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Abstract

Inflammation is a first responder against injury and infection and is also critical for the 

regeneration and repair of tissue after injury. The role of professional immune cells in tissue 

healing is well characterized. Professional immune cells respond to pathogens with humoral and 

cytotoxic responses; remove cellular debris through efferocytosis; secrete angiogenic cytokines 

and growth factors to repair the microvasculature and parenchyma. However, non-immune cells 

are also capable of responding to damage or pathogens. Non-immune somatic cells express 

pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) 

and damage-associated molecular patterns (DAMPs). The PRRs activation leads to the release of 

inflammatory cytokines required for tissue defense and repair. Notably, the activation of PRRs 

also triggers epigenetic changes that promote DNA accessibility and cellular plasticity. Thus, 

non-immune cells directly respond to the local inflammatory cues and can undergo phenotypic 

modifications or even cell lineage transitions to facilitate tissue regeneration. This review will 

focus on the novel role of cell-autonomous inflammatory signaling in mediating cell plasticity, 

a process which is termed transflammation. We will discuss the regulation of this process by 

changes in the functions and expression levels of epigenetic modifiers, as well as metabolic and 

ROS/RNS-mediated epigenetic modulation of DNA accessibility during cell fate transition. We 

will highlight the recent technological developments in detecting cell plasticity and potential 

therapeutic applications of transflammation in tissue regeneration.
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The Discovery of Transflammation

This story of transflammation has its origin in 2006 when Shinyi Yamanaka electrified the 

field of stem cell biology with his contribution to discovering the induced pluripotent stem 

cells (iPSCs)1. Dr. Yamanaka used a retroviral vector to forcibly express the transcriptional 

factors Oct4, Sox2, KLF4, and c-MYC in mouse fibroblasts to induce pluripotency. To avoid 

the use of an integrating vector in human cells (which could engender safety concerns for 

regenerative medicine applications), we generated cell-permeable peptides of the Yamanaka 

factors to enable nuclear reprogramming. Despite evidence that the cell-permeable peptides 

could enter the nuclei of human fibroblasts, no efficient induction of pluripotency genes 

was achieved, nor induced pluripotent stem cells were derived. Based on the earlier findings 

that empty virions could alter the phenotype of human cells2–4, we hypothesized that the 

retroviral vector used by Yamanaka played a role in reprogramming. To test this hypothesis, 

in addition to exposing human fibroblasts to our cell-permeant proteins, we added a 

retroviral vector encoding green fluorescent protein (GFP) and we were stunned to observe 

an efficient induction of pluripotency genes by this combination. We went on to demonstrate 

that the retroviral vector used to deliver the Yamanaka factors induced inflammatory 

signaling that was necessary for pluripotency induction. Specifically, stimulation of toll-

like receptor 3 (TLR3) by the retroviral vector activated NFkB and IRF3, which then 

triggered global changes in the expression of epigenetic modifiers responsible for DNA 

accessibility5,6. This increase in DNA accessibility presumably gave the Yamanaka factors 

access to the promoter regions of the pluripotency genes required for iPSC formation. We 

could increase the generation of iPSCs with inflammatory activation and could abrogate 

iPSC production by blocking inflammatory activation. Thus, inflammatory signaling is 

necessary for efficient nuclear reprogramming of fibroblasts to iPSCs, as described in our 

Cell paper that was published the same month that Yamanaka garnered the Nobel Prize for 

his work6. The process whereby cell-autonomous inflammatory signaling enhances DNA 

accessibility to promote phenotypic plasticity has been termed “transflammation”7.

Transflammation has proven to be critical in other cell fate transitions besides nuclear 

reprogramming of somatic cells to iPSC. We have observed that this process is also involved 

in transdifferentiation. Transdifferentiation is defined as the process by which one somatic 

cell directly transforms into another somatic cell lineage without going through the stem-cell 

stage8.

