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Abstract

Purpose: Investigate associations of maternal social experiences with offspring epigenetic age 

acceleration (EAA) from birth through mid-childhood among 205 mother-offspring dyads of 

minoritized racial and ethnic groups.

Methods: We used linear regression to examine associations of maternal experiences of racial 

bias or discrimination (0=none, 1–2=intermediate, or 3+=high), social support (tertile 1=low, 

2=intermediate, 3=high), and socioeconomic status index (tertile 1=low, 2=intermediate, 3=high) 

during the prenatal period with offspring EAA according to Horvath’s Pan-Tissue, Horvath’s Skin 

& Blood, and Intrinsic EAA clocks at birth, 3 years, and 7 years.

Results: In comparison to children of women who did not experience any racial bias or 

discrimination, those whose mothers reported highest levels of racial bias or discrimination had 
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lower Pan-Tissue clock EAA in early (−0.50 years; 90% CI: −0.91, −0.09) and mid-childhood 

(−0.75 years; −1.41, −0.08). We observed similar associations for the Skin & Blood clock and 

Intrinsic EAA. Maternal experiences of discrimination were not associated with Pan-Tissue EAA 

at birth. Neither maternal social support nor socioeconomic status predicted offspring EAA.

Conclusions: Children whose mothers experienced racial bias or discrimination exhibited 

slower EAA. Future studies are warranted to confirm these findings and establish associations 

of early-life EAA with long-term health outcomes.
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INTRODUCTION

The aging epidemic has forged interest in patterns and determinants of aging 1–3. Recently, 

social determinants of health have risen to the forefront as important drivers of age-related 

non-communicable conditions 4, with evidence in humans 5,6, non-human primates 7–9 

and rodents 8,10 revealing an indisputable link between unfavorable social experiences and 

chronic disease risk. The effect of social experiences on health is hypothesized to operate, in 

part, through epigenetic mechanisms 11–13. Of relevance to aging research are genome-wide 

changes in DNA methylation that occur as individuals get older 14–17. Epigenetic clocks 

are functional biomarkers of developmental and aging processes 18–20 that capitalize on age-

related changes to DNA methylation 21,22. One biomarker of recent interest is epigenetic age 

acceleration (EAA) – i.e., the estimated difference between epigenetic age and chronological 

age – as it outperforms other molecular markers of aging, including telomere length 23 and is 

a strong predictor of morbidity and mortality 24–28.

Studies in adults have found that adverse social experiences predict higher EAA 29–32 

with stronger effects observed for experiences occurring earlier vs. later in life 30,33. Our 

group recently showed that EAA starts before birth 34, pointing toward the importance of 

considering how prenatal exposures shape the aging process. To date, only a handful of 

studies have examined the relationship between maternal social or psychosocial experiences 

and offspring epigenetic aging. The findings are inconsistent, with some studies indicating 

faster offspring epigenetic aging following unfavorable maternal experiences, and others 

suggesting the opposite. In a combined analysis of two cohorts in the Netherlands and 

Singapore, McGill et al. reported positive associations of maternal prenatal anxiety with 

higher EAA among male offspring through age 4 years 35. Similarly, in the U.K.-based 

ALSPAC cohort, maternal adverse childhood experiences (ACEs) predicted higher offspring 

EAA at birth, again primarily in males 36. On the other hand, in the Finnish PREDO Study, 

Suarez et al. found that maternal history of pre-pregnancy depression and higher antenatal 

depressive symptoms were each associated with lower epigenetic gestational age at birth 

in both sexes 37. In the California Salinas Valley CHAMACOS study, Nwanaji-Enweren 

et al. reported both positive and negative associations of maternal ACEs with offspring 

epigenetic age acceleration at ages 7, 9, and 14 years, with similar patterns by sex, and 

also noted that maternal ACEs predicted longer offspring telomere length, indicative of 
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slower biological aging 38. While the inconsistent findings may reflect differences in specific 

maternal exposures of interest, method of assessing epigenetic age, and study population 

characteristics, they also highlight a need for additional research in this area.

