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Abstract

The term extracellular vesicles (EVs) refers to a variety of heterogeneous nanovesicles secreted 

by almost all cell types, primarily for intercellular communication and maintaining cellular 

homeostasis. The role of EVs has been widely reported in the genesis and progression of multiple 

pathological conditions, and these vesicles are suggested to serve as ‘liquid biopsies’. In addition 

to their use as biomarkers, EVs secreted by specific cell types, especially with stem cell properties, 

have shown promise as cell-free nanotherapeutics. Stem cell-derived EVs (SC-EVs) have been 

increasingly used as an attractive alternative to stem cell therapies and have been reported to 

promote regeneration of aging-associated tissue loss and function. SC-EVs treatment ameliorates 

brain and peripheral aging, reproductive dysfunctions and inhibits cellular senescence, thereby 

reversing several aging-related disorders and dysfunctions. The anti-aging therapeutic potential 

of SC-EVs depends on multiple factors, including the type of stem cells, the age of the source 

stem cells, and their physiological state. In this review, we briefly describe studies related to 

the promising effects of SC-EVs against various aging-related pathologies, and then we focus 

in-depth on the therapeutic benefits of SC-EVs against Alzheimer’s disease, one of the most 

devastating neurodegenerative diseases in elderly individuals. Numerous studies in transgenic 

mouse models have reported the usefulness of SC-EVs in targeting the pathological hallmarks of 
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Alzheimer’s disease, including amyloid plaques, neurofibrillary tangles, and neuroinflammation, 

leading to improved neuronal protection, synaptic plasticity, and cognitive measures. Cell culture 

studies have further identified the underlying molecular mechanisms through which SC-EVs 

reduce amyloid beta (Aβ) levels or shift microglia phenotype from pro-inflammatory to anti-

inflammatory state. Interestingly, multiple routes of administration, including nasal delivery, have 

confirmed that SC-EVs could cross the blood-brain barrier. Due to this, SC-EVs have also been 

tested to deliver specific therapeutic cargo molecule/s (e.g., neprilysin) to the brain. Despite these 

promises, several challenges related to quality control, scalability, and biodistribution remain, 

hindering the realization of the vast clinical promise of SC-EVs.
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1. Introduction

Extracellular vesicles (EVs), once thought to be cell debris, are now well known for 

their role in intercellular communication, maintaining cellular homeostasis, stem cell 

regulation, and tissue regeneration (Ma, Z. et al., 2020; Raposo and Stahl, 2019). EVs 

are heterogeneous membrane-bound vesicles containing metabolites, proteins, and various 

nucleic acids. EVs are secreted by all cell types and are found in all bodily fluids and 

secretions, for instance, plasma, urine, cerebrospinal fluid (CSF), synovial fluid, amniotic 

fluid, saliva, ascitic fluid, milk, etc. EVs have been broadly categorized into subtypes based 

on their size and origin, such as exosomes, microvesicles (MVs), and apoptotic bodies 

(Rani et al., 2015); however, new subtypes are constantly emerging (Ikegami and Ijaz, 2021; 

Melentijevic et al., 2017; Nishimura et al., 2021).

Exosomes are endocytic in origin and are among the smaller-sized EVs (sEV) with a 

diameter ranging from ~30 to less than 200 nm. Their biogenesis involves the endosomal 

system. These small vesicles are formed by the inward budding of the endosomes, which 

leads to the formation of a multivesicular body (MVB) in the lumen of endosomes 

(Hessvik and Llorente, 2018). The MVBs are either degraded by fusion with lysosomes 

or fuse with the plasma membrane of the cell to facilitate the release of exosomes in the 

extracellular milieu by exocytosis (Colombo et al., 2014). Exosome-mediated intercellular 

communication plays a critical role in both normal and pathological conditions (Donoso-

Quezada et al., 2021; Salido-Guadarrama et al., 2014; Smalheiser, 2007; Yates et al., 2022a, 

b). Exosomes contain a lipid bilayer membrane structure, proteins, metabolites, and nucleic 

acids (noncoding RNAs, mRNA, and DNA), and the level of these cargo biomolecules 

depends upon the cellular and environmental context of the parent cell (Panigrahi et al., 

2018; Ramteke et al., 2015; Schlaepfer et al., 2015; Valadi et al., 2007). As a result, 

exosomes have been widely studied for the development of molecular biomarkers and 

have been proposed as ‘liquid biopsies’ for a spectrum of diseases (Gao, Z. et al., 2021; 

Kumar et al., 2021; Kumar et al., 2022; Kumar et al., 2023; Zhao et al., 2022). Besides 

biomarkers, exosomes are also being studied for cargo delivery and therapeutic purposes. 

For example, exosomes secreted by various stem cells especially mesenchymal stem cells 
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(MSC), have been extensively studied for their therapeutic benefits as discussed in detail 

below. In fact, MSC-derived exosomes are suggested as a preferred choice because of their 

safety profile, relatively low immunogenicity, ability to cross biological barriers, and low 

risk for tumorigenicity (Gowen et al., 2020). Furthermore, unlike stem cells, exosomes do 

not need to be cultured before transplantation.

MVs originate by outward budding of the plasma membrane into the extracellular milieu 

and range from ~100 to ≥1000 nm in diameter. The origin of MVs is still not well known; 

however, certain reports suggest the involvement of cytoskeletal components (Muralidharan-

Chari et al., 2009; Ratajczak and Ratajczak, 2020). It is reported that the MVs are released 

in tumor cells via actomyosin-based membrane abscission, which is regulated by nucleotide 

(GTP/GDP) cycling on GTP-binding protein ADP-ribosylation factor 6 (Muralidharan-Chari 

et al., 2009). Nabhan et al., have discovered that the direct budding of the plasma 

membrane to generate MVs involves specific interaction of tumor susceptibility gene 101 

(TSG101) protein with a tetrapeptide Prosaposin motif of an accessory protein, arrestin 

domain-containing protein 1 (ARRDC1) localized to the plasma membrane (Nabhan et al., 

2012). Like exosomes, MVs’ cargo is also dependent upon the cellular and environmental 

context of the cell.

Apoptotic bodies originate from the blebbing of the plasma membrane in cells undergoing 

apoptotic stress. They have an approximate size range of ~500 to 4,000 nm in diameter. 

Annexin V, thrombospondin, and complement component C3b are well-accepted markers 

of apoptotic bodies (Akers et al., 2013). Cargo of apoptotic bodies could be distinguished 

from the exosomes and MVs as they contain intra-cytoplasmic components and various 

organelles, such as mitochondria, as a part of their cargo (Dieudé et al., 2015; Pallet et al., 

2013).

Currently, based on the existing knowledge and tools, it is challenging to definitively 

determine whether the vesicles isolated from biofluids originated from the endosomal 

pathway or released from the outward budding or blebbing of the plasma membrane. 

Additionally, the overlapping size and absence of specific biomarkers for various subtypes 

further complicate the task of achieving 100% purity when separating these vesicles. 

For these reasons, a common term, ‘extracellular vesicle’ (EV), has been recommended 

to encompass these heterogeneous vesicles whenever purity or site of origin cannot be 

definitively determined. In this review, we have used the terms ‘exosomes’ and ‘EVs’ 

interchangeably. However, wherever the source article specifically referred to exosomes, we 

attempted to use the exact terminology. Initially, we briefly touched upon the therapeutic 

potential of stem cells but subsequently focused primarily on the role of EVs isolated from 

stem cells (SC-EVs) in the therapeutic management of aging-related disorders. We then 

delved deeply into the therapeutic utility of SC-EVs in combating Alzheimer’s disease, 

exploring the underlying mechanisms, their utility as biological nanoparticles for cargo 

delivery, and finally, the potential challenges associated with their clinical translation.
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2. Therapeutic efficacy of stem cells

The self-renewal and differentiation potential of stem cells to any of the cell lineages has 

gained them a top choice for the development and regeneration of various tissues. These 

cells can be isolated from almost all tissue types and manipulated for their differentiation 

potential into a particular lineage using appropriate physio-chemical factors. Four main 

stem cell types that have been widely used include embryonic stem cells, fetal stem 

cells, adult tissue stem cells, and induced pluripotent stem cells (iPSCs). Stem cell-based 

therapies have been applied for the treatment of numerous disease models and medical 

conditions (Aboody et al., 2013; Honmou et al., 2021; Lee et al., 2009; Leng et al., 2020; 

Pers et al., 2016). For instance, in a preclinical study, Aboody et al., found that neural 

stem cells harboring genes specific for cytosine deaminase display selective tropism to 

the brain and convert the prodrug fluorocytosine (5-FC) to 5-fluorouracil (5-FU); and this 

combined treatment of neural stem cells and 5-FU reduced the growth of orthotopic gliomas 

without toxicity (Aboody et al., 2013). Further, haploidentical stem cell transplantation is 

considered a feasible treatment option for pediatric patients with refractory or relapsed 

metastatic neuroblastoma (Illhardt et al., 2018). Allogenic human MSCs have also been 

used to treat E. coli endotoxin-induced acute lung injury in ex vivo perfused human lungs, 

reducing extravascular lung water, improving lung endothelial barrier permeability, and 

restoring alveolar fluid clearance (Lee et al., 2009). Recently, MSCs were utilized in patients 

with Covid 19 pneumonia. Within two days of MSCs transplantation, patients’ pulmonary 

functions showed significant improvement associated with higher IL (interleukin)-10 and 

lower tumor necrosis factor-alpha (TNF-α) levels in the serum (Leng et al., 2020). Notably, 

patient-derived MSCs have been used to treat spinal cord injury without any serious 

adverse events (Honmou et al., 2021). The intra-articular injection of autologous adipose-

derived stromal cells in patients with knee osteoarthritis demonstrated significant functional 

improvement without any serious adverse events (Pers et al., 2016). These are only a few 

examples, as stem cells have been extensively studied for their therapeutic potential to treat 

various disorders, including those associated with aging (Brody et al., 2023; Chen et al., 

2022; Demurtas et al., 2021; Karimian et al., 2023; Li, T.T. et al., 2022; Moreira et al., 2017; 

Naji et al., 2019; Semsarzadeh and Khetarpal, 2022; Sivandzade and Cucullo, 2021; Soebadi 

et al., 2017; Sun et al., 2019; Tran et al., 2023; Zakrzewski et al., 2019). As the focus of 

this review is on EVs, next, we have only briefly highlighted the usefulness of stem cells in 

addressing disorders associated with aging and neurodegeneration.