Our group was the first to show that transdifferentiation of fibroblasts to endothelial cells 

(Mesenchymal-endothelial transition, MEndoT) can be induced in cell culture or mice in 

response to limb ischemia, which requires activation of inflammatory signaling6,9–11. In 

these studies, we focused on the transdifferentiation of fibroblasts to endothelial cells, but 

it seems likely that the transdifferentiation of any somatic cell to another lineage requires 

inflammatory signaling. In this conceptual framework, inflammatory signaling increases 

DNA accessibility to a broader genetic repertoire. This genetic repertoire may encode cell 

cycle proteins, growth factors, and cytoskeletal proteins, in the case of quiescent cells that 

are expected to become proliferative and migratory to heal a wound (e.g., keratinocytes at 

the edge of a cutaneous laceration). The genetic repertoire may include lineage factors to 

support transdifferentiation to another cell type (as when fibroblasts transdifferentiate into 
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endothelial cells to support angiogenesis). During physiological conditions, the operational 

efficiency of a cell mandates the repression of genes that are not involved in cell identity 

or homeostatic processes of that cell lineage. However, when exposed to injury or invading 

pathogens, the ability of a somatic cell to rapidly change its genetic program and phenotype 

is adaptive. Thus, activation of PRRs induces cellular plasticity as well as cytokines for 

defense and regeneration, a parsimonious utilization of inflammatory signaling.

Since our first description of transflammation a decade ago, much has been learned about 

the process. Firstly, activation of cell surface PRRs such as TLRs or retinoic acid-inducible 

gene protein (RIG1)-like receptors5 has been confirmed to lead to NFKb and IRF-3 

mediated alterations in expression and activities of epigenetic modifiers, thereby promoting 

DNA accessibility. The activation of transflammation is then associated with an upregulation 

of histone acetyltransferases (HATs), downregulation of histone deacetylases (HDACs)6, an 

increase in histone acetylation, and other epigenetic modifications associated with chromatin 

accessibility (e.g. H3K4me3). In addition, inducible nitric oxide synthase (iNOS) has been 

found to translocate to the nucleus during transdifferentiation. As described below, iNOS 

binds to repressive epigenetic modifiers, reducing their binding to and suppressive effect on 

the chromatin12,13. Metabolic regulation has also been found during transdifferentiation. The 

work of Lai et al. revealed a glycolytic shift during cell fate transitions that generate more 

of the substrate for histone acetylation, indicating that metabolism is coupled to epigenetic 

alterations14. These changes in epigenetic modifiers have the effect of globally altering 

histone markings to increase DNA accessibility and phenotypic fluidity. Thus, a cellular 

challenge, such as hypoxia, generates DAMPs which the cell senses, and responds to, 

with an increase in epigenetic plasticity that permits cellular plasticity and physiological 

adaptation. Furthermore, the most recent lineage tracing studies have shown evidence 

of this phenomenon in vivo, in the form of angiogenic transdifferentiation in a mouse 

hindlimb ischemic revascularization model10. The suppression of innate immune signaling 

by dexamethasone treatment or p65 conditional knockout in fibroblast cells impeded tissue 

regeneration which further supported the notion that transflammation is a key factor in 

cellular reprogramming.

The current understanding of the mechanisms underlying transflammation and cell plasticity 

is discussed in more detail below. (Figure1)

Inflammatory signaling in other types of transdifferentiation.

Whereas our work has focused on the role of transflammation in the nuclear reprogramming 

of fibroblasts to pluripotency, or to their transdifferentiation to endothelial cells or MEndoT, 

it is likely that the phenomenon of transflammation also applies to other cell fate transitions. 

Indeed, Dzau and colleagues have shown that activation of innate immunity is required 

for fibroblast to cardiomyocyte transdifferentiation15. In addition, the maturation of the 

induced cardiomyocytes requires TLR3-mediated NFKb activity16. These studies suggested 

that the transdifferentiation of any somatic cell to another lineage may require inflammatory 

signaling. This response to inflammatory signaling may be a primordial mechanism that 

provides cells with the ability to respond to a challenge with increased adaptability.
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The association of inflammatory signaling with pathological transdifferentiation, i.e. 

epithelial-mesenchymal transition (EMT) or endothelial-mesenchymal transition (EndoMT), 

has been described in chronic diseases like cancer17–20 and organ fibrosis21–27. In cancers, 

the chronic inflammation in the tumor microenvironment causes sustained activation of 

immune-responsive transcriptional factors (TF)s, including TGF-β and NF-KB, which 

collaboratively initiate the epithelial transformation and facilitate the dissemination of 

different cancers18,28–30 by activating the expression of EMT-TFs, such as TWIST, SLUG31, 

and SNAIL17. Similar mechanisms are reported in EndoMT32–34 which contributes to the 

production of Cancer-Associated-Fibroblasts (CAFs)35 to further supports tumor growth 

and metastasis36. Tissue fibrosis is also characterized as a common feature of a variety of 

chronic pathological processes, affecting major organs including the heart37,38, kidney39,40, 

liver41–43, and lung44,45, etc. In all cases, inflammation response is considered to play a 

role in the disease progression46,47. However, the cellular origins of the activated fibroblasts 

remain controversial48,49. Seminal works have connected pathological transdifferentiation 

with cardiovascular fibrotic events. Specifically, EMT50,51 and EndoMT52,53 are reported 

to be involved in the response to cardiac injury, mediated by inflammatory signaling and 