In this exploratory pilot study, we investigated associations of maternal social experiences 

with offspring EAA from birth through mid-childhood among 205 mother-offspring pairs 

of minoritized racial and ethnic groups. Specifically, we sought to examine associations 

of maternal experiences of racial bias or discrimination, social support, and indicators of 

socioeconomic disadvantage during the prenatal period with three measures of EAA at 

birth and across early and mid-childhood: (1) Horvath’s Pan-Tissue clock, (2) Horvath’s 

Skin & Blood clock, and the (3) Intrinsic EAA (IEAA) clock. We focus only on mother-

offspring pairs from minoritized groups considering the increasingly recognized importance 

of experiences of racial bias or discrimination on a range of maternal/child outcomes 
39,40 and to reduce the possibility of exposure misclassification among white women 

who experience bias or discrimination for non-race-related reasons. We hypothesized 

that maternal experiences of racial bias or discrimination, lower social support, and 

socioeconomic disadvantage will be associated with persistent differences in offspring EAA 

across early-life.

MATERIALS AND METHODS

Study population

This analysis used data from Project Viva, a pre-birth cohort of mother-child pairs recruited 

1999–2002 from multi-specialty clinics in Massachusetts (Atrius Harvard Vanguard Medical 

Associates 41. Of the 2,128 enrolled mother-child pairs, 708 had high-quality data on whole-

genome DNA methylation in cord blood (n=485) and blood collected from offspring in early 

childhood (age 3–6 years, n=120) or mid-childhood (age 6–10 years, n=460). Given our 

interest in maternal experiences of racial bias or discrimination, we restricted the analysis 

to mother-offspring pairs of minoritized populations based on the mothers’ self-reported 

race and ethnicity, which we view as a social construct as opposed to a form of biological 

determinism 40. At enrollment, we asked mothers, “Which of the following best describes 

your race or ethnicity?” Mothers had a choice of one or more of the following mutually 

exclusive racial/ethnic groups: Hispanic or Latina, white or Caucasian, Black or African 

American, Asian or Pacific Islander, American Indian or Alaskan Native, and Other (please 

specify). For the participants who selected ‘Other,’ we compared the specified responses 

to the US census definition for the other five race and ethnicities and reclassified them 

where appropriate. If a participant chose more than one racial or ethnic group, we classified 

them as “>1 racial or ethnic group.” For this analysis, we excluded white mothers and used 

four racial/ethnic categories: “Black”, “Hispanic,” “Asian” and “More than 1 race or other.” 

The analytic sample comprised 205 mother-offspring dyads and with DNA methylation 

data in cord (n=126), early childhood (n=25; range 3–6 years), and mid-childhood blood 

(n=149; range 6–11 years). Fifteen children contributed DNA methylation data at all three 

time-points.
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Exposure: maternal social experiences

Experiences of discrimination (EOD)—At the early pregnancy visit (~10 gestational 

weeks), women reported experiences of racial bias or discrimination via an adapted version 
39 of the validated Experiences of Discrimination (EOD) measure 42. The questionnaire 

comprises eight questions inquiring on lifetime experiences of any racism, discrimination, 

or bias. Participants responded ‘Yes’ or ‘No’ to the prompt ‘I have experienced unfair 

or bad treatment because of my race or ethnicity’ for each of eight different situational 

domains: at school, getting hired or getting a job, at work, getting housing, getting medical 

care, getting service in a store or restaurant, on the street or in a public setting, and from 

the police or in the courts. We summed ‘Yes’ responses to produce an EOD score for self-

reported experiences of racial discrimination (range 0–8), with the total number of domains 

conceptualized as an indicator of overall exposure 42,43. We categorized EOD responses as 

none (EOD=0), moderate (EOD=1–2), and high (EOD=3+) as previously done 39,42.

