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Abstract

Mixture priors provide an intuitive way to incorporate historical data while accounting for 

potential prior-data conflict by combining an informative prior with a noninformative prior. 

However, prespecifying the mixing weight for each component remains a crucial challenge. 

Ideally, the mixing weight should reflect the degree of prior-data conflict, which is often unknown 

beforehand, posing a significant obstacle to the application and acceptance of mixture priors. 

To address this challenge, we introduce self-adapting mixture (SAM) priors that determine the 

mixing weight using likelihood ratio test statistics or Bayes factors. SAM priors are data-driven 

and self-adapting, favoring the informative (noninformative) prior component when there is 

little (substantial) evidence of prior-data conflict. Consequently, SAM priors achieve dynamic 

information borrowing. We demonstrate that SAM priors exhibit desirable properties in both finite 

and large samples and achieve information-borrowing consistency. Moreover, SAM priors are easy 

to compute, data-driven, and calibration-free, mitigating the risk of data dredging. Numerical 

studies show that SAM priors outperform existing methods in adopting prior-data conflicts 

effectively. We developed R package “SAMprior” and web application that are freely available 

at CRAN and www.trialdesign.org to facilitate the use of SAM priors.
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1 | INTRODUCTION

Leveraging historical or real-world data has tremendous potential to enhance the efficacy 

and practicability of clinical trials, especially in the context of rare diseases, pediatric trials 

involving extrapolation from adult to pediatric populations, and bridging studies that extend 

findings from one region or ethnic group to another (ICH, 2022). The 21st Century Cures 

Act, enacted in 2016, recognizes the value of real-world evidence in supporting the approval 

of new indications for approved drugs and fulfilling postapproval study requirements. To 

that end, the Food and Drug Administration (FDA) has issued guidelines on the use of 

real-world evidence in regulatory decision making for medical devices (FDA, 2017), as well 

as a draft guidance on submitting documents using real-world data and evidence to the FDA 

for drugs and biologics in the industry (FDA, 2019).

One of the most intuitive ways to incorporate historical data into a new trial is to use 

an informative prior constructed based on the historical data. However, this method can 

result in bias and inflated type I errors if the current trial data conflict with the prior. 

To address this issue, mixture priors provide an intuitive approach to acknowledge the 

possibility of prior-data conflict and enhance the robustness of information borrowing. In 

its simplest form, a mixture prior mixes an informative prior with a noninformative prior 

(NP) or vague prior, assigning a certain mixing weight to each component. The informative 

prior corresponds to full information borrowing, while the NP corresponds to little-to-no 

information borrowing. An example of a prominent mixture prior is the robust meta-analytic 

predictive (MAP) prior proposed in the seminal work by Schmidli et al. (2014), which mixes 

a MAP prior with a vague prior.

Determining the mixing weight in the mixture prior is critically challenging. The ideal 

weight should reflect the degree of relevance of the historical data to the new trial, or 

the congruence between the two data sets. Unfortunately, this information is typically 

unknown at the outset of the study, making it difficult to prespecify the weight in the 

study protocol. If the weight is overly aggressive toward the informative prior component, 

excessive information borrowing may occur, leading to substantial bias when there is prior-

data conflict. Conversely, if the weight is overly conservative toward the NP component, the 

borrowing of historical data may be limited, undermining the purpose of incorporating the 

historical data. This issue has been a significant barrier to the adoption of mixture priors by 

investigators and regulatory agencies alike.

In this paper, we propose a solution to the aforementioned barrier by introducing self-

adapting mixture (SAM) priors. Our approach addresses the limitation of fixed-weight 

mixture priors by utilizing a data-driven and SAM weight. The SAM prior dynamically 

favors the informative (noninformative) prior component when there is little (substantial) 

evidence of prior-data conflict. Notably, the procedure of constructing the SAM prior can 

be fully prespecified in the study protocol. We show that SAM priors possess desirable 

finite-sample and large-sample properties, ensuring information-borrowing consistency, and 

outperforming existing fixed-weight mixture priors.
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In addition to mixture priors, several other approaches have been proposed to account 

for the possibility of prior-data conflict in information borrowing. Ibrahim and Chen 

(2000, 2003) proposed power priors (PPs), which discount the historical data using a 

power parameter to acknowledge the possibility of prior-data conflict. Hobbs et al. (2011) 

proposed commensurate priors (CPs) that control information borrowing based on the 

commensurability between historical data and current data, while Hobbs et al. (2012, 

2013) extended this approach to generalized linear models and utilized it to adjust the 

randomization ratio adaptively in randomized controlled trials (RCTs). Recently, Jiang et al. 

