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Abstract

Background: Preserving brain health is a critical priority in primary care, yet screening for these 

risk factors in face-to-face primary care visits is challenging to scale to large populations. We 

aimed to develop automated brain health risk scores calculated from data in the electronic health 

record (EHR) enabling population-wide brain health screening in advance of patient care visits.

Methods: This retrospective cohort study included patients with visits to an outpatient neurology 

clinic at Massachusetts General Hospital, between January 2010 and March 2021. Survival 

analysis with an 11-year follow-up period was performed to predict the risk of intracranial 

hemorrhage, ischemic stroke, depression, death and composite outcome of dementia, Alzheimer’s 
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disease, and mild cognitive impairment. Variables included age, sex, vital signs, laboratory values, 

employment status and social covariates pertaining to marital, tobacco and alcohol status. Random 

sampling was performed to create a training (70%) set for hyperparameter tuning in internal 

5-fold cross validation and an external hold-out testing (30%) set of patients, both stratified by 

age. Risk ratios for high and low risk groups were evaluated in the hold-out test set, using 1000 

bootstrapping iterations to calculate 95% confidence intervals (CI).

Results: The cohort comprised 17040 patients with an average age of 49 ± 15.6 years; majority 

were males (57%), White (78%) and non-Hispanic (80%). The low and high groups average risk 

ratios [95% CI] were: intracranial hemorrhage 0.46 [0.45-0.48] and 2.07 [1.95-2.20], ischemic 

stroke 0.57 [0.57-0.59] and 1.64 [1.52-1.69], depression 0.68 [0.39-0.74] and 1.29 [0.78-1.38], 

composite of dementia 0.27 [0.26-0.28] and 3.52 [3.18-3.81] and death 0.24 [0.24-0.24] and 3.96 

[3.91-4.00].

Conclusions: Simple risk scores derived from routinely collected EHR accurately quantify the 

risk of developing common neurologic and psychiatric diseases. These scores can be computed 

automatically, prior to medical care visits, and may thus be useful for large-scale brain health 

screening.

Keywords

Survival analysis; Time-to-event; dementia; depression; ischemic stroke; intracranial hemorrhage

1. Introduction

Brain disease affects 1 in 6 people [1]. Effective prevention is vital, especially in senior 

populations [2]. Brain health includes cognitive, motor, emotional, and sensory functions[3]. 

Pillars of brain health include lifestyle choices, diet and nutrition habits, physical and mental 

exercise, sleep and relaxation, engaging socially, learning new skills, and stress management 

[3–5].

The most common diseases affecting brain health in the aging population include ischemic 

and hemorrhage stroke [6–9], Alzheimer’s disease and other dementias [3], and depression 

[10, 11]. Brain disease prevention should start during primary care visits. However, utilizing 

face-to-face visits to assess brain health in large patient populations is challenging. There 

is an unmet need for a scalable equitable approach to screening. We sought to develop a 

series of brain health scores that quantify the risk of developing intracranial hemorrhage, 

ischemic stroke, Alzheimer’s disease, or mild cognitive impairment (MCI), depression, or 

death within the next 11 years. The risk scores leverage variables captured in electronic 

health records (EHR) during patient encounters. Our intention is for these risk scores to 

serve as screening tools to identify patients who may benefit from lifestyle risk mitigation 

and engage in face-to-face brain health visits to improve their modifiable risk factors to 

improve brain health.
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2. Methods

2.1. Study Cohort

This study follows STrengthening the Reporting of OBservational studies in Epidemiology 

(STROBE) guidelines [12]. EHR data was extracted under a protocol approved by 

Institutional Review Board under a waiver of informed consent. Data were analyzed for 

17040 adults ( ≥ age 18) who visited an outpatient neurology clinic (the Sleep Laboratory) 

at MGH from January 1st, 2010 to March 31st, 2021. These patients are generally referred 

by general practitioners but can also be referred by other doctors (e.g. a neurologist). Most 

are referred to evaluate possible sleep apnea. This cohort was selected because it is large and 

had a well-characterized set of neurologic and psychiatric outcomes from prior studies [13]. 