Social support—We assessed social support during the prenatal period using the Turner 

Support Scale 44, which comprises 10 questions that prompts the respondent to rank, on a 

scale from 1 (most support – i.e., strongly agree with statement about positive support) to 

4 (least support – i.e., strongly disagree with statement about positive support), the amount 

of support and affection that they received from their partner (five questions) and family/

friends (five questions). Women without a partner at the early pregnancy visit skipped the 

first five questions, resulting in minimum possible scores of 10 and 5 for partnered and 

unpartnered women, respectively; and maximum possible scores of 40 and 20 for partnered 

and unpartnered women, respectively. In the analysis we categorized women into tertiles, 

using separate cut-points for partnered and unpartnered women. We reversed ranked the 

social support score such that the lowest tertile corresponded with receipt of the lowest 

social support (least favorable) and the top tertile corresponded with the highest social 

support (most favorable).

Prenatal SES index—As an indicator of socioeconomic disadvantage, we used an 

SES index that was associated with differential epigenome-wide DNA methylation from 

birth through mid-childhood in this cohort 45. Components of the index include maternal 

educational attainment, marital status, annual household income, and receipt of public 

assistance assessed via questionnaires at the early pregnancy visit. For the analysis, we 

assessed the index as an ordinal variable with the lowest tertile representing the lowest SES 

and the top tertile representing the highest SES.

Outcomes: epigenetic clocks and estimation of EAA

We extracted DNA using the PureGene kits (Qiagen, Valencia, CA) from cord blood 

leukocytes and nucleated red blood cells collected at delivery, and from peripheral 

leukocytes collected during early and mid-childhood. DNA extracted from buffy coat 

was bisulfite treated (EZ DNA Methylation-Gold Kit, Zymo Research, CA, USA). DNA 

methylation values were derived using the Infinium HumanMethylation450 BeadChip 

(Illumina, CA, USA) array 46, following a standard DNA methylation quantification 

protocol 47 that we published 45. DNA methylation QA/QC procedures are described in 

the Supplemental Material.
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Using DNA methylation data from each life stage (birth, early childhood, mid-childhood), 

we derived two epigenetic clocks developed for use in multi-ethnic populations, each with 

utility for estimating biological age across multiple life stages and tissue types: Horvath’s 

Pan-Tissue clock 48,49 and the Skin & Blood clock 50. Both clocks were developed using 

training data from cord blood and multiple tissue types including peripheral leukocytes 

collected from pediatric populations (<18 years), thereby facilitating comparability in 

estimates of epigenetic age across the multiple life stages of interest in this study. Details on 

derivation, QA/QC, and performance of these clocks in Project Viva are published 34 and in 

the Supplemental Material.

For the analysis, the outcome of interest is epigenetic age acceleration (EAA) – 

a continuous, normally-distributed variable estimated as the residuals obtained from 

regressing chronological age on epigenetic clock age. EAA can be negative, indicative of 

slower biological aging/development relative to the sample average; positive, indicative of 

accelerated biological aging/development, relative to the sample average; or approximately 

0, indicating that a child’s biological age is equivalent to the sample average. We calculated 

EAA based on the Pan-Tissue and Skin & Blood clocks, and additionally considered a third 

assessment of age-related immunological changes calculated from the Pan-Tissue clock, 

called Intrinsic Epigenetic Age Acceleration (IEAA) 51. We chose to focus on EAA rather 

than epigenetic age because the former is independent of chronological age and has been 

linked to age-related outcomes later in life 24–28.

Covariates

Research staff collected information on maternal prenatal smoking and parity via 

questionnaires at the early pregnancy visit. We calculated gestational age at delivery using 

the date of the mother’s last menstrual cycle prior to the index pregnancy or second trimester 

ultrasound where available, or if the estimates differed by >10 days. We calculated maternal 

pre-pregnancy body mass index (BMI; kg/m2) using self-reported pre-pregnancy weight 

collected at enrollment and clinically-measured height. Prenatal medical records provided 

information on mode of delivery and offspring sex.

Data analysis

First, we assessed the relationship between the three maternal social exposures with 

offspring EEA, separately, during each life stage using linear regression. We included 

maternal prenatal smoking as confounders per expert recommendations for studies 

examining perinatal determinants of epigenetic endpoints 52 and offspring sex given known 

sex differences in DNA methylation.