TGF-β54–56. These mechanisms may also underlie cardiac fibrosis in diabetic57,58 and 

hypertrophic59,60 conditions. Some forms of cardiac fibrosis may occur in the absence of 

EndoMT such as post-transverse aortic constriction (TAC)61,62 or myocardial infarction 

(MI) surgery63–65. Moreover, other forms of transdifferentiation including macrophages 

to myofibroblasts transition (MMT) are also reported in fibrotic disorders66–68. So, more 

lineage tracing work in vivo in combine with fate mapping using single-cell sequencing 

analysis will be needed to confirm the role of pathological transdifferentiation under 

different disease conditions.

Immunometabolism in cell fate transition

Metabolic pathways provide the energy and building blocks through catabolism and 

anabolism to meet the diverse demands of cellular processes69,70. Cellular metabolism 

also provides intermediates as the substrate for epigenetic events that are required for 

cell fate transition71–75. Several of the tricarboxylic acid metabolites mediate the activities 

of the chromatin-modifying proteins. An example of a metabolite with an epigenetic 

role is acetyl-coA76,77. It is generated through the metabolism of several precursors, 

including fatty acids, acetate, pyruvate, and glutamine. Acetyl-CoA can then be used for 

lipid synthesis and protein acetylation. In the nucleus, acetyl-CoA is utilized in histone 

acetylation, a major regulatory process in chromatin configuration and gene expression. 

Histone acetylation neutralizes the positive charge of the lysine on the histone tail and 

decreases the interaction between histone and DNA, which makes DNA more accessible 

for the transcriptional machinary78,79. The enzymes that are responsible for acetyl-CoA 

synthesis, including ATP-citrate lyase (ACL)80 and acetyl-CoA synthetase (ACSS)81, have 

become therapeutic targets82 in diseases including cancer83–85 and atherosclerosis86–89 to 

reduce histone acetylation and cellular activation in those conditions.

Immunometabolism describes the intricate interplay between metabolism and immune cell 

activation and differentiation, also termed intrinsic immunometabolism. For example, the 

M2 macrophage relies on β-oxidation. Inhibition of fatty acid oxidation is sufficient to 
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alter macrophage polarization, switching the immune-repressive M2 phenotype to the pro-

inflammatory M1 phenotype90–92. Furthermore, the metabolic-epigenetic axis is known to 

be involved in T cell fate determination, including effector93,94, Treg95–97, memory98,99, 

and exhausted100,101 T cells. Additionally, studies performed to explore the role of immune 

cells in systemic metabolism, including obesity102 and diabetes103,104, termed the extrinsic 

immunometabolism, have further unveiled a crucial role of chronic inflammation in insulin 

resistance105,106 and other metabolic diseases107–109. However, although many studies 

have characterized the molecular circuits traversing the reciprocal relationship between 

inflammation and metabolism, much less attention has been focused on metabolism and 

inflammatory signaling in non-immune cells. Here, the interaction between inflammatory 

activation and metabolism appears to be crucial for cell function, cell identity, and cell fate 

transition.

One example of inflammatory signaling and cell plasticity in non-professional immune cells 

is the endothelial-to-mesenchymal transition (EndoMT) that contributes to atherosclerosis, 

pulmonary hypertension, and cardiac fibrosis110,111. In those pathological conditions, the 

endothelial cells persistently express a high level of pro-inflammatory leukocyte adhesion 

molecules and growth factors that induce endothelial dysfunction, and which promote a 

mesenchymal phenotypic switch. Recent studies highlight a role for metabolism, in that 

fatty acid metabolism provides an essential pool of acetyl-CoA to maintain endothelial cell 

identity112.

In the transdifferentiation of fibroblasts to endothelial cells11, metabolic-epigenetic coupling 

plays a critical role14. Specifically, upon TLR3 activation, a rapid Warburg effect 

is triggered, in which glycolysis exceeds oxidative phosphorylation, coupled with a 

non-canonical tricarboxylic acid cycle (TCA cycle) in which glucose-derived citrate 

accumulates and is exported out of the mitochondria through citrate transporter, Slc25a1. 