Patients with a first encounter less than 24 hours prior to outcome events were excluded. 

Deceased patients for whom date of death was not available were excluded.

2.2. Neurological outcomes and comorbidities

Study outcomes included intracranial hemorrhage, ischemic stroke, depression, death and a 

composite of dementia, Alzheimer disease and MCI (“composite of dementia”). Outcomes 

and comorbidities were ascertained based on ICD codes and medications (Tables A.1, A.2), 

with additional information extracted from medical notes. Criteria to identify dementia and 

MCI were published previously [13]. Patients had to have at least one relevant ICD code to 

be assigned outcomes of intracranial hemorrhage or ischemic stroke. Patients had to have 

at least one relevant ICD code and one medication to be assigned outcomes of depression, 

diabetes or hypertension.

A patient diagnosed with any of the study outcomes, except death was assigned the 

corresponding comorbidity for all subsequent encounters. When predicting a given outcome 

(e.g. ischemic stroke), existing medical conditions were considered as possible predictors.

2.3. Study covariates

Additional covariates were outpatient vital signs and laboratory values, including systolic 

and diastolic blood pressure, temperature, heart rate and respiration rate; hemoglobin A1C, 

alanine transaminase (ALT), aspartate aminotransferase (AST), high-density lipoprotein 

(HDL), low-density lipoprotein (LDL) and albumin. We created binary indicators for 

absence of vital sign and laboratory values. Body mass index (BMI), age, sex and 

employment status were included as covariates. Employment was coded as “Active = 1” 

for professional/student full/part-time, self-employed, homemaker, or active military duty; 

and “Active = 0” for disabled, retired, not employed, or unknown status. Social covariates 

pertaining to marital, tobacco and alcohol status were included. Marital status was coded as 

“Union = 1” for those married/in civil union; “Union = 0” otherwise. Tobacco status was 

coded “Smoker = 1” with active smoking status, otherwise as 0. Alcohol was recorded as 

number of drinks per week.

2.4. Competing risk survival analysis

Time-to event was calculated as time between the encounter and outcome, loss to follow-

up or death. Encounters were assigned one of the following status: non-censored (‘1’ ) 
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experienced the event of interest; (right) censored (‘0’) if lost to follow up or did not 

experience the event of interest during the study period; and, for competing risk analysis, 

patients who died without experiencing the event of interest were assigned a status of dead 

(‘2’). The common encounters for all study outcomes problems were used as training data 

for the missing data imputation task. Covariate measurements in this dataset were similar to 

those in the full dataset with all encounters (Fig. A.1).

2.5. Outliers’ processing and missing data imputation

Values outside physiological ranges were removed, followed by normalization (A.1. Data 

Preprocessing). Missing data was imputed using Multiple Imputation by Chained Equations 

(MICE) [14], where an estimator was developed for each covariate with missing data based 

on remaining covariates. Mean square error (MSE) was estimated on the training dataset 

using 5-fold cross validation. The estimator showing lowest MSE in the imputation task 

was selected for imputation of both train and test sets. The ExtraTreesRegressor [15] an 

estimator that fits a number of randomized decision trees on various subsamples of the 

dataset and uses averaging to improve the predictive accuracy, consistently achieved lowest 

MSE (Fig. A.2)1.

2.6. Modeling design

Stratified random sampling was performed to create train (70%) and test (30%) sets. Patients 

were split into age strata by quantiles: 25% (18 to 47 years), 50% (48 to 60), 75% (61 to 71), 

and 99% (> 71 years) based on maximum age during the study. After obtaining train and test 

splits, outliers were removed, data was normalized [16], and missing values were imputed.