2.1. Stem cell therapy in aging and neurodegeneration

2.1.1. Stem cell therapy in combating aging—Since stem cells can self-renew 

and have the potential to differentiate into any cell type, these cells could be useful for 

rejuvenating aging-related damaged tissue and improving loss of functions. Few such studies 

are described here.

Human umbilical cord Wharton’s Jelly-derived MSCs were tested to treat sarcopenia in 

aged (24-month-old C57BL/6) mice. Whole body muscle strength and endurance, as well as 

gastrocnemius muscle mass and cross-sectional area, were significantly increased in MSC-

transplanted mice compared to control mice (Wang, Q.Q. et al., 2018). Human umbilical 
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cord-derived MSCs treatment improved muscle strength and restored skeletal muscle 

morphology in D-galactose-induced aged C57BL/6 mice and SAMP8 mice- a senescence-

accelerated mouse model, commonly used as the age-associated sarcopenia model (Wang, 

C. et al., 2023). Interestingly, MSC treatment noticeably increased the extracellular matrix 

proteins- dystrophin and laminin, suggesting the restoration of muscle cells (Wang, C. 

et al., 2023). Notably, clinical studies demonstrated the safety of intravenously injected 

human bone marrow allogenic MSCs in aged humans with frailty (Golpanian et al., 2017; 

Tompkins et al., 2017). The treatment showed no adverse events and resulted in remarkable 

improvement in physical performance measures and inflammation biomarkers (Golpanian et 

al., 2017; Tompkins et al., 2017).

Intra-myocardial injection of preconditioned human umbilical cord-derived MSCs with 

hormone ghrelin and nicotinamide-mononucleotide reduced infarct size in aged Sprague 

Dawley rats (20–22 months old) against induced myocardial ischemia-reperfusion injury 

(Sun and Zhang, 2021). Bone marrow MSCs isolated from old human donors (72–80 

years age) transfected with anti-microRNA (miR)-155–5p improved cardiac functions 

by inhibiting apoptosis in cardiomyocytes and enhancing angiogenesis in the hearts of 

infarcted mouse (C57/B6J, 12 months of age) (Hong et al., 2020). In a clinical study, 

human embryonic SCs were utilized to generate cardiovascular progenitor cells for the 

cardioprotective application in aged patients (60.5 to 74.7 years) with severe ischemic left 

ventricular dysfunction. SC-derived cardiovascular progenitor cells were embedded in a 

fibrin patch that was epicardially delivered during a coronary artery bypass procedure. No 

severe adverse effects, such as tumor formation, were detected for 18 months follow-up, and 

most patients symptomatically improved with better systolic motion of the cell/patch-treated 

infarcted area (Menasché et al., 2018).

Recently, the anti-aging effect of human adipocyte-derived MSC conditioned media in 

combination with niacinamide (a form of vitamin B3) was evaluated after laser therapy in 

a double-blind randomized controlled study. The results indicated that the wrinkle index, 

melanin index, patient satisfaction score, and the investigator’s global esthetic improvement 

scale were significantly higher with this combination compared to the vehicle cream (Lee, 

Y.I. et al., 2021). Furthermore, in vitro UVB irradiation assays with human keratinocytes 

showed lower levels of pro-inflammatory cytokines and a higher expression of collagen type 

I with this combination (Lee, Y.I. et al., 2021).

2.1.2. Stem cell therapy to counter neurodegeneration—The generation of 

terminally differentiated neuronal cells from stem cells has opened the way forward 

for their use in neurodegenerative diseases. Stem cell therapies have been used for 

Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, etc (Cecerska-Heryc et al., 

2023; Hernandez and Garcia, 2021; Sugaya and Vaidya, 2018). For Parkinson’s disease 

therapy, dopaminergic neurons were produced from the embryonic stem cells by using a 

specific combination of growth factors, mainly fibroblast growth factor 8 (FGF8) and sonic 

hedgehog (SHH) (Yan et al., 2005). In another study, human iPSCs were differentiated into 

functional dopaminergic neurons in scalable numbers and used for modeling or treating 

Parkinson’s disease (Swistowski et al., 2010). Kikuchi et al., derived cells from Parkinson’s 

disease patients and induced those into iPSCs. These iPSCs were then differentiated into 
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dopaminergic neuron progenitors and transplanted into monkeys with Parkinson’s disease. 

These iPSC-derived dopaminergic neuron progenitor cells survived and functioned as 

midbrain dopaminergic neurons, and monkeys displayed increased spontaneous movement, 

demonstrating the potential clinical applicability of iPSCs for treating Parkinson’s disease 

(Kikuchi et al., 2017). Intravenous transplantation of Wharton’s Jelly-derived MSCs into 

APP/PS1 transgenic mice improved their spatial learning by reducing the amyloid beta 

(Aβ) deposition and soluble Aβ levels. Furthermore, the expression of anti-inflammatory 

cytokine, IL-10 was increased; whereas, expressions of pro-inflammatory cytokines, IL-1β 
and TNF-α, were significantly down-regulated in the brain (Xie et al., 2016). In another 

study, 5XFAD mice overexpressing the mutant human amyloid precursor protein (APP) and 

presenilin 1 (PS1) were transplanted with human umbilical cord blood-derived MSCs (Kim 

et al., 2018). The paracrine action of MSCs protected the mice from synaptic density loss in 

the hippocampus. Thrombospondin-1, a protein secreted by these MSCs, was identified to 

regulate the neuroprotective effect of these cells (Kim et al., 2018). The phase I testing 

of Lomecel-B (MSCs) in a double-blind, randomized, placebo-controlled trial in mild 

Alzheimer’s disease patients showed the safety as well as the potential effectiveness of 

this therapeutic approach against Alzheimer’s disease(Brody et al., 2023).

3. Therapeutic potential of SC-EVs

Despite the tremendous therapeutic promise of stem cell-based therapies, as briefly outlined 

above, several potential concerns remain, including reaction at the site of administration, the 

possibility of the stem cells moving from the placement site and changing into inappropriate 

cell types and then multiplying, failure of cells to work as expected, side effects, potential 

for neoplastic growth and adverse immune response (Nauta et al., 2006; Zangi et al., 2009) 

(2019; Sivandzade and Cucullo, 2021). Furthermore, embryonic stem cell research remains 

controversial due to ethical concerns. Another limitation is that adult stem cells have limited 

ability to grow in culture for longer periods, and the number of adult stem cells in each 

tissue is very small, making the generation of large quantities of adult stem cells for 

therapies challenging (2016). Numerous studies have now established that the therapeutic 

efficacy of stem cells is largely mediated through their secretome in a paracrine manner 

(Han et al., 2022; Paquet et al., 2015). This has led to the testing of EVs isolated from 

stem cell conditioned media (SC-EVs) as an alternative for therapeutic application in a wide 

variety of pathological conditions.

SC-EVs have demonstrated beneficial effects against several pathological and physiological 

conditions (de Castro et al., 2017; Li, Y. et al., 2022; Sengupta et al., 2020; Zhang et 

al., 2021). A systemic review of 206 studies by Tieu et al., demonstrated that MSC-EVs 

have been explored in various preclinical studies and the majority of the studies reported 

beneficial effects of these EVs (Tieu et al., 2020). Zhang et al., demonstrated the use 

of exosomes from human umbilical cord blood MSCs in stimulating wound healing and 

preventing scar formation in part via miR-21–5p and miR-125b-5p mediated inhibition of 

type I and type II transforming growth factor β receptor (TGFβR) in rats (Zhang et al., 

2021). Recently, allogeneic bone marrow MSC-exosomes were utilized for the treatment 

of severe COVID-19. Patients were treated intravenously with commercially available 

EVs isolated from human bone marrow MSCs (ExoFlo™). Following MSC-exosome 
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treatment, 71% of patients (17/24) recovered entirely and were discharged after a mean 

of 5.6 days, while 13% of patients (3/24) remained critically ill though stable, and 

16% of the patients (4/24) expired for reasons unrelated to treatment (Sengupta et al., 

2020). Furthermore, patients’ oxygenation capacity was restored, and cytokine storm was 

downregulated to reconstitute immunity (Sengupta et al., 2020). MSC-EVs have also been 

used as a therapeutic tool for inflammatory lung diseases. Human adipose tissue MSCs 

and their EVs reduced eosinophil counts in lung tissue and affected airway remodeling in 

an immunocompetent mouse model of allergic asthma (de Castro et al., 2017). Hypoxic 

human umbilical cord MSC-EVs attenuate allergic airway inflammation in mice with 

chronic asthma (ovalbumin-sensitized and challenged BALB/c female mice) (Dong, L. et 

al., 2021). MSC-EVs attenuated influenza virus-induced acute lung injury in a preclinical 

large animal model (Khatri et al., 2018). Exosomes secreted from MSCs overexpressing a 

zinc finger transcriptional factor GATA-4 served as a reservoir of anti-apoptotic miR-19a for 

cardioprotection (Yu et al., 2015). Direct intramyocardial transplantation of MSC-exosomes 

in rats at the border of an ischemic region significantly restored cardiac contractile function 

and reduced infarct size (Yu et al., 2015). In other studies, exosomes derived from neural 

progenitor cells delayed photoreceptor degeneration, preserved visual function, prevented 

thinning of the outer nuclear layer, and decreased apoptosis of photoreceptors in a retinal 

degradation rat model. These exosomes suppressed inflammatory signal pathways by 

targeting TNF-α, IL-1β, and cyclooxygenase-2 (COX-2) in retinal microglia (Bian et al., 

2020). Importantly, MSC-EVs have reached clinical assessment for chronic kidney diseases. 