(2023) proposed elastic priors that proactively control the amount of information borrowing 

based on the similarity between historical and current data through an elastic function.

In addition to these prior-based approaches, Bayesian hierarchical models (BHMs) provide 

a flexible framework for borrowing information among multiple parallel subgroups or data 

resources. Thall et al. (2003) and Berry et al. (2013) proposed using BHMs to borrow 

information from different subgroups. Neuenschwander et al. (2016) used a mixture of 

exchangeable and nonexchangeable priors to improve the robustness of BHMs. Chu and 

Yuan (2018) proposed a calibrated BHM to enhance the dynamic borrowing of BHMs. 

Kaizer et al. (2018) developed a multisource exchangeability BHM to accommodate 

heterogeneity across multiple data sources. Jiang et al. (2021) proposed an easy-to-

implement clustered BHM that clusters multiple arms before borrowing information within 

each cluster using a BHM.

The remainder of this paper is organized as follows. In Section2, we propose SAM priors 

and study their statistical properties. In Section 3, we evaluate the operating characteristics 

of the proposed method using simulation and provide an application example in Section 4. 

We conclude with a brief discussion in Section 5.

2 | METHODS

2.1 | Mixture prior

Consider a new RCT comparing a new test treatment with a control, where relevant 

historical data are available only to the control arm. The objective is to incorporate the 

historical data into the analysis of the new trial and obtain posterior inference for the 

parameter of interest θ representing the treatment effect. Let y denote the endpoint of 

interest, Dℎ = yℎ1, …, yℎnℎ  denote the historical data collected from nℎ independent subjects, 

and D = y1, …, yn  denote the new trial data collected from n independent subjects in the 

control arm. As relevant historical data are only available to the control, we will focus on 

the posterior inference of θ for the control arm. The posterior inference for the treatment 

arm will be done using standard Bayesian methods, for example, using a conventional NP 

or vague prior. To simplify the presentation, following Schmidli et al. (2014), we assume 

that no nuisance parameters are present. Although we focus on RCTs with information 

borrowing for the control, the proposed method is also applicable to RCTs aiming to borrow 

information for both treatment and control arms, such as pediatric trials with relevant adult 

data or bridging trials with historical data from other regions or ethnic groups, as well as 

single-arm trials with relevant historical data.
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We assume that an informative prior, denoted by π θ ∣ Dℎ , has been constructed based on 

Dℎ using a certain methodology. For example, when Dℎ is from a single study, π θ ∣ Dℎ

can be constructed by applying Bayes’ rule, that is, π θ ∣ Dℎ ∝ π0(θ)p Dℎ ∣ θ , where π0(θ)
denotes an NP or vague prior. When Dℎ consists of multiple studies, a reasonable choice for 

π θ ∣ Dℎ  is the MAP prior. Spiegelhalter et al. (2004) and Falconer et al. (2022) discussed 

various ways to construct an informative prior based on historical data. Importantly, the 

proposed methodology is not tied to any particular informative prior construction method. 

For notational brevity, we shorthand π θ ∣ Dℎ  as π1(θ).

For π0(θ), Schmidli et al. (2014) recommended Jeffreys’ or the uniform prior for binary 

endpoints and unit information priors for other endpoints (Kass & Wasserman, 1995). The 

unit information prior is a vague prior that contains information equivalent to that of one 

observation. Kass and Wasserman (1995) provide a formal definition and rationale for using 

the unit information prior as a reference or automatic prior.