For model development, one random encounter was selected per patient. We trained a 

regularized Cox regression model with elastic net penalty [17] using 5-fold cross validation 

[18, 19] using Harrell’s C-index [20] to evaluate model performance. Cox regression [21] 

was used because it is an interpretable model, designed for predicting time to an outcome 

while handling right censoring in a natural way. The full training set was used to train a 

final model using the hyperparameter values that yielded best training performance. With 

the covariates selected by the elastic net, we trained a Cox proportional hazards model [21] 

with competing risk. For prediction of death, we applied the same methodology with no 

competing risk.

2.7. Performance evaluation

We assessed risk ratios (RR) for higher and lower risk groups, by adding and subtracting the 

standard deviation (SD) to all patients’ average risk probability, respectively, and dividing by 

average risk probability in the test set. RR of 1 signifies that two groups have the same risk, 

while results not equal to 1 indicate that one group is at more risk. Harrell’s C-index [20] 

was used as complementary performance metric, as well as the cumulative dynamic area 

under the receiver operating curve (AUC) [22–24], true positive rate (TPR) and false positive 

rate (FPR). We performed 1000 bootstrapping iterations with a random selection of patient 

1We made our code for data preprocessing and modeling publicly available in [https://github.com/mpriscila88/
competing_risks_survival_analysis].
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encounters in the hold-out test (30%) set, which was not used to make decisions about model 

training/validation or hyperparameter tuning, to calculate 95% confidence intervals (CI). We 

plotted both empirical cumulative incidence risk curves (Aalen-Johansen estimator [25]), 

and risk curves from the Cox proportional hazards model. Finally, we evaluated covariate 

importance for each outcome model by assessing Cox models coefficients.

3. Results

3.1. Patient characteristics

Our cohort comprised 17040 patients after applying inclusion and exclusion criteria 

(A.3. Supplementary results). Patients were predominantly male (57%), White (78%) non-

smokers (87%) with average baseline age of 49 years (Table 1). The baseline average age 

for patients with depression (47 years) was below the cohort average, followed by diabetes, 

hypertension, ischemic stroke and intracranial hemorrhage, with 54, 56, 57 and 58 years, 

respectively. For patients with the composite of dementia and death outcomes, the average 

age at baseline was 64 years. the distributions of age at baseline according to positive or 

negative outcome is in Table A.3. Approximately equal numbers of patients were actively 

and non-actively employed (43% vs 40%). 57% were missing alcohol status; among those 

with data, 27% consumed alcohol with an average of 2.4 drinks per week (Table A.4). Most 

patients (63%) did not experience any study outcome events. Characteristics of training and 

test sets were comparable (Table A.5.).

3.2. Modeling performance

We randomly selected one encounter per patient for train (N=11928) and test (N=5112) sets. 

Survival times for each outcome are shown in Fig. A.3. The modeling average concordance 

index and risk ratios for lower and higher risk groups are presented in Table 2. Yearly risk 

ratios in 95% CI are shown in Table A.6.

The average C-index in train and test sets were comparable and CIs were narrow in the 

3% range for the unbalanced outcome events, indicating the absence of any significant 

overfitting (see Table 2). The difference between lower and higher risk patients was more 

accentuated for the composite outcome of dementia and death. The difference between 

groups was more attenuated for depression. With selection of balanced outcome events 

in test we observed wider CIs overall. Since the model was trained with an unbalanced 

distribution of the data, the model is less confident when evaluated in a balanced set of 

outcome events. To balance outcomes, the number of patients from each class had to be the 

same, and one random encounter was selected in each bootstrapping from each class. For 

each outcome (number of patients in test for positive class): intracranial hemorrhage (n = 

35), composite of dementia (n = 251), ischemic stroke (n = 604), depression (n = 774) and 

death (n = 272). For intracranial hemorrhage we observed a decrease of 18% in C-index. 

There was 16% and 14% decrease in C-index for the composite of dementia and death, 

respectively.
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The RR were similar between balanced and unbalanced events, except for death, where the 

difference between groups was more accentuated for balanced events, however coupled with 

wider CIs.