Concurrently there is an increase in the expression of ATP-citrate lyase (ACL) in the 

nucleus, which converts citrate to acetyl-CoA. Acetyl-CoA is the substrate for histone 

acetylation which increases DNA accessibility to facilitate cellular reprogramming. These 

observations represented a novel metabolism-driven signaling cascade across mitochondria, 

cytoplasm, and nucleus, linking metabolism with cell-autonomous inflammatory signaling, 

epigenetic regulation, and cell plasticity which may serve as a general mechanism in many 

inflammation-induced cell fate transitions113–116 (Figure2). A similar non-canonical TCA 

cycle phenomenon was later observed in embryonic stem cells (ESCs) with [U-13C] glucose 

tracing assay117. In this study, Arnold et al. observed ESCs prefer a non-canonical TCA 

cycle in which the mitochondrial citrate tends to be shunted into the cytoplasm where it 

is converted to oxaloacetate and malate. Malate is then transported back to mitochondria 

through Slc25a1, the citrate/malate antiporter, to replenish mitochondrial oxaloacetate. They 

documented that the utilization of the non-canonical TCA cycle in naïve ES cells was 

increased when the cells exited the naïve state. Similarly, during the differentiation from 

muscle myoblast to myotubes, the utilization of the canonical pathway increased, suggesting 

a dynamic regulation of metabolism during cell fate transition. Together with the findings 

from earlier paper14, this non-canonical TCA cycle may play an important role in cell fate 

transitions.
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The role of ROS/RNS in the cell plasticity

It is well-known that inflammation induces the production of reactive oxygen species (ROS) 

and reactive nitrogen species (RNS)118–120. These free radicals are key signaling molecules 

that drive many homeostatic as well as pathophysiological processes121. They also have a 

prominent impact on the cell fate transition122,123.

ROS plays essential roles in signaling to maintain cellular homeostasis124–126. A low and 

modest level of ROS is known to be beneficial for survival and proliferation127 in many 

cells including T cells128,129 and cancer cells130 which normally rely on glycolysis for 

energy expenditure. Similarly, iPSCs are known to be better cultured under conditions 

that favor glycolysis131. A study from Gang et. al has observed that ROS production 

is transiently increased during nuclear reprogramming to generate iPSCs132 using mice 

embryonic fibroblasts carrying the doxycycline-inducible Yamanaka cassette (Oct4, Sox2, 

Klf4, and c-Myc). Upon the initiation of nuclear reprogramming, there is a transient spike 

in ROS generation which subsides at a later phase of the process. Inhibition of ROS 

generation by knockdown of NADPH oxidase 2 (Nox2), or the use of ROS scavengers, 

at the onset of nuclear reprogramming, abrogated iPSC formation. Furthermore, this 

phenomenon is mediated by NF-KB signaling which is in line with our initial finding about 

the function of innate immune activation during nuclear reprogramming6. The inhibition of 

NFKB phosphorylation by BAY117085 decreases the early upregulation of Nox and iPSC 

formation. Later in the process, the generation of ROS subsides, and here the administration 

of antioxidants enhances reprogramming. Interestingly, the overproduction of ROS by 

Nox overexpression or a high dose of hydrogen peroxide, even at the initial stage of 

reprogramming, impairs iPSC formation. These observations suggest that there is an optimal 

range of ROS generation for effective nuclear reprogramming and are consistent with the 

Goldilocks’ zone for inflammatory signaling and cell fate plasticity described below.

Reactive nitrogen species are another form of free radical. They are generated through 

3 major nitric oxide synthases (NOS), including neuronal isoform (nNOS), endothelial 

isoform (eNOS), and the inducible isoform, iNOS133. The activation of iNOS is a 

notable feature of inflammation134. The nitric oxide (NO) generated by NOS enzymes 

is important for many cellular processes maintaining vascular homeostasis135–137. The 

reduced expression of eNOS and reduced bioavailability of NO are often associated 

with cardiovascular diseases including atherosclerosis, hypertension, and aging138,139. 