To acknowledge the possibility of prior-data conflict and improve the robustness of the 

inference, Schmidli et al. (2014) proposed fixed-weight mixture priors:

πm(θ) = wπ1(θ) + (1 − w)π0(θ),

(1)

where w is a prespecified fixed mixing weight, representing the prior probability of no 

prior-data conflict between Dℎ and D, which controls the degree of information borrowing 

from Dℎ. When w = 1, πm(θ) achieves full information borrowing; and when w = 0, πm(θ) does 

not borrow any information from Dℎ.

Determining the appropriate value of w is critically challenging. Ideally, w should truly 

reflect the level of prior-data conflict or the degree to which Dℎ is congruent with D. 

However, this information is often unknown in advance. Setting w to a very high value 

can lead to excessive information borrowing, resulting in substantial bias that may cause 

inflation of type I errors or loss of power. Conversely, setting w too low may limit the 

amount of information borrowing, reducing the potential power gain and rendering the 

inclusion of Dℎ pointless. As π1(θ) is constructed to encapsulate the information contained 

in Dℎ, the terms “prior-data conflict” and “incongruence between Dℎ and D” will be used 

interchangeably in the following discussion.

Because π1(θ) and π0(θ) are independent, the posterior resulting from the fixed-weight 

mixture prior (1) is a mixture of two posteriors, with weights updated by normalizing 

constants (Bernardo & Smith, 1994). It is important to recognize that this conjugate structure 

should not be interpreted as the fixed-weight mixture prior to dynamically adjusting its 

weight based on the prior-data conflict. In accordance with Bayes’ rule, the information 

encompassed within the fixed-weight mixture prior will be fully incorporated into the 

posterior at its face value regardless of the degree of prior-data conflict, akin to any other 

informative priors. For instance, if the fixed-weight mixture prior contains the information 

equivalent to 100 patients, then that information will be fully incorporated into the posterior 
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inference. The true benefit of mixture priors lies in their ability to offer heavy-tailed 

distributions, making them less sensitive to prior-data conflict. Schmidli et al. (2014) aptly 

employed the term “robust” instead of “dynamic,” accurately capturing the essence of this 

method.

2.2 | SAM prior

We introduce a data-driven approach for determining the value of w, which yields SAM 

priors capable of dynamically adjusting the mixture weight based on the extent of the prior-

data conflict. Let θℎ denote the treatment effect associated with Dℎ, which may be identical 

to or substantially different from θ. We define the clinically significant difference (CSD) 

in the treatment effect as δ, such that if θℎ − θ ≥ δ, then θℎ is regarded as clinically distinct 

from θ, and it is therefore inappropriate to borrow any information from Dℎ. The appropriate 

value of δ should be determined through consultation with domain experts and regulatory 

bodies, and may vary depending on the disease or condition under study. It is important to 

note that CSD should not be conflated with the minimal CSD, which represents the smallest 

improvement that is clinically meaningful. As CSD represents the threshold beyond which 

no information should be borrowed, it is typically greater than the minimal CSD. For the 

sake of brevity, we assume that CSD is the same in both directions (i.e., θ > θℎ or θ < θℎ), 

although the proposed method can be readily adapted for scenarios in which CSD varies in 

these directions. The inclusion of clinical expertise and knowledge to guide and regulate the 

behavior of information borrowing is a key attribute and advantage of this methodology. A 

similar approach was previously employed in the elastic prior (Jiang et al., 2023). Therefore, 

we refer to the SAM prior and elastic prior as supervised information-borrowing methods, 

while PP, CP, and mixture prior as unsupervised information-borrowing methods.

To begin, we introduce two hypotheses, represented by H0 and H1, as follows:

H0:θ = θℎ, H1:θ = θℎ + δ or θ = θℎ − δ .