We trained and evaluated a baseline model with only age and sex as covariates, presented 

in Table A.7., where we observed a 3% decrease in C-index for intracranial hemorrhage, 

composite of dementia and death, a 2% decrease for depression, and a 1% decrease for 

ischemic stroke, in the testing set.

We also assessed the cumulative dynamic AUC in Table 3, with the competing risk coded 

as “no event”, since this dynamic AUC metric receives outcome events as binary. We 

performed 200 bootstrapping iterations to calculate 95% CI. We observed that the dynamic 

AUC exhibited slight oscillations in the range 2% to 5%, mean TPR from 2% to 4% and 

mean FPR from 2% to 4%, with the exception of the composite of dementia outcome, where 

there was an 8% increase of mean FPR from the 1st to the 10th year.

The cumulative risk for both the Cox proportional hazards and the Aalen-Johansen models 

is presented in Figs. 1 and 2 for patients in the test set. The cumulative incidence risk for 

patients in the lower and higher risk groups was well defined and separated for all outcomes. 

The empirical (Aalen-Johansen) risk curves were similar to those of the Cox proportional 

hazards model, and remained parallel, indicating acceptable fits and calibration of the Cox 

models.

We assessed the distribution of the cumulative incidence risk scores for each outcome (Fig. 

A.4). Patients who did not experience the outcome of interest tended to have overall lower 

risk scores compared to those who experienced the event or those who died.

3.3. Modeling covariates’ importance

Covariate importance for each study outcome is presented in Figs. 3 and 4 and Table 

A.8. With the exception of depression, age was a positive risk factor for all study 

outcomes.. Female sex conferred higher risk for the composite of dementia, ischemic stroke 

(p<0.1) and depression (p<0.001), while male sex conferred higher risk for intracranial 

hemorrhage (p<0.001). Being active (positive employment status) was a consistent predictor 

for decreased risk across all outcomes, except depression.

For intracranial hemorrhage, risk factors included higher age (p<0.01) and respiratory rate, 

and not being active (p<0.05).

For the composite of dementia, Alzheimer’s disease and MCI, risk factors included higher 

systolic blood pressure (p<0.001), A1C (p<0.001) and heart rate, older age (p<0.001), lower 

HDL (p<0.01) and ALT (p<0.001), and not being active (p<0.001).

For ischemic stroke, risk factors included older age (p<0.001) and higher A1C (p<0.05), not 

being active (p<0.001) and lower temperature (p<0.001).
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For depression, risk factors included prior ischemic stroke, composite of dementia, 

Alzheimer’s disease, MCI, female sex, younger age, and non-union. All covariates showed 

statistical significance with a p<0.001.

For death, risk factors included older age (p<0.001), higher heart rate (p<0.001), ischemic 

stroke (p<0.001), hypertension (p<0.05), intracranial hemorrhage, dementia (p<0.05), 

diabetes, lower HDL (p<0.01) and inactivity (p<0.001).

4. Discussion

4.1. Principal Findings

We found that the brain health risk scores obtained from routinely acquired data and easily 

calculated from existing electronic health records data were associated with neurological 

outcomes: higher risk scores corresponded with higher risk of developing brain disease.

Age and active employment played a significant role in prediction of nearly all outcomes. 

Older age was related with higher risk for intracranial hemorrhage, ischemic stroke, 

composite outcome of dementia, Alzheimer disease and MCI and death in our cohort. 

This is in keeping with previous studies [26–28] analyzing the global burden of major 

neurological disorders, including stroke, Alzheimer’s disease and other dementias, which 

have shown that neurological disorders have been increasing in recent years, largely 

because of the aging of the population. Being employed usually requires learning new 

skills, maintaining a routine, and engaging socially, which may promote cognitive health, 

especially as one ages [29, 30]. Employment is also an activity where people are often 

faced with complex tasks. It is well established that engaging in complex activities in one’s 

environment may help prevent age-associated cognitive decline and dementia [31, 32], by 

facilitating brain health and optimal cognitive functioning [33].