Next, we considered EAA across early and mid-childlood as repeated outcomes using 

mixed-effects models with random intercepts and an unstructured corrrelation matrix. This 

approach is complementary to the above analysis, but more efficiently leverages longitudinal 

data by including all participants to contribute to the standard error of the model, so long as 

they have at least outcome measurement. In multivariable anlayses, we adjusted for maternal 

prenatal smoking and child sex (Model 1), followed by additional adjustment for EAA at 

birth to account for variation in biological age at birth (Model 2). Nota bene, we adjusted 
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for EAA at birth as a covariate rather than include it as part of the repeated measures 

outcomes as EAA assessed in cord leukocytes may not be comparable to EAA estimated 

from peripheral leukocytes during childhood.

In sensitivity analysis, we adjusted for cell type composition at the time of sample collection 

to ensure that associations are not completely driven by variation in cell type composition, 

acknowledging that it could be a mediator 53,54.

For all models, we used α=0.10 as the threshold for statistical significance. We selected 

a relaxed α due to the relatively small sample and correlated nature of the three maternal 

social exposures and three offspring EAA outcomes at three life stages. However, when 

interpreting results, we focus on consistency in the direction and magnitude of associations 

for the relationships of interest within and across life stages, rather than statistical 

significance. Analyses were conducted in R, version 4.3.0 55 and SAS 9.4 (SAS Institute 

Inc., NC, USA).

RESULTS

Descriptive statistics

The average age of mothers at enrollment was 29.8±6.3 years. Forty-five percent of the 

women identified as Black, 24.4% as Hispanic, 15.1% as Asian, and 15.6% identified as 

multi-racial or ‘other.’ Most women (76.1%) were married/cohabiting. Forty-four percent 

graduated college and 35.4% had an annual household income >$70,000. Forty-six percent 

of offspring were female. Table 1 shows additional characteristics of the sample and the 

distribution of the maternal social exposures and offspring EAA.

Bivariate associations

Experiences of discrimination (EOD) and social support scores were inversely correlated 

(Pearson’s R2=−0.24; P=0.002), such that more EOD correlated with lower social support. 

Prenatal SES was mildly positively correlated with social support (Pearson’s R2=0.13; 

P=0.10). EOD and the prenatal SES index were uncorrelated (Pearson’s R2=−0.03; P=0.72).

Table 2 shows correlations among chronological and epigenetic age based on the Pan-Tissue 

and Skin & Blood clocks. All correlation coefficients were positive and increased in 

magnitude from low at birth (Pearson’s R2 0.08 to 0.19) to moderate at early (0.28 to 

0.61) and mid-childhood (0.49 to 0.59).

Multivariable analysis

Supplemental Table 1 shows associations of maternal social experiences with offspring 

EAA, separately by life stage. We found an inverse association of maternal EOD with 

offspring EAA during early and mid-childhood, but no associations at birth. In comparison 

to children whose mothers reported no EOD, those born to women with EOD scores of 

1–2 (−0.71 years, 90% CI: −1.18, −0.24) or 3+ (−0.50 years, 90% CI: −0.91, −0.09) had 

lower EAA in early childhood according to the Pan-Tissue clock. We noted similar inverse 

associations of EOD with EAA according to the Skin & Blood clock and IEAA during early 

childhood, and according to all three clocks during mid-childhood. On the other hand, we 
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did not observe consistent associations of social support or the prenatal SES index with 

EAA according to any of the clocks. We observed similar associations when assessing EAA 

longitudinally across early and mid-childhood. In comparison to children whose mothers 

reported no EOD, those whose mothers had highest EOD exhibited lower EAA across early 

and mid-childhood according to the Pan-Tissue clock (−0.69, 90% CI: −1.23, −0.13), Skin & 

Blood clock (−0.49, 90% CI: −0.91, −0.07), and IEAA (−0.58, 90% CI: −1.15, −0.01) (Table 

3, Model 1). Adjustment for cord blood EAA did not change associations for the Pan-Tissue 

clock or IEAA (Table 3, Model 2).