Nassar et al., demonstrated that administration of umbilical cord MSC-EVs was safe, 

ameliorated the inflammatory immune reaction, and improved the overall kidney function in 

grade III-IV chronic kidney disease patients (Nassar et al., 2016).

Injection of MSC-exosomes promoted bone fracture healing in CD9−/− mice, a strain 

characterized by diminished exosome production (Furuta et al., 2016). Exosomes derived 

from miR-92a-3p overexpressing human bone marrow MSCs enhanced chondrogenesis and 

suppressed cartilage degradation (Mao et al., 2018). Naïve and interferon-γ (IFN-γ)-primed 

adipose-derived SC-EVs promoted the repair of Achilles tendon injury by suppressing the 

inflammatory response and facilitating the collagen formation at the injury site (Shen et 

al., 2020). Adipose tissue-derived SC-EVs attenuated bone loss in osteoporosis mice by 

inhibiting the osteoclast differentiation of macrophages by virtue of osteoprotegerin and 

miR-21–5p loaded in these EVs (Lee, K.S. et al., 2021). Human umbilical cord blood 

EVs attenuated bone loss in senile osteoporotic mice (Hu et al., 2019). The EV treatment 

increased trabecular and cortical bone mass, enhanced osteoblast formation, and reduced 

osteoclast formation compared to the control mice (Hu et al., 2019). These EVs were 

highly enriched with miR-3960 and its inhibition reversed the stimulatory effect of EVs on 

osteoblastic differentiation of bone marrow MSCs (Hu et al., 2019).

A study by Ono et al., demonstrated that the exosomes from human bone marrow MSCs 

contain miR-23b that promotes dormancy in human metastatic breast cancer cells (Ono et 

al., 2014). Mir-23b caused suppression of target gene MARCKS (Myristoylated Alanine 

Rich C-Kinase Substrate), which encodes a protein that promotes cell cycling and motility 

(Ono et al., 2014). However, dependent upon their source, MSCs-EVs could be pretty 

heterogeneous, loaded with different bioactive cargo, and so likely to have diverse biological 
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effects (Lai et al., 2016). Fattore et al., reported that MSC-EVs could play a dual role in 

cancer and can either promote or suppress cancer progression (Del Fattore et al., 2015). 

For example, bone marrow MSC-EVs and umbilical cord MSC-EVs decreased proliferation 

and induced apoptosis in glioblastoma cells, whereas adipose-derived MSC-EVs enhanced 

tumor cell growth and had no effect on their apoptosis (Del Fattore et al., 2015), suggesting 

a contrasting effect based upon the source of MSC-EVs.

4. SC-EVs in combating aging

Aging can be defined as the loss or decline of physiological functions over time, which 

increases the likelihood of death (Panagiotou et al., 2018). It is associated with a high 

prevalence of chronic degenerative diseases. With increasing life span, aging is emerging 

as a key challenge for the global healthcare system. It affects the quality of life and 

impacts the financial security system. Therefore, understanding the driving force of aging 

and the development of therapeutic strategies to alleviate aging-related disorders are of 

prime concern. EVs play a key role in mediating cellular homeostasis by removing 

excess and damaged biomolecules such as misfolded proteins, cytoplasmic DNA, and 

oxidized lipids (Desdin-Mico and Mittelbrunn, 2017; Takahashi et al., 2017). Therefore, 

EVs could be associated with age-related dyshomeostasis, such as loss of proteostasis 

related to multiple neurodegenerative disorders. Due to age-associated stress, the secretion 

of EVs may be altered, affecting the clearance of damaged cellular molecules, disturbing 

cellular homeostasis, and thus accelerating aging and associated disorders. Furthermore, 

EVs mediate paracrine signaling in both physiological and pathological states. The altered 

EV secretion could affect the channel through which cells communicate at multiple levels, 

including metabolic interdependence, as well as transmitting any distress signals, enabling 

neighboring cells to prepare in response to any stressful stimulus (Ramteke et al., 2015; 

Urbanelli et al., 2016). The treatment of SC-EVs could restore a few of these traditional 

EVs’ functions through their specific cargo molecules. Further, SC-EVs could deliver 

bioactive cargo from stem cells to areas needing regeneration to maintain tissue viability in 

age-related complications. Numerous studies have reported SC-EVs as a therapeutic option 

for multiple aging-related disorders(Boulestreau et al., 2021; Boulestreau et al., 2020; Cha 

et al., 2020; Li, J. et al., 2023; Liu, Y.R. et al., 2021; Mahindran et al., 2023; Ruiz et al., 

2016; Sanz-Ros et al., 2022a; Shen et al., 2021; Ullah et al., 2020; Wu et al., 2022; Yao et 

al., 2019) (summarized in Table 1 and briefly outlined below).

4.1. SC-EVs application against brain aging

The nervous system has a clear role in aging, particularly the hypothalamus (Dacks et 

al., 2013; Zhang et al., 2013). Adult neural stem cells are reported to mediate local 

neurogenesis and brain functioning (Merkle et al., 2014), and recently, it was reported that 

adult neural stem cells present in the hypothalamus play a crucial role in the neuroendocrine 

regulation and physiological homeostasis of the body (Li et al., 2012; Maggi et al., 

2015). With the onset of aging, hypothalamic activity is retarded because of the reduced 

activity of the hypothalamic stem cells. These cells contribute significantly to miRNAs 

in the CSF, which are linked to stem cell function and regulation of brain aging (Li and 

Gregory, 2008; Shi et al., 2010). During aging, the level of these cells declines, resulting 
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in reduced exosomal miRNAs and accelerated aging. The study performed by Zhang et 

al., demonstrated that the treatment of hypothalamic neural stem cells-derived exosomes 

could control whole-body aging through the release of miRNAs, including miR-106a-5p, 

miR-20a-5p and miR-466m-5p as cargo (Zhang et al., 2017). Human embryonic SC (H9) 

derived EVs treatment also alleviated hippocampal neural stem cell senescence, recovered 

compromised self-renewal and neurogenesis capacities, and reversed cognitive impairment 

in mice. At a mechanistic level, SC-EVs treatment rejuvenated senescent neural stem 

cells through transferring SMAD4 (Suppressor of Mothers against Decapentaplegic 4) and 

SMAD5 proteins to activate MYT1 (Myelin transcription factor 1), which subsequently 

led to downregulation of egl-9 family hypoxia-inducible factor 3 (Egln3), and activation of 

hypoxia-inducible factor 2α (HIF-2α), nicotinamide phosphoribosyl transferase (NAMPT), 

and sirtuin 1 (Sirt1)(Hu et al., 2021). Ultimately, this study suggested that the senescence 

of hippocampal neural stem cells can be reversed by SC-EVs. Exosomes from young 

neural stem progenitor cells rescued insulin receptor substrate-1 (IRS-1)/ Forkhead box O 

(FoxO) activation and counteracted the reduced proliferation and senescence in neural stem 

progenitor cells (Natale et al., 2022). Also, exosome treatment counteracted the high-fat 

diet-dependent impairment of adult hippocampal neurogenesis in mice by restoring the 

balance between proliferating and senescent neural stem cells in the hippocampus (Natale et 

al., 2022).

Myelin damage and oligodendrocyte dysfunction exacerbate in the aged brain and likely 

contribute to age-related susceptibility to brain injury and subsequent neuronal dysfunction 

(Bowley et al., 2010). Oligodendrocytes found in aged brains have reduced proliferation 

(Miyamoto et al., 2013) and increased oxidative DNA damage (Tse and Herrup, 2017), 

resulting in diminished myelin production. Go et al., have demonstrated the effect of MSC-

EVs treatment on changes in oligodendrocyte maturation and associated myelin markers in 

the sublesional white matter of aged rhesus monkeys (Go et al., 2021). MSC-EVs treated 

monkeys showed a reduction in the density of damaged oligodendrocytes and subsequent 

enhanced myelin maintenance (Go et al., 2021).

Aging-related ischemic events in the brain could trigger inflammatory responses 

contributing to neurological deficits. Therefore, therapeutics that modulate 

neuroinflammation in the aging brain have the potential to reduce neurological damage. In 

this regard, iPSC-EVs treatment shifted microglia to an anti-inflammatory phenotype, which 

reduced the apoptosis of neurons (Niu et al., 2023). Mechanistically, iPSC-EVs reversed the 

senescent characteristic of microglia in aged brains after stroke via delivering TGF-β1 to 

upregulate Rictor and p-AKT (Niu et al., 2023). Furthermore, iPSC-EVs treatment activated 

the endothelial nitric oxide synthase (eNOS) and upregulated Sirt1 in senescent endothelial 

cells to rejuvenate the blood-brain barrier in aged mice and protected against ischemic stroke 

partially, through delivering AKT1 and calmodulin to activate eNOS–Sirt1 axis (Li, Q. et 

al., 2023). Further, MSC-EVs reduced neurological deficits, infarct volume, brain edema, 

and neuronal injury in young and aged mice of both sexes (Wang et al., 2022). MSC-EVs 

also decreased leukocyte and, specifically, polymorphonuclear neutrophil, monocyte, and 

macrophage infiltrates in ischemic brains of aged mice (Wang et al., 2022). MSC-EVs 

prevented body weight loss and promoted functional neurological recovery and brain tissue 

remodeling in aged rats post-stroke (Dumbrava et al., 2022). MSC-EVs have been explored 
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as therapeutic agents in aged rhesus monkeys after cortical injury. The treatment of MSC-

EVs resulted in greater densities of ramified, homeostatic microglia, along with reduced pro-

inflammatory microglial markers in the monkey brain (Go et al., 2020). Overall, SC-EVs 

have showcased the neuroprotective features against age-related brain aging.