The identification of these risk indicators is vital to alert the population of important factors 

that might help keep their brains healthy and fit. Patients can keep track of their progress at 

each subsequent encounter in modifying their lifestyle choices and risk of brain disease. The 

brain health scores developed in this work are similar to the American Heart Association’s 

(AHA) “Life’s Simple 7” [34] premise, where patients are encouraged to adjust their 

lifestyle choices so that they can monitor their brain health scores and thus improve their 

brain health over time. “Life’s Simple 7” [34] defines ideal cardiovascular health based 

on physical activity, healthy diet, smoking status, body mass index, total cholesterol, blood 

pressure and fasting blood glucose.

The brain health scores developed in this work can be calculated using the covariates which 

showed the most importance in the 11-year period survival prediction problems for each 

of the neurological outcomes. Those covariates were patients’ age and sex, employment 

status, marital status, vital signs, including respiration rate, systolic blood pressure, heart 

rate, and temperature, laboratory values, including A1C, ALT and HDL, body mass index, 

diabetes and hypertension. The majority of these measures have been robustly associated 

with cognitive decline in epidemiological studies [35].
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4.2. Comparison with prior work

Previous work has been done to create a brain care score, the McCance Brain Care Score 

(BCS) (see Fig. A.5) which can be calculated for an in-person encounter. The McCance 

BCS is based on a 17-point system where points are assigned to each of the measures in 

the physical, lifestyle and social and emotional categories, that sum up to give the total 

BCS for the patient. The McCance BCS was derived from evidence-supported interventions 

associated with reduced risk of brain diseases, building upon and expanding AHA “Life’s 

Simple 7” and recommendations from the Alzheimer Association. The score has been 

piloted by the Henry and Allison McCance Center for Brain Health and iteratively refined 

and improved in outpatient practice. Our model performance is not directly comparable to 

the McCance BCS, because the EHR does not have information on several of the variables 

included in the score, such as social relationships or meaning of life.

4.3. Limitations

This study was performed for a cohort of patients who visited the Sleep Laboratory at 

MGH and may not be representative of other US and non-US populations, limiting the 

generalizability of the models across populations and hospital settings. The majority of 

patients were identified as White, and minorities are misrepresented on our dataset. This 

cohort was selected because it is large and had a well-characterized set of neurologic 

and psychiatric outcomes from prior studies by the authors [13], however there may 

be differences in insurance for patients who visit the Sleep Laboratory and those 

without insurance who visit other neurology clinics. This cohort may also have specific 

characteristics, such as low yearly incidence of hypertension, considering as reference the 

US population. Thus, we lack a study of generalizability to understand the importance of 

tailoring the models to different populations so that these may benefit from brain health 

scores assessment. Another limitation consisted of high missingness of laboratory values, 

which we tackled with a robust approach for missing data imputation. Also, our model only 

considers social covariates last registered in the system, thus a model that considers changes 

in social covariates each year should be considered in future studies.

4.4. Conclusions

A simple risk score derived from routinely collected data, easily acquired in a patient 

encounter, is associated with risk of neurological outcomes and death. This approach 

automatically uses EHR data, which makes it suitable for large-scale population screening. 

This enables the implementation of a very low-cost neurological screening tool for 

prevention of brain disease across healthcare systems. By adopting the approach of the 

chronic disease management model [36], the risk scores may empower especially younger to 

mid-life patients to make different lifestyle choices to improve their brain health and prepare 

for aging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Preserving brain health is a key priority in primary care

• Screening for these risk factors is challenging to scale to large populations

• Survival prediction with an 11-year follow-up period was performed for 

17040 patients

• Large-scale brain health screening can be performed using simple risk scores

• The scores quantify the risk of developing common neurologic and 

psychiatric diseases
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8.

Summary Table

What was already known on the topic:

• Neurological disorders have been increasing in recent years largely because of 

the aging of the population

• Screening for brain health risk factors in face-to-face primary care visits is 

challenging to scale to large populations

What this study added to our knowledge:

• Simple risk scores derived from routinely collected EHR, including social 

covariates, accurately quantify the risk of developing common neurologic and 

psychiatric diseases.