The NOS enzymes exert their influence in part by post-translational modification of 

proteins through S-Nitrosylation140 which was found to occur on epigenetic modifiers 

during cell fate transitions. Specifically, during the induction of pluripotency through 

nuclear reprogramming, an increased iNOS expression was observed. Furthermore, iNOS 

translocated to the nucleus to bind and S-nitrosylates MTA3, which is a component of the 

nucleosome remodeling and deacetylase (NuRD) complex141. The MTA3 S-nitrosylation 

is associated with reduced association of the NuRD complex with chromatin; reduced 

HDAC activity; increased coverage of the chromatin with the active marker H3K27ac 

and decreased coverage with the repressive marker H3K27me3 on promoter regions of 

pluripotency genes12. Similarly, iNOS is induced and NO generation is increased, during 

transdifferentiation of fibroblasts to endothelial cells. Concurrently, S-nitrosylation of 

Cooke and Lai Page 6

Adv Drug Deliv Rev. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



polycomb repressive complex protein, RING1A142, was observed, which causes dissociation 

of the repressive polycomb complex from chromatin to increase epigenetic plasticity13.

Goldilocks zone of inflammatory signaling in regeneration

In view of the many facets of immune signaling in physiological and pathological 

conditions, it is easy to speculate that the timing and the intensity of inflammatory signaling 

modulate the downstream effects of immune activation. Indeed, the observations during the 

induction of pluripotency, or transdifferentiation, strongly suggest a Goldilocks zone for 

innate immune signaling to activate cellular plasticity and tissue regeneration143. In these 

studies, a range of doses of TLR3 agonist Poly I: C was used to activate inflammatory 

signaling during cell fate transition. Distinct outcomes are observed for different doses 

of the TLR3 agonist, and intermediate doses of Poly I: C (10 to 100 ng/ml) enhances 

cell fate transitions, whereas doses above this level impair reprogramming efficiency12. 

This discordance may be partially explained by an overproduction of ROS which was 

previously observed to impair reprogramming to iPSCs132. Furthermore, during nuclear 

reprogramming, the repressive epigenetic factor, MTA3, and NuRD complex activity are 

downregulated with 30 ng/ml Poly I: C, while upregulated with 1000ng/ml Poly I: C. 

Also, the MNase digestion assay which reflects the DNA accessibility showed the highest 

mononucleosome to dinucleosome and mononucleosome to trinucleosome ratios in the 

optimal range of innate immune signaling. These data indicate that there is an optimal dose 

of inflammatory signaling that can increase DNA accessibility for phenotypic fluidity.

It is also possible that sub-optimal inflammatory signaling fails to orchestrate the 

energy supply/expenditure as well as the metabolic-epigenetic coupled regulation during 

cellular reprogramming144. For example, under chronic inflammatory conditions, e.g., 

atherosclerosis, ACL is highly expressed, and its knockdown generates a more favorable 

plaque phenotype145. The Goldilocks zone of inflammatory signaling may be reflected 

in the apparently contradictory observations about the role of inflammation in tissue 

regeneration. For example, the poor wound healing in the patient who receives intensive 

steroid therapy146,147 may be due to impaired inflammatory activation of DNA accessibility 

and regenerative cellular plasticity. In other words, these patients have inadequate 

stimulation of the epigenetic and metabolic mechanisms required for an open chromatin 

state and transcriptional activation of regenerative pathways. On the contrary, the patient 

with a diabetic foot ulcer148,149 may have failed to heal due to excessive inflammatory 

activation, which may also impair DNA accessibility and cellular plasticity (Figure 3). 

Understanding how to manipulate inflammatory signaling, with attention to spatiotemporal 

control, may provide a new avenue in the management of non-healing wounds. In 

this regard, novel anti-inflammatory drugs have exciting applications for cardiovascular 

disease150, but there should be a heightened level of concern in using such agents in patients 

in the setting of surgery or trauma150,151.

New technologies for characterizing mechanisms of cell plasticity

Cell plasticity in response to a pathogenic challenge or injury is required for tissue defense 

and regeneration. Elucidation of the mechanisms undergirding cell plasticity should lead 
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to major advances in regenerative medicine. The technology of single-cell multi-omics has 

transformed the field of regenerative medicine. The traditional approaches to identifying 

cell subpopulations are largely dependent on the low throughput and low-resolution flow 

cytometry or immunostaining with known cell identity markers. Furthermore, bulk RNA 

sequencing may dilute rare transcriptional events and cellular subpopulations that are 

important in regeneration. With the rapid development of single-cell multi-omics and 

computational analysis tools, genetic and epigenetic information can be profiled for the 

same cell152, and databases from different experiments can be further integrated153. Now 

spatiotemporal transcriptomics can profile genetic information on tissue sections with the 

resolution of a few cells. In combination with single-cell RNA sequencing datasets, single-

cell resolution transcriptomics can be generated from tissue slides154.