4.2. SC-EVs role in combating peripheral aging

Besides overcoming brain aging, several studies have shown the therapeutic benefits of 

SC-EVs against aging-related disorders in other organs. A study by Sanz-Rios et al., 

demonstrated the anti-aging effect of adipose MSC-EVs isolated from young mice (3–6 

months old) on the aged mice (20–24 months old). The old mice treated with adipose 

MSC-EVs from young mice showed improvement in several parameters, such as motor 

coordination, grip strength, fatigue resistance, fur regeneration, renal function, and frailty 

(Sanz-Ros et al., 2022b). Also, MSC-EVs induced regenerative effects and decreased 

oxidative stress, inflammation, and senescence markers in muscle and kidney tissues. 

Moreover, predicted epigenetic age was lower in tissues of old mice treated with MSC-

EVs, and their metabolome also changed to a youth-like pattern (Sanz-Ros et al., 2022b). 

Exosomes secreted from young bone marrow MSCs promoted new bone formation during 

distraction osteogenesis in older rats (Jia et al., 2020). Dorronsoro et al., demonstrated 

that EVs derived from young bone marrow MSCs extend the life span of the aged 

mice, similar to the injection of young MSCs (Dorronsoro et al., 2021). Thus, MSC-EVs 

present an effective and safe approach for conferring the therapeutic effects of adult stem 

cells, avoiding the potential for neoplastic growth and rejection by the donor. Exosomes 

secreted by young stem cells from human exfoliated deciduous teeth modulated histone 

methylation and inhibited nuclear factor kappa B (NF-κB) to alleviate the aging phenotypes 

of aged tendon stem/progenitor cells and maintain their tenogenic capacity (Jin et al., 

2023). Systemic administration of these exosomes retarded tendon degeneration, and their 

local delivery aided by microspheres reduced senescent cells and decreased ectopic bone 

formation, thereby functionally and structurally rescuing endogenous tendon regeneration 

capacity in aged rats (Jin et al., 2023). Antler SC-exosomes reduced senescence of MSCs 

in vitro and alleviated anterior cruciate ligament transection (ACLT)-induced osteoarthritis 

in mice (Lei et al., 2022). Hypoxia preconditioned glutaredoxin3 (GLRX3) positive 

MSC-EVs prevented cellular reactive oxygen species (ROS) accumulation and senescence 

cascade expansion in vitro in nucleus pulposus cells. Furthermore, these EVs loaded with 

supramolecular hydrogel attenuated mitochondrial damage, restored extracellular matrix 

deposition by modulating the redox homeostasis, and thus attenuated disc degeneration in a 

rat model (Liu et al., 2023).

MSC-EVs also reduce photoaging effects on skin by reducing apoptosis and senescence, 

increasing collagen type I expression, and reducing matrix metalloproteinase expression 

in photo-aged cells (Liu, S.J. et al., 2021; Yan et al., 2023). MSC-exosomes elicited 

antioxidant and anti-inflammatory effects, 14–3-3ζ protein was abundantly expressed in 

exosomes, which exerted a cytoprotective function via the modulation of a SIRT1-dependent 

antioxidant pathway and alleviated ultraviolet (UV) radiation-induced photodamage (Wu 

et al., 2021). EVs isolated from human adipose-derived SCs overexpressing circ_0011129 

attenuated the cell photoaging by UVA radiation, as well as in the H2O2-induced oxidative 
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stress model (Zhang et al., 2022). Human adipose SC-exosomes have also shown the 

anti-aging potential in UVB-induced photoaged skin in Sprague-Dawley rats, decreasing 

epidermal thickness and increasing dermal thickness via modulating the gene expression of 

extracellular matrix proteins (type I collagen and type III collagen) and metalloproteinases 

(MM-1 and MMP-3) (Liang et al., 2020). Adipose SC-EVs decreased skin wrinkles in mice 

while promoting epidermal cell proliferation and attenuating immune cell infiltration and 

ROS production in UVB-induced photoaged mice (Cao et al., 2021; Xu et al., 2020).

Adipose-derived MSC-EVs loaded with quercetin and vitamin A enhanced their therapeutic 

efficacy by reducing the acute senescence-like response and targeted delivery to acute liver 

injury (Fang and Liang, 2021). Treatment with human placental MSC-exosomes delayed 

the aging progress and reduced the levels of senescence-associated secretory phenotypic 

(SASP) components in an in vitro H2O2-induced aging model of cholangioid (Chen, W. 

et al., 2021). Umbilical cord MSC-exosomes also decreased lipotoxicity, inflammation, 

structural disorder, senescence markers, and genome instability in aging livers (Ling et 

al., 2023). MSC-EVs promoted wound closure and new blood vessel formation in natural 

aging and type-2 diabetes mouse models. Mechanically, miR-146a was highly expressed in 

MSC-EVs, which could suppress Src phosphorylation and downstream targets VE-cadherin 

and Caveolin-1 in senescent cells (Xiao et al., 2021). iPSC-derived MSC-EVs attenuated 

aging-related arterial stiffness and hypertension while enhancing endothelium-dependent 

vascular relaxation and arterial compliance in the old C57BL/6 mice. Furthermore, these 

EVs rescued the downregulation of Sirt1 and eNOS protein expression in the aortas of 

the older mice (Feng, R. et al., 2020). Intravenous injection of iPSC-exosomes for three 

months significantly decreased p53 and p16 expression levels in the kidney, skin, muscle, 

and lung tissues of aged mice (Li, X. et al., 2023). Urine-derived SC-exosomes promoted 

cell viability and proliferation of D-galactose-induced aging retinal ganglion cells (Dan et 

al., 2023). Overall, SC-EVs have pleiotropic beneficial effects in multiple disease models.

4.3. SC-EVs as therapy for aging-related reproductive health conditions

In men, erectile dysfunction is associated with the advanced age. It is more prevalent in men 

above 40 years old. A study by Feldman et al., demonstrated that the prevalence of complete 

impotence tripled from 5 to 15% between subjects ages 40 and 70 years (Feldman et al., 

1994). Several studies have shown the potential of SC-EVs to reverse erectile dysfunction 

in preclinical animal models (Liang et al., 2021; Ouyang et al., 2018; Wang et al., 2020). 

Ouyang et al., demonstrated that MSC-exosomes could recover erectile dysfunction in a rat 

model by alleviating the apoptosis of corpus cavernous smooth muscle cells (Ouyang et al., 

2018). MSC-exosome therapy in a rat model of internal iliac artery injury-induced erectile 

dysfunction promoted cavernous sinus endothelial formation, reduced the organization of 

oxidative stress damage, and improved the nitric oxide synthase and smooth muscle content 

in the corpus cavernosum (Liu, Y. et al., 2019). Exosomes derived from adipose-derived 

MSCs overexpressing miR-301a-3p mimic reversed erectile dysfunction by reducing the 

apoptosis of corpus cavernous smooth muscle cells (Liang et al., 2021).

In women, aging has been associated with menopause as the primordial follicles deplete 

at approximately 50 years of age (Macklon and Fauser, 1999). It is also reported that 
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ovarian aging starts even before menopause. A woman’s fertility begins to decline in her 

early 30s, with a further decrease after the age of 35 (Broekmans et al., 2009). The aging 

in females is associated with the gradual decrease in quantity as well as the quality of 

the oocytes within the primordial follicles of the ovary (Broekmans et al., 2009; Qiao et 

al., 2014). Studies have demonstrated that MSC-EVs are effective in recovering ovarian 

functions. Recent reports have demonstrated that MSC-exosomes can repair ovarian damage 

in mouse models by regulating the proliferation and apoptosis of granulosa cells, which are 

vital for the growth of follicles (Huang et al., 2018; Xiao et al., 2016). Amniotic fluid SC-

exosomes recapitulate the anti-apoptotic effect on chemotherapy-damaged granulosa cells 

via delivery of miR-146a and miR-10a (Xiao et al., 2016). Human adipose SC-exosomes 

also improved ovarian function in premature ovarian insufficiency disease via regulating 

the SMAD signaling pathway (Huang et al., 2018). Yang et al., demonstrated the effects 

of human umbilical MSC-exosomes on primordial follicles through the activation of the 

PI3K/mTOR signaling pathway in oocytes. When human umbilical MSC-exosomes were 

injected into aged female mice, a significant improvement in oocyte production and quality 

was observed. The stimulatory effects of MSC-exosomes were through carrying functional 

miRNAs, such as miR-146a-5p or miR-21–5p (Yang, W. et al., 2020). Supplementation 

of endometrial human MSC-EVs to in vitro fertilized zygote formed from 24-week-old 

B6D2 eggs and young male sperms (8–12 weeks) improved developmental competence of 

embryos as well as total blastomere count (Marinaro et al., 2019). Hence, MSC-EVs may 

represent a novel approach to address aging-associated declined fertility in men with erectile 

dysfunction and women with diminished ovarian reserve.

4.4. Anti-senescence effects of SC-EVs

During aging, senescent cells accumulate in various tissues, impairing homeostasis and 

resulting in a decline of their regenerative potential (van Deursen, 2014). Notably, in 

aged tissue, the number of senescent endothelial cells increases, and their function is 

impaired (Mistriotis and Andreadis, 2017; Valcarcel-Ares et al., 2012). The increase in 

the number of senescent endothelial cells compromises angiogenesis, which otherwise 

acts as an endogenous repair mechanism and plays a key role in tissue regeneration by 

restoring blood supply and delivering nutrients to the regenerating site (Li et al., 2005). 

A study by Chen et al., demonstrated that embryonic SC-exosomes enhanced angiogenesis 

and increased the number of matured blood vessels in aged mice. These results indicated 

that embryonic SC-exosomes could reduce endothelial cells’ senescence and recover aging-

related angiogenic dysfunction in aged mice. These exosomes were highly enriched with 

miR-200a, which resulted in the rejuvenation of senescent endothelial cells and activation 

of nuclear factor erythroid-derived 2-like 2 (Nrf2) signaling, which is one of the important 

pathways involved in anti-aging (Chen et al., 2019). Similarly, human adipose SC-exosomes 

reduced the induced premature senescence in endothelial progenitor cells and accelerated 

vascularisation in diabetic rats (Li et al., 2018).