Sensitivity analysis

Adjustment for cell type composition at the time of epigenetic age assessment did not 

change results (Supplemental Tables 2 and 3). Therefore, we focus on estimates from 

non-cell-type adjusted estimates from the main analysis to avoid overadjustment 56.

DISCUSSION

In this pilot study of 205 mother-offspring pairs of minoritized racial and ethnic groups, 

maternal experiences of discrimination corresponded with lower EAA in offspring across 

early (age 3 years) and mid-childhood (age 7 years). While these findings contrast with an 

adult literature indicating that unfavorable social experiences correlate with higher EAA 
33,57–61, there could be differential implications of EAA before vs. after reproductive 

maturity. Indeed, our findings align with a recent study of Latino families in which Clausing 

et al. found that maternal experience of discrimination was related to lower epigenetic 

age measured in saliva of children 62. Additionally, the broader construct of maternal 

psychosocial stress has been linked to lower offspring EAA at birth in the PREDO cohort 37. 

The inverse association observed in this, and other studies may reflect life history trade-offs 

in which costs incurred during early-life accumulate and negatively affect future growth and 

somatic maintenance 63–66. Still, several studies report findings in the opposite direction. For 

example, unfavorable prenatal experiences like pregnancy complications 67, prenatal anxiety 
35, and maternal ACEs 38 are associated with higher offspring EAA during childhood and 

adolescence. Such inconsistencies emphasize a need for additional research in this area.

Of note, we did not find associations between any maternal exposures and EAA at birth. 

Beyond the possibility of no true association, this finding may reflect the fact that we used 

epigenetic clocks developed to assess epigenetic age across multiple life stages. Such clocks 

may be less sensitive to differences in gestational age than those developed to specifically 

assess epigenetic age in newborns 68–70. Additionally, neither maternal social support nor 

the prenatal SES index predicted offspring EAA. The null results could be because this 

study took place in a mid- to upper-income population in eastern Massachusetts, resulting 

in a relatively narrow range of SES that may have limited our ability to detect associations. 

Moreover, we excluded white participants given a central focus on the experiences of racial 

discrimination which likely reduced variation in social experiences.

Strengths of our study include prospectively collected data in multi-ethnic mother-offspring 

dyads; assessment of the women’s lifetime experiences of racial bias or discrimination; 

and assessment of EAA using multiple clocks and across multiple sensitive periods of 
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development. Our study also has limitations. First, while we used epigenetic clocks 

developed from populations of diverse ancestries 48,50, the extent to which these clocks 

are appropriate for assessing epigenetic age at birth 70,71 and across early life is unknown 72. 

Second, we were underpowered to assess sex-specific associations. Third, our small sample 

sizes likely limited statistical power to detect smaller effect sizes. Finally, we caution against 

extrapolating the results beyond the scope of the racial/ethnic groups in this analysis, which 

comprised mother-offspring pairs of minoritized populations.

Conclusions

In this study of mother-offspring pairs from minoritized racial and ethnic groups and of 

mid-to-high socioeconomic status, maternal experiences of racial bias or discrimination are 

associated with slower biological aging in offspring across early and mid-childhood. This 

finding is consistent with the theory that social stressors contribute to an intergenerational 

“embedding” of health disparities by slowing development during early-life 73. Future 

studies are warranted to confirm our findings and assess the relationship between early-

life EAA across multiple developmental stages with clinically-relevant outcomes or well-

recognized biomarkers of aging. Additionally, considering evolutionary processes, including 

the adaptive significance of tempo of development, will elucidate explanations for why 

adverse social experiences compromise health over the lifecourse 74.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Background characteristics of 205 Project Viva mother-offspring pairs of minoritized racial/ethnic groups 

overall, and among subgroups with DNA methylation (DNAm) data at birth (n=126), and during early (n=25) 

and mid-childhood (n=149).