These advances in technology have led to fruitful discoveries. For example, a single cell 

RNA seq study in a murine model of experimental myocardial infarction identified an 

endothelial subpopulation that transiently expresses mesenchymal signatures early after the 

surgery155. This observation supports the concept of an endothelial-mesenchymal transition 

which contributes to tissue remodeling and fibrosis post-cardiac ischemia, a concept that 

has been debated for years155. Another single-cell RNA seq study of endothelial zonation 

in the mouse brain also finds evidence for the transdifferentiation of endothelial cells to 

other cell types and the metabolic underpinnings which can be potentially harnessed for 

therapeutic strategies156. As another example, eight divergent subpopulations of fibroblasts 

in a model of hindlimb ischemia mouse model are discovered when combining single-cell 

RNA seq with lineage tracing strategy. Furthermore, with experimental induction of limb 

ischemia, two of these fibroblast subpopulations (clusters 5 and 8) increased significantly 

and appeared to contribute to angiogenesis. These clusters were then isolated using specific 

surface markers, and cultured ex vivo. Cluster 8 generated angiogenic cytokines, whereas 

cluster 5 expressed some endothelial identity genes, and in Matrigel, formed tubes and 

expressed endothelial surface markers suggestive of transdifferentiation to an angiogenic 

phenotype. In the murine ischemic hindlimb model, inhibition of inflammatory signaling 

markedly reduced the number of these “angiogenic fibroblasts”; impaired wound healing in 

the ischemic limb; and reduced perfusion recovery10. This study may explain the different 

responses of fibroblasts to the same stimuli. The ability of a fibroblast to transdifferentiate 

may be pre-determined by the epigenetic and transcriptional heterogeneity of the 

fibroblasts. With the unprecedented development of single cell-resolution transcriptome and 

epitranscriptome profiling and analysis methods157, it will be possible to predict and target 

the specific sub-clusters that drive the pathophysiological processes.

Single-cell proteomics and metabolomics are the newer members of the single-cell omics 

field. The single-cell proteomics that characterizes the amount, the post-translational 

modification, and the kinetics of the thousands of proteins at the same time are 

complementary to and synergistic with, transcriptomic studies158. This approach mainly 

includes single-cell barcoding, which is similar to single-cell RNA seq but with a mass 

spectrometry version (isobaric tags), in a nanoliter-scale reaction system called nanoPOTS 

for protein lysis, followed by ultra-high-resolution mass spectrometry159. Advances have 

been made by combining nanoPOTS with laser-capture microdissection, mass spectrometry, 

and a newly developed computational algorithm, HIT-MAP, which adds spatial information 
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in proteomics studies160. The single-cell metabolomics is the newest single-cell omics 

technology and provides additional single-cell phenotypic information161. Unlike the 

previously described omics, single-cell metabolomics doesn’t involve a barcoding process. 

Instead, matrix-assisted laser desorption/ionization mass spectrometry (MALDI–MS) is 

integrated with an imaging system to identify single cells. Then the identified cell is 

irradiated with a UV laser beam to ionize analytes for assessment by mass spectrometry162. 

These advances in single-cell omics, together with new bioinformatic approaches (such as 

RNA velocity algorithms) will provide more comprehensive transcriptional, epigenetic, and 

metabolic profiles to characterize the determinants of cell identity and plasticity. These 

fundamental insights will no doubt contribute to the development of novel therapeutic 

avenues.

Conclusion and Discussion

Whereas the role of professional immune cells in tissue repair and regeneration has been 

well-characterized, non-immune cells are also capable of a response to injury, in part by 

sensing the molecular patterns presented by pathogens or damaged tissue. Essentially, the 

stimulation of pattern recognition receptors by damage-associated or pathogen-associated 

molecular patterns activates inflammatory signaling which triggers a cascade of cellular 

signaling (mediated by RNS, ROS, and metabolites) to cause changes in epigenetic 

modifiers that increase DNA accessibility. The cell is now in a state of epigenetic plasticity 

that permits phenotypic fluidity. However, the trajectory of the transition is dependent upon 

the milieu. In a setting where ischemia triggers the generation of angiogenic cytokines, a 

subset of fibroblasts may become endothelial cells. However, it is also possible that, if the 