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long noncoding 

RNA associated with cellular senescence and is considered one of the anti-aging candidates. 

It is reported that the MALAT1 expression is reduced in aged mice, and the treatment 

of human umbilical cord MSC-exosomes containing MALAT1 prevented aging in mice 
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and senescence in cardiomyocytes. It prevented aging-induced cardiac dysfunction by 

releasing MALAT1, which in turn inhibited the NF-κB/TNF-α signaling pathway (Zhu et 

al., 2019). Exosomes isolated from umbilical cord derived-MSCs were also used to deliver 

miR-675 mimic, which reduced senescence-associated (SA)-β-galactosidase expression and 

downregulated the levels of p21 and TGF-β1 proteins in H2O2-induced senescent H9C2 

cardiac myocytes (Han et al., 2019). Delivery of miR-675 by exosomes encapsulated in 

silk fibroin hydrogel also prevented aging-induced vascular dysfunction in mouse hind limb 

(Han et al., 2019). Human adipose SC-EVs were also reported to reduce IL-1β-induced 

senescence in osteoblasts from osteoarthritis patients by reducing oxidative stress and 

the levels of SA-β-galactosidase, γH2AX, IL-6, and prostaglandin E2 (Tofiño-Vian et 

al., 2017). Human gingiva-derived MSC-EVs abrogated oxidative stress-induced cellular 

senescence in human endothelial cells and skin fibroblasts by downregulating the expression 

of cellular senescence-related genes (Shi et al., 2021). Furthermore, systemic administration 

of these EVs attenuated the aging-associated elevation in the expression levels of p21, 

mTOR/pS6, IL6, and TNF-α in the skin and heart tissues of aged mice (Shi et al., 

2021). Adipose SC-exosomes also alleviated human dermal fibroblast senescence and 

stimulated their migration in vitro (Guo et al., 2022). Yu et al., found that miR-15b-5p 

and miR-290a-5p were highly enriched in embryonic SC-EVs, which rejuvenated senescent 

mouse embryonic fibroblasts by silencing the Ccn2-mediated AKT/mTOR pathway (Yu et 

al., 2023). The embryonic SC-EV treatment further ameliorated the senescence status of 

several aged organs, including the kidney, liver, and spleen (Yu et al., 2023). MSC-exosomes 

antagonized senescence in murine kidney primary tubular epithelial cells (Liao et al., 2021). 

Human dental pulp SC-EVs reduced senescence-related gene and SASP factors expression 

in ductal epithelial cells in an irradiated-submandibular gland mouse model (Dong, J. 

et al., 2021). Hemin pretreatment enriched the level of miR-183–5p in MSC-exosomes, 

and these exosomes inhibited the serum deprivation and hypoxia-induced senescence in 

cardiomyocytes via regulation of the high mobility group box-1 (HMGB1) / extracellular 

signal-regulated kinase (ERK) pathway (Zheng et al., 2021).

SC-EVs have also been reported to rejuvenate senescent stem cells to prevent several aging-

related disorders. Zhang et al., demonstrated that the mouse embryonic stem cell (D3 ES 

cell line) derived EVs significantly rejuvenated the senescent MSCs in vitro and improved 

the therapeutic effects of MSCs in a mouse cutaneous wound model. They also identified 

that the IGF1/PI3K/AKT pathway mediated the anti-senescence effects of SC-EVs on MSCs 

(Zhang et al., 2019). Lei et al., found that human neonatal umbilical cord MSC-EVs could 

rejuvenate senescent adult MSCs derived from bone marrow by transfer of proliferating cell 

nuclear antigen (PCNA) (Lei et al., 2021). EVs alleviated aging phenotypes in bone marrow 

MSCs and increased self-renewal capacity and telomere length. These EVs also improved 

skin wound repair, decreased oxidative stress, and reduced aging-related markers in different 

organs of mice (Lei et al., 2021). Mas-Bargues et al., reported that human dental pulp MSC-

EVs reduced the cellular senescence in MSCs (Mas-Bargues et al., 2020). The EVs collected 

from the MSCs grown under hypoxia (3% oxygen) when cultured with prematurely 

senescent MSCs, reduced the SA-β-galactosidase activity and increased the expression 

of pluripotency factors: octamer-binding transcription factor 4 (OCT4), sex-determining 

region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4), and cellular myelocytomatosis 
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(cMYC). Moreover, they identified that dental pulp MSC-EVs upregulated miR-302b, 

which triggered HIF-1α upregulation, leading to the activation of different pathways to 

delay premature senescence, improve stemness, and switch bioenergetic metabolism towards 

glycolysis (Mas-Bargues et al., 2020). In another study, Gong et al., showed that the 

chronic application of human embryonic SC-EVs rescued the function of senescent bone 

marrow MSCs by upregulating the expression of genes involved in anti-aging, stem cell 

proliferation, and osteogenic differentiation and prevented age-related bone loss in aging 

mice (Gong et al., 2020).

iPSCs-derived EVs have also been used to counter cellular senescence (Lee et al., 2020). 

The study by Oh et al., demonstrated the role of human iPSC-exosomes in ameliorating 

the aging of skin fibroblasts. They showed that exosomes derived from iPSC reduced the 

expression level of SA-β-galactosidase. The exosome treatment also restored the expression 

of Collagen type I in senescent human fibroblasts (Oh et al., 2018). EVs secreted from 

both iPSCs and young MSCs alleviated senescence-associated cellular phenotypes of aged 

MSCs by reducing intracellular ROS levels via transferring peroxiredoxin (Liu, S. et al., 

2019). Intradiscally injected iPSC-derived MSC-EVs improved senescence in the nucleus 

pulposus and attenuated the development of intravertebral disc degeneration (Sun et al., 

2021). Overall, the anti-senescent properties of SC-EVs could be due to multiple biological 

effects, including rejuvenating cells undergoing senescence, improving the stemness of stem 

cells, reducing oxidative stress, and increasing angiogenesis.

4.5. The anti-aging therapeutic potential of SC-EVs is dependent on the age of their 
source

Available literature supports that the therapeutic potential of SC-EVs declines with the age 

of the sourced individual (Abbasi Sourki et al., 2023; Ahmadi and Rezaie, 2021). Human 

MSC-EVs isolated from young (median age: 22 years) and aged (median age: 69 years) 

showed differences in the amount of distinct miRNAs such as miR-29a and miR-34a, 

which were significantly higher in aged MSC-EVs. Hematopoietic stem and progenitor 

cells incubated with young EVs showed a significant increase in cell number and higher 

viability. The expression of the tumor suppressors genes phosphatase and tensin homolog 

deleted on chromosome 10 (PTEN), a known target of mir-29a, and cyclin-dependent 

kinase inhibitor 2A (CDKN2A) was increased in hematopoietic stem and progenitor cells 

(HSPCs) incubated with young EVs (Fichtel et al., 2022). Huang et al., compared the 

anti-inflammatory and protective effects of EVs against lipopolysaccharide (LPS)-induced 

acute lung injury (Huang et al., 2019). They isolated EVs from adipose-MSCs, which were 

isolated from healthy donors of 25 years (young MSC-EVs) and 72 years (aged MSC-EVs) 

of age, respectively. Their results demonstrated that both young and aged MSC-EVs had 

similar physical and phenotypical properties. However, the internalization of young MSC-

EVs by macrophages was significantly higher than the aged MSC-EVs. Interestingly, young 

MSC-EVs exhibited anti-inflammatory and protective effects, while aged MSC-EVs did not 

show these protective effects (Huang et al., 2019). Su et al., showed that bone marrow 

MSC-exosomes of aged mice (18 months) could be taken up by adipocytes, myocytes, and 

hepatocytes, resulting in insulin resistance both in vitro and in young mice (2 months). 

These exosomes were enriched with miR-29b-3p with Sirt1 as the downstream target in 
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regulating insulin resistance. The downregulation of miR-29b-3p in bone marrow MSC-

derived exosomes using an aptamer-mediated nanocomplex delivery system significantly 

ameliorated the insulin resistance of aged mice (Su et al., 2019). Davis et al., isolated EVs 

from bone marrow interstitial fluid of young (3–4 months) and aged (24–28 months) mice. 

Their results demonstrated that the concentration and size distribution of bone marrow EVs 

were similar between the young and aged mice; however, their miRNA profile differed 

significantly. Specifically, the miR-183 cluster (miR-96/miR-182/miR-183) was highly 

expressed in EVs from aged mice. Furthermore, these EVs from aged mice were readily 

endocytosed by young primary bone marrow stromal cells and inhibited their osteogenic 

differentiation potential (Colleen Davis, 2017). Similarly, another study reported that EVs 

isolated from the plasma of healthy donors, either younger than 25 years or older than 55 

years, had a differential influence on the osteogenic differentiation potential of the adipose-

derived MSCs (Weilner et al., 2016). EVs isolated from the older individuals inhibited 

the osteogenesis in adipose-derived MSCs. The effect was found to be associated with the 

reduced intravesicular galectin-3 levels in EVs from aged individuals compared to EVs from 

young individuals (Weilner et al., 2016). Human umbilical cord MSC-exosomes renewed 

biological activities and reduced senescence phenotypes of old MSCs (from > 65 years old 

humans). Exosomes collected from old MSC pretreated with umbilical cord MSC-exosomes 

also resulted in better cardiac function, less fibrosis, and more angiogenesis. Umbilical cord 

MSC-exosome pretreatment enriched miR-136 expression in old MSC-exosomes, which 

regulated apoptotic peptidase activating factor (Apaf1), which negatively affects cell aging 

(Zhang, N. et al., 2020).

Overall, the above-described studies suggest that the anti-aging therapeutic properties of 

SC-EVs could be due to a multitude of biological effects shown in Figure 1.