• These scores can be computed automatically, prior to medical care visits, and 

may thus be useful for large-scale brain health screening
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Fig. 1. 
Cumulative incidence risk probability of patients in the test set during the study period 

for (a) intracranial hemorrhage, (b) composite of dementia, (c) ischemic stroke, and (d) 

depression. The low, medium and high-risk cumulative probabilities are presented in dotted 

and continuous lines for the Aalen-Johansen estimator and the cox proportional hazards 

model with competing risk (CoxPH), respectively. The medium cumulative risk corresponds 

to the cumulative average risk probability.
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Fig. 2. 
Cumulative incidence risk probability of death for patients in the test set during the study 

period. The low, medium and high-risk cumulative probabilities are presented in dotted and 

continuous lines for the Aalen-Johansen estimator and the cox proportional hazards model 

with competing risk (CoxPH), respectively. The medium cumulative risk corresponds to the 

cumulative average risk probability.
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Fig. 3. 
Covariates importance of the cox proportional hazards (CoxPH) competing risk model 

coefficients for (a) intracranial hemorrhage, (b) composite of dementia, (c) ischemic stroke, 

(d) depression.
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Fig. 4. 
Covariates importance of the cox proportional hazards (CoxPH) coefficients for death.
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Table 1.

Characteristics of the study cohort population.

Characteristic Study cohort (n=17040)

Number of encounters, N 3786379

Age(a)(years, mean (SD)) 49.0 (15.6)

Sex, n (%)

  Male 9724 (57.1)

  Female 7316 (42.9)

Race, n (%)

  Black or African American 1069 (6.3)

  Other (b) 2725 (16.0)

  White 13246 (77.7)

Ethnicity, n (%)

  Hispanic 1379 (8.1)

  Non-Hispanic 13713 (80.5)

  Unknown 1948 (11.4)

Marital status, n (%)

  Union 9055 (53.1)

  Non-union 7644 (44.9)

  Unknown 341 (2)

Tobacco status, n (%)

  Smoker 1288 (7.6)

  Non-smoker 14850 (87.1)

  Unknown 902 (5.3)

Alcohol status(c), n (%)

  Consumption 4580 (26.9)

  Non-consumption 2765 (16.2)

  Unknown 9695 (56.9)

Employment status, n (%)

  Employed 7341 (43.1)

  Non-employed 6833 (40.1)

  Unknown 2866 (16.8)

Comorbidities, n (%), age (years, mean (SD))(a)

  Diabetes 1773 (10.4), 53.6 (12.2)

  Hypertension 3573 (21.0), 56.1 (12.2)

Study outcomes, n (%), age (years, mean (SD))(a)

  Intracranial hemorrhage 96 (0.6), 58.4 (15.2)

  Ischemic stroke 1964 (11.5), 57.1 (13.8)

  Depression 2627 (15.4), 47.4 (15.2)

  Composite of dementia 746 (4.4), 63.7 (9.5)

  Death 896 (5.3), 64.1 (12.7)
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Characteristic Study cohort (n=17040)

  None 10711 (62.9), 47.0 (15.2)

The number of patients and encounters is represented by n and N, respectively.

(a)
Age at baseline for the first visit in the study period.

(b)
‘Other’ includes ‘unknown’, ‘declined’, ‘American Indian or Alaska Native’, ‘Asian’ and ‘Native Hawaiian or other Pacific Islander’. Since 

these races represent less than 15% of the data, they were omitted to preserve patient privacy.

(c)
Alcohol Consumption corresponds to consumption of at least one drink per week.
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Table 2.

Average concordance index and risk ratios of the competing risk models for the study period, where event 

classes (‘0’, ‘1’ and ‘2’) are unbalanced or balanced in the test set for each of 1000 bootstrapping iterations to 

calculate 95% confidence intervals.