Overall Cord blood DNAm 
data

Early childhood DNAm 
data

Mid-childhood DNAm 
data

n = 205 n = 126 n = 25 n = 149

Sociodemographic and background characteristics 

Mother’s age at enrollment (years) 29.8 ± 6.3 29.9 ± 6.1 30.9 ± 6.2 29.7 ± 6.4

Nulliparous at index pregnancy 43.4% (89) 45.2% (57) 36.0% (9) 43.6% (65)

Pre-pregnancy BMI 25.7 ± 5.9 25.4 ± 5.8 27.4 ± 6.8 25.7 ± 7.0

Prenatal smoking habits

   Never smoked 73.7% (151) 73.8% (93) 68.0% (17) 73.8% (110)

   Former smoker 9.8% (20) 11.1% (14) 8.0% (2) 10.1% (15)

   Smoked during pregnancy 16.6% (34) 15.1% (19) 24.0% (6) 16.1% (24)

Mother’s race and ethnicity

   Black 44.9% (92) 38.9% (49) 32.0% (8) 49.0% (73)

   Hispanic 24.4% (50) 26.2% (33) 24.0% (6) 22.8% (34)

   Asian 15.1% (31) 16.7% (21) 28.0% (7) 13.4% (20)

   >1 race/ethnicity or other 15.6% (32) 18.3% (23) 16.0% (4) 14.8% (22)

Married or cohabitating 76.1% (156) 77.8% (98) 76.0% (19) 73.2% (109)

Education level

   No college 20.5% (42) 17.5% (22) 24.0% (6) 21.5% (32)

   Some college 34.1% (70 ) 34.1% (43) 28.0% (7) 35.6% (53)

   College degree 24.4% (52) 25.4% (32) 20.0% (5) 25.5% (38)

   Graduate degree 20.0% (41) 23.0% (29) 28.0% (7) 17.5% (26)

Annual household income

   ≤$20,000 12.7% (23) 7.9% (8) 4.8% (1) 15.3% (20)

   >$20,000 - $40,000 30.4% (55) 26.6% (30) 23.8% (5) 32.8% (43)

   >$40,000 - $70,000 21.5% (39) 27.4% (31) 28.6% (6) 19.1% (25)

   >$70,000 35.4% (64) 38.9% (44) 42.9% (9) 32.8% (43)

Receipt of public assistance 19.8% (36) 13.3% (15) 17.4% (4) 22.3% (29)

Gestational age at delivery (weeks) 39.4 ± 1.7 39.4 ± 1.8 38.8 ± 1.6 39.4 ± 1.7

Child is female sex 45.9% (94) 45.2% (57) 52.0% (13) 47.7% (71)

Social exposures 

Experiences of discrimination (EOD)

   Mean ± SD 2.1 ± 2.0 2.1 ± 2.0 1.7 ± 2.0 2.2 ± 2.1

   Median 2.00 2.00 1.00 2.0

   Min, Max 0, 8 0, 8 0, 7 0, 8

Social support score

Women with a partner
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Overall Cord blood DNAm 
data

Early childhood DNAm 
data

Mid-childhood DNAm 
data

n = 205 n = 126 n = 25 n = 149

   Mean ± SD 14.1 ± 4.0 13.9 ± 3.9 14.5 ± 3.6 14.4 ± 4.0

   Median 13.0 13.0 13.5 13.0

   Min, Max 9, 28 10, 28 10, 23 9, 27

Women without a partner

   Mean ± SD 6.8 ± 2.1 6.4 ± 2.2 5.0 a 7.0 ± 2.3

   Median 6.0 5.0 5.0 a 6.0

   Min, Max 5, 10 5, 10 5.0 a 5, 10

Prenatal SES index

   Mean ± SD −0.56 ± 0.94 −0.58 ± 0.91 −0.79 ± 0.85 −0.60 ± 0.93

   Median −0.89 −0.87 −1.09 −0.99

   Min, Max −1.65, 1.53 −1.65, 1.49 −1.65, 1.13 −1.65, 1.53

Abbreviations: BMI - body mass index; DNAm - DNA methylation; SES - socioeconomic status

a
n = 1, therefore no estimate of SD or range.
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Table 2

Pearson’s correlation coefficients (R2) among chronological age, Horvath's Pan Tissue Clock, and Skin & 

Blood Clock at birth and during early (median age 3.1 y) and mid-childhood (median age 7.8 y) among 205 

Project Viva mother-offspring pairs of minoritized racial/ethnic groups.