5. Therapeutic role of SC-EVs in Alzheimer’s disease

Alzheimer’s disease is a progressive neurodegenerative disease. It is the most common 

form of dementia in elderly people and is emerging as a devastating public health concern 

(2022). Alzheimer’s disease is associated with loss of cognitive functioning, leading to 

a high disability rate, which causes a heavier burden to society than any other aging-

related disorder (2022; Agüero-Torres et al., 1998). Alzheimer’s disease is characterized 

by neuropathological hallmarks, including Aβ aggregation forming extracellular amyloid 

plaques and abnormally hyperphosphorylated tau resulting in neurofibrillary tangles (NFTs), 

leading to progressive neuronal loss in the brain (Hickman et al., 2016; Murphy and LeVine, 

2010). The development of novel therapeutic approaches to reduce Alzheimer’s disease 

burden is an area of prime interest. A burgeoning body of research has suggested that SC-

EVs application holds promise as a viable therapeutic option against Alzheimer’s disease 

(Chen, Y.A. et al., 2021; Elia, C. A. et al., 2019; Goncalves et al., 2023; Guo et al., 2020; 

Jeyaraman et al., 2023; Liew et al., 2017; Meldolesi, 2022; Yang, Y. et al., 2020; Yin 

et al., 2023). Based upon the existing literature, the therapeutic utility of SC-EVs against 

Alzheimer’s disease could be broadly divided into two categories (Figure 2): a) SC-EVs 

acting as the therapeutic agent, and b) SC-EVs serving as a vehicle to deliver specific 

therapeutic cargo molecule/s. In the subsequent sections, we delve into various studies 
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falling within these two categories, providing comprehensive insights into their potential 

roles in combating Alzheimer’s disease.

5.1. SC-EVs as a therapeutic agent for Alzheimer’s disease

As mentioned above, EVs play a key role in maintaining cellular homeostasis via the 

removal of excess, unwanted, or damaged biomolecules (protein, nucleotides, and lipids). 

This function of EVs is a double-edged sword in Alzheimer’s disease pathogenesis as 

secretion of these vesicles could not only clear misfolded proteins (such as Aβ and tau) as 

cargo but could also result in the dissemination of toxic proteins to neighboring neurons, 

amplifying the effects of toxic proteins loaded in EVs (Liang et al., 2023). There are several 

studies supporting both protective and disease-promoting aspects of EVs’ function (Cai et 

al., 2018; Liang et al., 2023). For example, Yuyama et al., reported that neuron-derived 

exosomes could drive conformational changes in Aβ to form non-toxic amyloid fibrils 

and subsequent clearance by microglia through lysosomal-mediated degradation (Yuyama 

et al., 2012). Glycan-enriched glycosphingolipids on the surface of these exosomes play a 

critical role in Aβ binding and assembly on exosomes for subsequent clearance (Yuyama 

et al., 2014). On the other hand, there are several studies showing that exosomes play a 

critical role in the production and dissemination of Aβ, as well as suggesting their role in 

Aβ aggregation and plaque formation (Cai et al., 2018; Liang et al., 2023). For example, 

Rajendran et al., described the role of exosomes in Aβ production and secretion (Rajendran 

et al., 2006). Interestingly, this study also reported that neuritic plaques in the hippocampal 

section of Alzheimer’s disease patients were enriched in exosomal protein Alix, suggesting 

the role of exosomes in plaque formation (Rajendran et al., 2006).

Due to the closed anatomic structure of the brain, it is evident that different brain cells 

communicate with each other, and EVs are well known to play a critical role in maintaining 

intercellular communication, including between various brain cells, coordinating complex 

neurological activities (Frühbeis et al., 2013; Men et al., 2019). For example, Men et al., 

found that the neuron-specific exosomes contain the subset of miRNAs that are distinct from 

the miRNA profile of neurons. These exosomes were potentially internalized into astrocytes 

and upregulated the glutamate transporter GLT1 expression by suppressing the GLT1-

inhibiting miRNAs (Men et al., 2019). Similarly, Frühbeis et al., demonstrated the reciprocal 

oligodendrocyte–neuron communication where transfer of exosomes from oligodendrocytes 

to neurons improved the neuronal viability under oxidative stress and starvation conditions 

(Frühbeis et al., 2013). A breakdown or abnormality in communication between brain 

cells could contribute to the onset or progression of neurodegenerative diseases. Therefore, 

EVs-mediated intercellular communication in the brain could play a critical role in the 

pathogenesis of Alzheimer’s disease. This notion is further supported by recent studies 

where neuron- and other brain cells (astrocytes, microglia, oligodendrocytes, pericytes, 

and endothelial)-derived EVs were extensively characterized as potential biomarkers for 

Alzheimer’s disease, highlighting the role of these cells as well as communication between 

them in the neurodegeneration process (Kumar et al., 2022; Kumar et al., 2023; Winston et 

al., 2016).
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Literature suggests that SC-EVs from healthy cells, through multiple molecular routes, 

target Aβ production and removal of Aβ plaques, reduce neuroinflammation and oxidative 

stress, restore communication among brain cells, improve neuronal survival and growth, 

and, lastly, alleviate cognitive dysfunction. Since most of these effects are connected or 

interrelated, e.g., Aβ reduction could reduce oxidative stress as well as microglia activation 

and neuroinflammation and improve neuronal survival. Therefore, all studies describing 

SC-EVs’ therapeutic effects against Alzheimer’s disease are presented together below.

Numerous studies in Alzheimer’s disease animal models have shown the efficacy of SC-

EVs in preventing neurodegeneration, neuroinflammation and alleviating cognitive decline. 

Wang et al., reported that treatment with MSC-EVs reduced hippocampal Aβ aggregation, 

neuronal loss, and improved cognition through repairing neuronal morphology, restoring 

neuronal excitability and mitochondrial changes in APP/PS1 mice (Wang et al., 2021). 

This study also suggested the role of the Nrf2 system in the therapeutic effects of MSC-

EVs(Wang et al., 2021). Further, bone marrow MSC-EVs treatment improved cognition and 

repressed the levels of Aβ1–40, Aβ1–42, beta-secretase 1 (BACE1), and presenilin 1 (PS1), 

and promoted the expression of neprilysin in APP/PS1 mice, and these effects were mainly 

dependent upon the increased expression of sphingosine kinase (SphK) and sphingosine-1-

phosphate (S1P)(Wang and Yang, 2021). Apodaca et al., demonstrated that the intra-venous 

injection of human neuronal SC-EVs in 2- and 6-months old 5xFAD mice restored fear 

extinction memory consolidation, reduced anxiety-related behaviors, and protected against 

synaptic loss as well as reduced Aβ plaque accumulation and microglial activation (Apodaca 

et al., 2021). Elia et al., reported that intra-cerebral injection of mouse bone marrow 

MSC-EVs into the neocortex of APP/PS1 mice not only promoted the disaggregation of 

pre-existing Aβ deposits but also prevented the formation of new plaques (Elia, Chiara A. et 

al., 2019). Furthermore, MSC-EVs reduced the formation of dystrophic neurites surrounding 

the Aβ plaques in APP/PS1 mice (Elia, Chiara A. et al., 2019). Furthermore, this study also 

reported that mouse bone marrow MSC express 100 times more neprilysin mRNA compared 

to fibroblasts and confirmed neprilysin expression in MSC-EVs, potentially contributing to 

the observed therapeutic effects of these vesicles (Elia, Chiara A. et al., 2019). Wang et al., 

suggested that the beneficial effects of MSC-EVs on cognitive behavior and hippocampal 

plasticity of APP/PS1 mice could probably be through suppressing inducible nitric oxide 

synthase (iNOS) expression (Wang, S.S. et al., 2018). Li et al., reported that treatment of 

neural SC-EVs in APP/PS1 mice enhanced the mitochondrial function, SIRT1 activation, 

synaptic activity, and decreased oxidative stress and inflammation, and rescued cognitive 

deficits without altering the Aβ level (Li et al., 2020). Bone marrow-derived MSC-EVs 

were reported to carry miR-29c-3p to the hippocampal neurons, inhibit BACE1 expression, 

and activate the Wnt/β-catenin pathway, thereby playing a therapeutic role in Alzheimer’s 

disease rat model (Sprague-Dawley rats injected with oligomer Aβ1–42) (Sha et al., 2021). 

MSC-EVs treatment also reduced the Aβ deposition area and plaques, decreased soluble 

Aβ1–42 levels in the cerebral cortex and hippocampus, and lowered the levels of pro-

inflammatory cytokines (IL-1β, IL-6, and TNF-α) (Sha et al., 2021).

While characterizing the therapeutic effects of SC-EVs, besides neurons, several studies 

have characterized the molecular changes in other brain cells, including astrocytes and 

microglia. Exosomes derived from human umbilical cord MSCs injection in APP/PS1 mice 
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increased the spatial learning and memory function, reduced the Aβ deposition by increasing 

the levels of Aβ-degrading enzymes (neprilysin and insulin-degrading enzyme), activating 

M2-type microglia, and exerted an anti-inflammatory effect (Ding et al., 2018). Liu et 

al., demonstrated that in a sporadic Alzheimer’s disease mouse model, lateral ventricle 

administration but not the caudal vein injection of bone marrow-derived MSC exosomes 

improved the behavioral performance in streptozotocin (STZ)-treated mice (Liu et al., 

2022). The therapeutic effects of MSC exosomes involved the regulation of glial activation 

and associated neuroinflammation and brain-derived neurotrophic factor (BDNF)-related 

neuropathological changes in the hippocampus (Liu et al., 2022). In a rat model of vascular 

dementia, treatment with human umbilical cord MSC-EVs activated the PI3K/AKT/NRF2 

pathways and inhibited microglial M1 polarization, inflammation, and oxidative stress, 

thereby protecting the nerve functions (Wang, P. et al., 2023). Feng et al., showed that 

the administration of MSC-EVs alleviated the trained-immunity-induced increased load 

of Aβ in APP/PS1 mice (Feng, Y. et al., 2020). Interestingly, this study also found that 

MSC-EVs have comparable effects to those of MSCs in the mitigation of trained immunity 

in the brain (Feng, Y. et al., 2020). Adipose-derived MSC-EVs entered into the brain 

quickly and efficiently after intranasal administration and majorly accumulated in neurons 

as compared to microglia or astrocytes within the central nervous system (Ma, X. et al., 

2020). Furthermore, MSC-EVs increased the number of newly formed neurons and rescued 

memory deficits in APP/PS1 transgenic mice. These MSC-EVs also reduced Aβ deposition 

and decreased microglia activation (Ma, X. et al., 2020). This study also characterized the 

cargo proteins of these EVs by proteomics analyses and identified several neuroprotective 

proteins such as neprilysin, neuroplastin, and eukaryotic translation initiation factor 5A 

(eIF5A) (Ma, X. et al., 2020).