Unbalanced outcome events Balanced outcome events

Outcome Train C-
index [SE]

Test C-index 
[95% CI]

RR lower 
[95% CI]

RR higher 
[95% CI]

Test C-index 
[95% CI]

RR lower 
[95% CI]

RR higher 
[95% CI]

Intracranial 
hemorrhage 0.78 [0.01] 0.78 [0.77-0.79] 0.46 [0.45, 

0.48]
2.07 [1.95, 

2.20] 0.60 [0.54-0.66] 0.47 [0.43, 
0.52]

1.87 [1.67, 
2.19]

Ischemic 
stroke 0.69 [0.01] 0.68 [0.67-0.69] 0.57 [0.57, 

0.59]
1.64 [1.52, 

1.69] 0.60 [0.58-0.62] 0.60 [0.58, 
0.63]

1.57 [1.48, 
1.65]

Depression 0.65 [0.01] 0.65 [0.64-0.66] 0.68 [0.39, 
0.74]

1.29 [0.78, 
1.38] 0.66 [0.64-0.67] 0.68 [0.61, 

0.72]
1.36 [0.75, 

1.44]

Composite of 
dementia 0.80 [0.01] 0.78 [0.76-0.79] 0.27 [0.26, 

0.28]
3.52 [3.18, 

3.81] 0.62 [0.60-0.65] 0.27 [0.25, 
0.29]

3.22 [2.64, 
3.75]

Death 0.80 [0.01] 0.79 [0.78-0.81] 0.24 [0.24, 
0.24]

3.96 [3.91, 
4.00] 0.65 [0.63-0.67] 0.79 [0.24, 

1.73]
6.05 [1.91, 

9.52]

SE – standard error. CI – confidence intervals. C-index – concordance index. RR – risk ratio.
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Table 3.

Cumulative dynamic area under the receiver operating characteristic curve and average true positive and false 

positive rates [95% confidence intervals].

Outcome

Cumulative dynamic AUC Mean TPR Mean FPR

1st year 5th year 10th year 1st year 5th year 10th year 1st year 5th year 10th year

Intracranial 
hemorrhage

0.72 
[0.60-0.86]

0.69 
[0.64-0.76]

0.72 
[0.59-0.80]

0.73 
[0.60-0.86]

0.71 
[0.65-0.78]

0.74 
[0.63-0.80]

0.50 
[0.50-0.51]

0.52 
[0.51-0.53]

0.53 
[0.49-0.59]

Ischemic 
stroke

0.63 
[0.59-0.65]

0.66 
[0.64-0.68]

0.64 
[0.59-0.69]

0.62 
[0.59-0.65]

0.64 
[0.62-0.65]

0.62 
[0.60-0.64]

0.50 
[0.50-0.50]

0.48 
[0.47-0.49]

0.49 
[0.44-0.53]

Depression 0.62 
[0.59-0.65]

0.62 
[0.59-0.64]

0.62 
[0.56-0.68]

0.57 
[0.54-0.59]

0.55 
[0.54-0.57]

0.53 
[0.52-0.56]

0.48 
[0.47-0.49]

0.46 
[0.45-0.48]

0.44 
[0.39-0.48]

Composite 
of dementia

0.74 
[0.70-0.76]

0.72 
[0.70-0.74]

0.69 
[0.63-0.74]

0.74 
[0.71-0.77]

0.76 
[0.75-0.78]

0.77 
[0.75-0.79]

0.51 
[0.50-0.51]

0.55 
[0.54-0.56]

0.59 
[0.54-0.65]

Death 0.80 
[0.77-0.83]

0.81 
[0.79-0.83]

0.78 
[0.73-0.84]

0.79 
[0.76-0.82]

0.77 
[0.76-0.79]

0.77 
[0.73-0.80]

0.49 
[0.49-0.50]

0.47 
[0.46-0.48]

0.50 
[0.45-0.55]

AUC – Area under the receiver operating characteristic. TPR – true positive rate; FPR – false positive rate.
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