ischemia is too severe, or the inflammatory signaling is too profound, the transdifferentiation 

of fibroblasts to endothelial cells may be abrogated. Indeed, we have shown that there 

is a Goldilocks zone for inflammatory signaling in cell fate transitions. With excessive 

inflammatory signaling, the generation of induced pluripotent stem cells from fibroblasts is 

attenuated. With excessive production of ROS, fibroblast reprogramming to pluripotency is 

reduced12,132. Furthermore, other factors in the milieu, such as intercellular or tissue-derived 

signals generated by cytokines, neurohormonal factors, exosomes, or alterations in the 

composition of the extracellular matrix will contribute to modifying the trajectory and 

direction of cell fate transitions. For example, in a murine model of myocardial ischemia, 

activation of the TLR3 pathway by mechanical stimulation releases exosomes containing 

angiogenic microRNA from endothelial cells to stimulate angiogenesis163,164.

Based on our studies and others, we believe that inflammatory signaling has 

epigenetic effects to increase DNA accessibility, whereas cell fate is determined by 

the microenvironment. Differences in the microenvironment may play a critical role 

in the different responses observed in myocardial versus limb ischemia. Whereas 

transdifferentiation of cardiac fibroblasts to endothelial cells in the setting of myocardial 

ischemia is controversial63,64,155,165,166, the contribution of fibroblast transdifferentiation to 

endothelial cells in the recovery from limb ischemia has been convincingly shown10. This 

difference may be due to the fact that there is a greater capacity for arteriogenesis and 

collateralization in the limb in comparison to the heart. In C57BL6J mice, femoral artery 

ligation reduces limb blood flow by 80%. However, this ischemic challenge triggers a robust 
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arteriogenic and angiogenic response that largely recovers perfusion within 2 to 3 weeks. 

Conversely, with ligation of the left anterior descending (LAD) coronary artery, there is 

extensive necrosis and scarring of the myocardium, with little perfusion recovery167 168. The 

profound ischemic insult of LAD ligation, combined with the ongoing metabolic demand of 

the working heart, may limit the degree of recovery of the microvasculature.

Ours and others’ recent findings about the role of metabolism and ROS/RNS in the 

process of transflammation also suggested a new path toward developing therapeutic 

strategies targeting these pathways to enhance DNA accessibility, cellular plasticity, and 

tissue repair. For example, pharmacotherapeutics that increase ACL activity and histone 

acetylation may be useful for tissue regeneration. As another example, spatiotemporal 

control of iNOS activity and S-nitrosylation may have regenerative medicine applications. 

As we begin to identify subpopulations of regenerative cells by single-cell omics and the 

determinants of their fate and function, better markers of tissue health and regeneration will 

be developed to orchestrate a regenerative response. The single-cell characterization of these 

subpopulations by transcriptional, epigenetic, proteomic, and metabolomic approaches will 

lead to novel strategies to target and manipulate those populations to enhance tissue repair 

and regeneration.
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Figure1. 
Transflammation. Viruses and bacteria produce PAMPs while hypoxia, pH, stress, and 

other injurious stimuli generate DAMPs, both of which trigger innate immune signaling 

by intracellular or transmembrane PRCs such as TLRs and RIG-I. Subsequently, NF-kB 

or IRF3 are activated and translocated to the nucleus to alter the expression of epigenetic 

modifiers, thereby increasing DNA accessibility to facilitate the cell fate transition.
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Figure 2. 
A metabolic-epigenetic axis controls cell fate transition. Innate immune activation induces 

glycolysis and facilitates mitochondrial export of citrate to the nucleus. In the nucleus, 

ATP-Citrate Lyase (ACL) converts citrate to acetyl-CoA. There it serves as the substrate for 

histone acetylation to increase DNA accessibility, and facilitate cell fate transitions, as in 

vascular regeneration.
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Figure 3. 
The Goldilocks zone of inflammatory signaling in regeneration. An optimal intensity of 

inflammatory signaling increases DNA accessibility and cellular plasticity. Insufficient or 

excessive inflammation reduces DNA accessibility and limits cellular adaptability to injury 

or stress. HAT/HDAC represents the ratio of gene expression of histone acetyltransferases 

(HAT) to histone deacetylases (HDAC). A higher HAT/HDAC ratio suggested a more open 

chromatin and higher DNA accessibility. ROS=reactive oxygen species. RNS = reactive 

nitrogen species.
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