Cell culture studies have provided a greater understanding of molecular mechanisms 

underlying the biological effects of SC-EVs outlined above. Katsuda et al., showed that 

adipose-derived MSCs and their exosomes express enzymatically active neprilysin that 

could reduce the Aβ levels in N2a cells, genetically modified to overproduce human 

Aβ (Katsuda et al., 2013). Adipose-derived MSC-exosomes reduced the Aβ42 and Aβ40 

levels, reduced apoptosis, and improved neurite growth in differentiated neuronal stem cells 

isolated from TG2576 transgenic mice (Lee et al., 2018). Bone marrow MSC-exosomes 

treatment upregulated the expression of neprilysin and insulin-degrading enzyme through 

AKT/GSK-3β/β-catenin pathway, relieving the cellular damage caused by Aβ42 treatment 

in SH-SY5Y cells. These protective effects were attributed to the growth differentiation 

factor-15 (GDF-15) loaded in these exosomes (Xiong, W.P. et al., 2021). Calcium imbalance 

induced by Aβ could also affect synaptic plasticity and neuronal loss in Alzheimer’s 

disease (Pannaccione et al., 2020), and MSC-EVs treatment ameliorated the calcium 

transients in Aβ-stimulated primary hippocampal neurons(Wang et al., 2021). Similarly, 

Aβ-iNOS (inducible nitric oxide synthase) nexus is known to promote Alzheimer’s disease 

pathogenesis (Akama et al., 1998; Nathan et al., 2005), and MSC-EVs treatment inhibited 

iNOS mRNA and protein expression induced by Aβ or the higher iNOS expression in 

neurons derived from APP/PS1 mice (Wang, S.S. et al., 2018). Adipose-derived MSC-EVs 

also exerted a neuroprotective effect against the Aβ1–42 oligomer or glutamate-induced 

neuronal toxicity (Ma, X. et al., 2020). This study showed that following treatment of 
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neurons with these MSC-EVs, several genes involved in synaptic function and memory 

were upregulated, while few genes related to cell death were downregulated (Ma, X. et al., 

2020). MSC-EVs have also been reported to protect hippocampal neurons against oxidative 

stress and synapse damage induced by Aβ oligomers in cell culture (Bodart-Santos et 

al., 2019; de Godoy et al., 2018). Neuroprotection by MSC-EVs was mainly mediated 

by active catalase as cargo since their efficacy was abolished in the presence of catalase 

inhibitor aminotriazole (Bodart-Santos et al., 2019). MSC-EVs treatment also inhibited the 

LPS-induced activation of pro-inflammatory microglia phenotype (Garcia-Contreras and 

Thakor, 2021; Zavatti et al., 2022). Similarly, MSC-EVs suppressed the pro-inflammatory 

effects of Aβ on microglia cells (Kaniowska et al., 2022). This effect of MSC-EVs seems 

to be partially mediated by restoration of the expression of cell surface receptor CD36, a 

class B scavenger receptor expressed on microglia. Exosomes isolated from bone marrow 

MSCs transfected with miR-146a were taken up by astrocytes, resulting in an increased 

level of miR-146a and a decreased level of tumor necrosis factor receptor-associated factor 

6 (TRAF6) and NF-κB (Nakano et al., 2020). These results, along with others, suggested 

that restoration of astrocytic function leads to synaptogenesis and correction of cognitive 

impairment (Nakano et al., 2020).

The composition of exosomal cargo is significantly affected by physiological or pathological 

conditions (Ramteke et al., 2015; Schlaepfer et al., 2015). The culture settings (e.g., hypoxic 

condition, cytokines or LPS priming or 3-dimensional [3D] growth conditions) for stem 

cell affects their cargo as well as their therapeutic effects(Saparov et al., 2016; Xin et 

al., 2012; Yang, L. et al., 2020). Yang et al reported that human umbilical cord MSCs 

secreted exosomes have better therapeutic properties when cells were cultured on a 3D 

graphene scaffold versus 2D graphene (Yang, L. et al., 2020). 3D-exosomes reduced the 

secreted and intracellular Aβ by increasing the expression of α-secretase while lowering 

the expression of β-secretase in both Alzheimer’s disease pathology cells and transgenic 

mice (Yang, L. et al., 2020). 3D-exosomes also exerted enhanced therapeutic effects on 

ameliorating memory and cognitive deficits as well as in mitigating the inflammation and 

oxidative stress in the brain of APP/PS1 mice (Yang, L. et al., 2020). This study also showed 

that these improved therapeutic effects were related to the cargo (miRNAs and proteins) 

of the exosomes secreted by cells when cultured over 3D scaffolds (Yang, L. et al., 2020). 

For example, 3D-exosomes showed enrichment of neprilysin, insulin-degrading enzyme, 

and heat shock protein 70 (HSP70) as compared to 2D-exosomes. Similarly, Cui et al., 

reported the enhanced therapeutic effects of exosomes derived from hypoxia-preconditioned 

MSCs (Cui et al., 2018). Learning and memory capabilities were improved, Aβ levels and 

plaque deposition were reduced by increasing the level of miR-21 in APP/PS1 mice treated 

with exosomes isolated from hypoxia-preconditioned MSCs (Cui et al., 2018). Furthermore, 

pro-inflammatory factors (TNF-α and IL-1β) were reduced, and anti-inflammatory factors 

(IL-4 and IL-10) were increased in the brain tissues of mice treated with exosomes from 

hypoxia-preconditioned MSCs (Cui et al., 2018). In another study, Markoutsa et al., first 

primed the MSCs with the secretome of LPS- or Aβ-activated microglia cells (Markoutsa et 

al., 2022). EVs from primed cells were more effective in inhibiting microglia and astrocyte 

activation, amyloid deposition, demyelination, memory loss, and motor and anxiety-like 

behavioral dysfunction compared to EVs from non-primed cells (Markoutsa et al., 2022). 
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MicroRNA profiling identified the upregulation of at least 19 miRNAs in EVs from primed 

cells, offering a mechanistic understanding of their higher therapeutic efficacy (Markoutsa 

et al., 2022). Losurdo et al., reported that EVs derived from cytokines (TNF-α and IFN-γ) 

preconditioned MSCs induced immunomodulatory and neuroprotective effects (Losurdo et 

al., 2020). Treatment with these EVs polarized the murine primary microglia toward an anti-

inflammatory phenotype in vitro, and their intranasal administration showed neuroprotective 

effects in a triple-transgenic 3xTg mice model of Alzheimer’s disease (Losurdo et al., 

2020). Hou et al. reported an enhanced therapeutic efficacy of MSC-derived exosomes in 

5xFAD mice after administering broad-spectrum antibiotics, which led to the depletion of 

gut microbiota and their associated metabolites, overcoming resistance (Hou et al., 2023). 

This study suggested that the efficacy of SC-EVs could also be affected by other variables, 

such as gut microbiome dysbiosis or antibiotics.

5.1. SC-EVs as a vehicle for targeted delivery of cargo against Alzheimer’s disease

EVs can cross the blood-brain barrier and deliver their cargo to the brain (Qu et al., 

2018; Wang et al., 2019). Therefore, EVs have also been explored as a potential vehicle 

for transporting specific therapeutic molecules to the brain to treat Alzheimer’s disease 

(Iranifar et al., 2019). Moreover, exosomes improve the bioavailability of the drug across 

the blood-brain barrier (Wang et al., 2019). Perets et al., labeled bone marrow MSC-

exosomes with gold nanoparticles and tracked their migration and homing patterns after 

intranasal administration in different brain pathologies, including stroke, autism, Parkinson’s 

disease, and Alzheimer’s disease. They found that MSC-exosomes specifically targeted and 

accumulated in pathologically relevant brain regions up to 96 hours post-administration, 

while in healthy controls, a diffuse migration pattern and clearance by 24 hours was 

observed. The MSC-exosomes accumulation was correlated with the neuro-inflammatory 

signal in pathological brains, suggesting that their homing mechanism was inflammation-

driven (Perets et al., 2019).

EVs have been bioengineered for loading cargo or targeted delivery to brain cells. For 

instance, surface-engineered exosomes were utilized for specific delivery of siRNA for 

BACE1 (a therapeutic target in Alzheimer’s disease) to mouse brain (Alvarez-Erviti et al., 

2011). These exosomes were derived from engineered dendritic cells to express Lamp2b, 

an exosomal membrane protein fused to the neuron-specific rabies viral glycoprotein (RVG) 

peptide. These exosomes could selectively bind to acetylcholine receptor because of the 

Rabies virus glycoprotein fused to Lamp2b on their surface (Alvarez-Erviti et al., 2011). 