Chronological age Pan-Tissue Skin & Blood

Birth (n = 126) 

Chronological age 1.00 0.08 0.14

Pan Tissue 1.00 0.19

Skin & Blood 1.00

Early childhood (n = 25) 

Chronological age 1.00 0.49 0.28

Pan Tissue 1.00 0.61

Skin & Blood 1.00

Mid-childhood (n=149) 

Chronological age 1.00 0.49 0.59

Pan Tissue 1.00 0.58

Skin & Blood 1.00
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Table 3

Associations (β [90% CI]) of maternal experiences of discrimination, social support, and prenatal 

socioeconomic (SES) status index with offspring epigenetic age acceleration as repeated measures across early 

(median age 3.1 y) and mid-childhood (median age 7.8 y) among Project Viva mother-offspring pairs of 

minoritized racial/ethnic groups.

Pan-Tissue Skin & Blood IEAA

Model 1 

Experience of discrimination n=141 n=141 n=141 

  0 (lowest) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference)

  1-2 −0.40 (−0.94, 0.16) −0.21 (−0.63, 0.21) −0.31 (−0.88, 0.25)

  3+ (highest) −0.69 (−1.23, −0.13) −0.49 (−0.91, −0.07) −0.58 (−1.15, −0.01)

  P-trend 0.05 0.06 0.10

Social support n=138 n=138 n=138 

  Tertile 1 (lowest) −0.48 (1.00, 0.04) −0.18 (−0.57, 0.22) −0.32 (−0.83, 0.19)

  Tertile 2 −0.02 (−0.57, 0.53) −0.20 (−0.62, 0.22) 0.12 (−0.42, 0.66)

  Tertile 3 (highest) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference)

  P-trend 0.15 0.46 0.32

Prenatal SES index n=118 n=118 n=118 

  Tertile 1 (lowest) −0.35 (−0.93, 0.25) 0.08 (−0.35, 0.50) −0.38 (−0.95, 0.20)

  Tertile 2 0.00 (Reference) 0.00 (Reference) 0.00 (Reference)

  Tertile 3 (highest) −0.39 (−1.01, 0.25) 0.05 (−0.39, 0.50) −0.41 (−1.01, 0.19)

  P-trend 0.96 0.93 0.98

Model 2 

Experiences of discrimination n=72 n=72 n=72 

  0 (lowest) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference)

  1-2 −0.62 (−1.32, 0.08) −0.47 (−1.02, 0.09) −0.61 (−1.38, 0.16)

  3+ (highest) −1.06 (−1.75, −0.39) −0.47 (−1.01, 0.08) −0.90 (−1.66, −0.16)

  P-trend 0.02 0.20 0.07

Social support n=69 n=69 n=69 

  Tertile 1 (lowest) −0.38 (−0.99, 0.24) 0.20 (−0.32, 0.72) −0.18 (−0.82, 0.46)

  Tertile 2 0.39 (−0.31, 1.08) −0.03 (−0.63, 0.56) 0.58 (−0.16, 1.30)

  Tertile 3 (highest) 0.00 (Reference) 0.00 (Reference) 0.00 (Reference)

  P-trend 0.36 0.55 0.67

Prenatal SES index n=61 n=61 n=61 

  Tertile 1 (lowest) 0.17 (−0.56, 0.90) −0.03 (−0.59, 0.53) 0.17 (−0.58, 0.92)

  Tertile 2 0.00 (Reference) 0.00 (Reference) 0.00 (Reference)

  Tertile 3 (highest) 0.20 (−0.57, 1.00) 0.68 (0.09, 1.26) 0.28 (−0.52, 1.11)

  P-trend 0.97 0.10 0.86

Abbreviations: IEAA: Intrinsic epigenetic age acceleration. Bolded values indicate statistical significance at alpha = 0.10.

Model 1: Estimates are adjusted for prenatal smoking habits (never/former/current) and offspring sex.
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Model 2: Model 1 + cord blood measure of epigenetic age acceleration.
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