For this study, mice were injected with [68Ga]Ga·DOTA–CMP and imaged. 

After 24 h, 68Ga had decayed to background levels, and the same mice were injected 

with [68Ga]Ga·DOTA–CI and imaged. As with [68Ga]Ga·DOTA–CMP in sham mice, the 

control peptide [68Ga]Ga·DOTA–CI was not taken up in the lungs of IPF mouse models. 

In vivo quantification of the decay-corrected PET signal in the lungs averaged over 50–60 

min revealed that [68Ga]Ga·DOTA–CMP had a significantly (3.6-fold) higher lung uptake 

in IPF mouse models compared to [68Ga]Ga·DOTA–CI in the same mouse model (Figure 

4C). We also found that [68Ga]Ga·DOTA–CMP had a significantly (1.7-fold) higher RLMR, 

supporting the selectivity of CMPs for collagen in lungs afflicted with bleomycin-induced 

pulmonary fibrosis (Figure 4D).
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To further support the selectivity of our peptide for pulmonary fibrotic tissue and not other 

organs, we integrated the in vivo PET signal of the kidneys over the time of the study, that 

is, from 0 to 60 min after injection into bleomycin-injured mice that had been treated with 

[68Ga]Ga·DOTA–CMP and [68Ga]Ga·DOTA–CI on consecutive days (Figure S7B). We did 

not observe a significant difference in organ retention (P = 0.0878; Figure S12), suggesting 

that the higher kidney PET signal in the bleomycin-injured animal in Figure 3 compared 

to the sham mouse is simply due to slower renal clearance in the sick mouse and is not an 

effect of [68Ga]Ga·DOTA–CMP binding selectively to a target in the kidneys of mice with 

localized lung injury.

To better reflect the trends observed in tissues, we compared the total ex vivo probe uptake 

in each lung (Figure 4E). Sham mice injected with [68Ga]Ga·DOTA–CMP and IPF mouse 

models injected with [68Ga]Ga·DOTA–CI did not differ significantly in probe uptake and 

biodistribution. This resemblance suggests that the lung enrichment observed in bleomycin-

injured mice treated with the CMP was due to CMP binding, rather than a general lag in 

the clearance of the probe. In contrast, the lung uptake of [68Ga]Ga·DOTA–CMP was 11- to 

12-fold higher in IPF mouse models than sham mice and 3-fold higher than the uptake of 

[68Ga]Ga·DOTA–CI in IPF mouse models.

Finally, we estimated the mass of collagen in the excised mouse lungs by quantifying Hyp, 

which is a common residue in collagen but not other proteins.43 We then compared the 

mass of H-Hyp-OH found in each lung to the ex vivo lung uptake of [68Ga]Ga·DOTA–CMP. 

We found that the uptake of [68Ga]Ga·DOTA–CMP had little correlation with the lung 

Hyp content (R2 = 0.33) (Figure S13), suggesting that this probe did not merely bind 

to overexpressed collagen in bleomycin-injured mice. These data are consistent with the 

binding of [68Ga]Ga·DOTA–CMP to a specific biomarker of pulmonary fibrosis—damaged 

collagen triple helices (Figure 1).

In conclusion, we described the first use of CMPs as an in vivo probe for detecting 

pulmonary fibrosis. We find that CMPs report on molecular-level defects in disease-

associated collagen, specifically, the presence of non-triple-helical collagen in a fibrotic 

lung. [68Ga]Ga·DOTA–CMP displays specificity and strong uptake in the lungs of a 

bleomycin-injured IPF mouse model, resulting in up to 11-fold higher uptake in an 

IPF mouse model compared to controls. The unique mode-of-action of CMPs enables 

the detection of abnormal collagen production and remodeling, such as those found in 

pulmonary fibrosis. The specificity of [68Ga]Ga·DOTA–CMP in vivo and its ability to 

selectively detect IPF make CMPs promising candidates for the diagnosis of other fibrotic 

diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Conceptual representation of a collagen-mimetic peptide annealed to a damaged collagen 

triple helix. A pendant moiety, “X”, becomes anchored in the damaged collagen.
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Figure 2. 
(a) Structure of [68Ga]Ga·DOTA–CMP. The CMP segment is depicted as a red ribbon in 

Figure 1. (b) Structure of [68Ga]Ga·DOTA–CI.
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Figure 3. 
PET and fused PET–MR images of sham and bleomycin-injured mice 50–60 min after 

tail-vein injection with [68Ga]Ga·DOTA–CMP or [68Ga]Ga·DOTA–CI (A) Representative 

coronal maximum-in-projection (MIP). (B) Representative axial fused PET (color scale) – 

MR (gray scale) images of the lungs and heart.
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Figure 4. 
Radiation signal in organs from sham and bleomycin-injured mice injected with 

[68Ga]Ga·DOTA–CMP or [68Ga]Ga·DOTA–CI. (A) In vivo %ID/cc values in right lungs 

50–60 min post-injection as measured by PET. (B) In vivo right lung:muscle ratios 

(RLMRs) 50–60 min post-injection as measured by PET. In panels A and B, n = 6 for 

[68Ga]Ga·DOTA–CMP + sham and n = 5 for [68Ga]Ga·DOTA–CMP + bleomycin. (C) and 

(D) show data from a paired study, in which mice were injected with [68Ga]Ga·DOTA–CMP 

and imaged, then 24 h later, injected with [68Ga]Ga·DOTA–CI and imaged. (C) In vivo 

%ID/cc values in right lungs 50–60 min post-injection as measured by PET. Connecting 

lines indicate associated data points from individual animals. (D) In vivo RLMRs 50–60 min 

post-injection as measured by PET. Connecting lines indicate associated data points from 

individual animals. (E) Ex vivo %ID/lung left uptake 90 min post-injection. In panel E, n = 

6 for [68Ga]Ga·DOTA–CMP + sham, n = 13 for [68Ga]Ga·DOTA–CI + bleomycin, and n = 

5 for [68Ga]Ga·DOTA–CMP + bleomycin. An unpaired t-test was performed on the data in 

panels A and B. A paired t-test was performed on the data in panels C and D. A one-way 

ANOVA with a post-hoc Tukey test was performed on the data in panel E. Values are the 

mean ± SE. *P < 0.05, **P < 0.01, ***P < 0.001.
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