In a similar manner, MSC-exosomes were tagged with RVG peptide for the targeted 

delivery in APP/PS1 mice. The targeted binding increased the concentration of intravenously 

administered exosomes in the hippocampus and cortex of mice (Cui et al., 2019). Targeted 

MSC-exosome delivery sharply decreased the plaque deposition as well as Aβ40 and Aβ42 

levels in the hippocampus and cortex as compared to untargeted delivery. Furthermore, 

it improved the cognitive function in APP/PS1 mice, and reduced the expression of 

pro-inflammatory mediators TNF-α, IL-β, IL-6, and significantly raised the levels of 

anti-inflammatory mediators IL-10, IL-4, IL-13 (Cui et al., 2019). Engineered MSC-EVs 

with high expression of Src homology 2 domain-containing protein tyrosine phosphatase-2 

(SHP2) facilitated delivery to the brain by crossing the blood-brain barrier in Aβ1–42 treated 
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C57BL/6 mice. These EVs reduced the Aβ1–42 accumulation and induced mitophagy in 

neurons, which further diminished the neuronal cells’ apoptosis and neuroinflammation (Xu 

et al., 2022). These EVs also rescued synaptic loss and cognitive decline in Aβ1–42 treated 

mice (Xu et al., 2022). Adipose-derived MSC-EVs loaded with miRNA-22 enhanced motor 

ability in APP/PS1 mice and reduced the expression of inflammatory factors (Zhai et al., 

2021).

As mentioned above, neprilysin is an Aβ degrading enzyme; thereby, it offers a potential 

therapeutic tool against Alzheimer’s disease via exosome-mediated delivery of neprilysin 

to the brain. Izadpanah et al., used the mouse bone marrow MSC-EVs for the delivery of 

neprilysin (Izadpanah et al., 2020). MSC-EVs were loaded with neprilysin by freeze-thaw 

cycle and then administrated intranasally in a rat model of Alzheimer’s disease. This study 

demonstrated that the MSC-EVs loaded with neprilysin decreased the expression of IL-1β 
and BCL2 associated X (BAX) but increased the B-cell leukemia 2 (Bcl2) expression in the 

rat brain. Furthermore, MSC-EVs loaded neprilysin improved the brain-related behavioral 

functions and memory improvement (Izadpanah et al., 2020).

The abovementioned studies suggest the promising role of SC-EVs as a novel therapeutic 

option against Alzheimer’s disease.

6. Challenges, Future Directions, and Conclusion

SC-EVs have displayed remarkable therapeutic potential in the delay of aging, overcoming 

aging-associated disorders, and the mitigation of Alzheimer’s disease. However, it is crucial 

to acknowledge that the majority of SC-EVs testing has occurred in preclinical models, 

particularly in the context of Alzheimer’s disease. For the promise of SC-EVs to be realized 

in clinical settings, substantial efforts are required to develop safe and effective strategies for 

their use in addressing aging-related complications.

One of the primary challenges lies in the production of clinical-grade SC-EVs with minimal 

batch-to-batch variation. As previously mentioned, the biological properties and effects of 

EVs can be influenced by various factors, including the type of stem cells, the age of 

the source individual (young versus old), physiological state, passage number of the cell, 

and culture condition. For instance, exosomes secreted by early passage rat bone marrow 

MSCs exhibited more efficient neuroprotection compared to later passage cells, and the 

neuroprotective effectiveness of exosome was dosage dependent (Venugopal et al., 2017). 

The inherent heterogeneity of EVs in biofluids introduces an additional layer of complexity. 

This complexity is further compounded by the use of various methods to isolate EVs, with 

some yielding a purer population but lower concentrations and others providing higher 

yields with relatively lower purity. Most importantly, the method of EV isolation can impact 

the final product and its therapeutic benefits significantly.

Another challenge related to SC-EVs’ quality is ensuring that cultured stem cells maintain 

their inherent properties, particularly after multiple passages. Culturing stem cells in three-

dimensional (3D) conditions, which mimic native tissue architecture, has shown promise. 

EVs isolated from 3D MSC cultures, for example, reduced the amyloid plaque load in 
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the hippocampus of 5XFAD mice following intranasal administration (Cone et al., 2021). 

Bioreactors have also been explored to grow cells in 3D physiological conditions for EV 

isolation, offering the potential for significant increases in EV production.

The biodistribution and bioavailability of SC-EVs present another potential challenge. 

Several studies have indicated the relatively quick clearance of EVs and varying uptake 

and accumulation in specific cell types and organs. However, new tools are emerging to 

improve bioavailability and targeted delivery of SC-EVs. For example, as stem cells are 

applied with the localized carrier agents to prolong their presence in the treated area, 

SC-EVs could be cross-linked with protective biocompatible and biodegradable biopolymer-

based formulations to improve their bioavailability. Furthermore, SC-EVs surface could 

be appropriately modified for their targeted delivery and sustained release, further 

enhancing their regenerative and rejuvenating efficacy. For instance, Arg-Gly-Asp (RGD) 

hydrogel increased the retention and stability of MSC-EVs. Hydrogel functionalization also 

augmented MSC-EV efficacy in the treatment of acute kidney injury (Zhang, C. et al., 

2020). Similarly, specific surface tags (e.g., aptamers and peptides) could be presented on 

EVs for delivery to specific cell or tissue types and to improve their efficiency. Zhang 

et al., showed that human umbilical cord MSC-exosomes could not readily penetrate 

through porcine skin ex vivo. However, when combined with sponge Haliclona sp. Spicules, 

the absorption of exosomes was strongly increased through creating microchannels. The 

combined therapy showed significant anti-photoaging effects in mice, including reducing 

micro-wrinkles, alleviating histopathological changes, and promoting the expression of 

extracellular matrix constituents (Zhang, K. et al., 2020).

Overall, SC-EVs have demonstrated a broad spectrum of efficacy in addressing aging-

related complications, including Alzheimer’s disease, through a multitude of mechanisms. 

SC-EVs are also emerging as valuable biological nano-vehicles for specific cargo or drug 

delivery, particularly to the brain, offering a less invasive approach. There are ongoing 

efforts at multiple levels to overcome the challenges associated with the clinical translation 

of this promising nanotherapeutics option.
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Highlights

• SC-EVs have demonstrated therapeutic efficacy in addressing aging and 

Alzheimer’s disease.

• SC-EVs reduce the age-related senescence and tissue dysfunctions.

• The therapeutic potential of SC-EVs is dependent on the source and culture 

conditions.

• SC-EVs degrade amyloid beta via neprilysin-mediated mechanisms.

• SC-EVs serve as a vehicle for targeted delivery of therapeutic cargo in 

Alzheimer’s disease.
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Figure 1: Schematic showing the release of SC-EVs and their biological effects.
SC-EVs demonstrate anti-aging properties through multitude of listed biological effects. 

Image was created in BioRender software.
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Figure 2: Schematic showing the therapeutic effects of SC-EVs.
Key mechanisms underlying SC-EVs therapeutic effects are shown including their direct 

therapeutic effects as well as their use as delivery vehicle. Red downward arrows 

demonstrate decrease/reduced effect and green upward arrows demonstrate increase/

improved effect of SC-EV.
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Table 1:

Therapeutic effects of stem cell-derived extracellular vesicles in different aging-related pathological 

conditions.

Neurological 
disorders

(Alvarez-Erviti et al., 2011; Apodaca et al., 2021; Chen et al., 2020; Cone et al., 2021; Cui et al., 2019; Cui et al., 
2018; Ding et al., 2018; Elia, Chiara A. et al., 2019; Feng, Y. et al., 2020; Hou et al., 2023; Izadpanah et al., 2020; Li 
et al., 2020; Liu et al., 2022; Losurdo et al., 2020; Ma, X. et al., 2020; Mohamed et al., 2023; Sha et al., 2021; Wang 
et al., 2021; Wang, P. et al., 2023; Wang S.S. et al., 2018; Wang and Yang, 2021; Xu et al., 2022; Xue et al., 2021; 
Yang, L. et al., 2020; Zhai et al., 2021)

Senescence (Chen et al., 2019; Chen, W. et al., 2021; Dong, J. et al., 2021; Fang and Liang, 2021; Guo et al., 2022; Han et al., 
2019; Jin et al., 2023; Lei et al., 2022; Liao et al., 2021; Ling et al., 2023; Liu et al., 2023; Liu, S. et al., 2019; Liu, 
S.J. et al., 2021; Mas-Bargues et al., 2020; Shi et al., 2021; Sun et al., 2021; Tofino-Vian et al., 2017; Xiao et al., 
2021; Xiong, Y. et al., 2021; Yu et al., 2023; Zhang et al., 2019; Zhu et al., 2019)

Whole-body aging or 
various organs

(Chen, W. et al., 2021; Dan et al., 2023; Dorronsoro et al., 2021; Fang and Liang, 2021; Gao et al., 2023; Li, X. et al., 
2023; Liao et al., 2021; Ling et al., 2023; Sanz-Ros et al., 2022b; Shi et al., 2021; Yu et al., 2023; Zhang et al., 2023; 
Zhang et al., 2017; Zhang et al., 2019)

Cardiovascular 
diseases

(Feng, R. et al., 2020; Han et al., 2019; Shi et al., 2021; Zhang, N. et al., 2020; Zhu et al., 2019)

Photoaging (Cao et al., 2021; Gao, W. et al., 2021; Liang et al., 2020; Liu, S.J. et al., 2021; Wu et al., 2021; Xu et al., 2020; Yan 
et al., 2023; Zhang, K. et al., 2020; Zhang et al., 2022)

Skin aging and wound 
healing

(Gao et al., 2023; Shi et al., 2021; Xiao et al., 2021)

Reproductive issues (Huang et al., 2018; Liang et al., 2021; Liu, Y. et al., 2019; Marinaro et al., 2019; Ouyang et al., 2018; Xiao et al., 
2016; Yang W. et al., 2020)

Musculoskeletal 
diseases (Jia et al., 2020; Jin et al., 2023; Lei et al., 2022; Liu et al., 2023; Sun et al., 2021; Tofiño‐Vian et al., 2017)

Brain aging (Dumbrava et al., 2022; Go et al., 2020; Go et al., 2021; Hu et al., 2021; Wang et al., 2022)

Stroke (Dumbrava et al., 2022)
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