(2)

We temporarily assume that θℎ is known. Under H0, π1(θ) and D are consistent and exhibit 

no prior-data conflict, thus it is appropriate to employ π1(θ) to borrow information from 

Dℎ. Conversely, under H1, the treatment effect of D and Dℎ differ to such a degree that 

no information should be borrowed, and the posterior inference of θ should instead utilize 

π0(θ). Given D and θℎ, the extent of information borrowing can be determined by the relative 

likelihood of H0 and H1 being accurate, which can be quantified using the likelihood ratio 

test (LRT) statistic:

R = p D ∣ H0, θ
p D ∣ H1, θ = p D ∣ θ = θℎ

max p D ∣ θ = θℎ + δ , p D ∣ θ = θℎ − δ ,

(3)
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where p(D ∣ ⋅ ) denotes the likelihood. In the denominator of Equation (3), we opt to use the 

maximum of p D ∣ H1, θ  for less aggressive information borrowing to ensure better control 

of bias and minimize type I error inflation.

An alternative Bayesian choice to measure the relative likelihood of H0 and H1 being 

accurate is the posterior probability ratio (PPR):

R = p H0 ∣ D
p H1 ∣ D = p H0

p H1
BF,

(4)

where p H0  and p H1  are the prior probabilities of H0 and H1 being true, respectively, 

which are equivalent to w and 1 − w in the fixed-weight mixture prior (1). BF  is the Bayes 

factor that in this case is the same as the LRT in (3). LRT is a fully data-driven approach 

and is preferred when investigators aim to avoid the subjectivity of prior specification 

on prior-data conflict, as required by the fixed-weight mixture priors. PPR is a partially 

data-driven method that is useful when investigators want to incorporate prior information 

on the prior-data conflict, while also desiring data-dependent correction when the prior is 

mis-specified. When an NP, i.e., p H0 = p H1  is used for PPR, the two approaches are 

equivalent.

The SAM prior is then defined as

πsam(θ) = wπ1(θ) + (1 − w)π0(θ),

(5)

where

w ∝ R = R
1 + R .

(6)

As the level of prior-data conflict increases, R decreases, resulting in a decrease in the 

weight w assigned to informative prior. Thus, πsam (θ) has the ability to self-adjust based on 

the degree of prior-data conflict. In practice, θℎ is unknown and can be substituted with 

an estimate, such as the posterior mean estimate θ ℎ = E π1(θ)  or the maximum likelihood 

estimate, to calculate w.

One significant advantage of the SAM prior, as a mixture prior, is that they are often 

analytically tractable. This substantially simplifies posterior inference, as demonstrated in 

the subsequent section. The computational requirements of utilizing SAM priors are similar 

to those of fixed-weight mixture priors. As Schmidli et al. (2014) have emphasized, the 

tractability of the analysis lowers the barrier to implementation and enables the rapid 

evaluation of operating characteristics. To facilitate the use of the SAM priors, we have 
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developed both R package “SAMprior” and a web application, which are available for free 

on Comprehensive R Archive Network (CRAN) and www.trialdesign.org, respectively.

In certain trial scenarios, researchers are required to fulfill specific performance benchmarks, 

such as ensuring that the maximum type I error within a plausible range of θ remains below 

10%. In such instances, we can set w ∝ Rγ, where γ is a tuning parameter calibrated through 

simulation to satisfy these criteria. Alternatively, for the PPR approach, meeting the criteria 

is also attainable by calibrating the values of p H0  and p H1 .

The SAM prior is an empirical Bayes method as w depends on D. In addition, we investigate 

three alternative approaches: (a) a fully Bayesian approach by assigning w a uniform prior, 

and two modifications of the fixed-weight mixture prior by assigning π0(θ) a bimodal prior 

including (b) the inverse moment (iMOM) prior (Johnson & Rossell, 2010) and (c) a mixture 

of two beta/normal priors with modes at θ ± δ. Methods (b) and (c) aim to account for 

H1 and CSD in the fixed-weight mixture prior. Despite their apparent appeal, none of 

these approaches perform well (see Supporting Information). Similar challenges have been 

observed for PP and CP (Jiang et al., 2023; Neuenschwander et al., 2000).

2.2.1 | Examples with binary and normal endpoints—Consider a binary 

endpoint y Bernoulli(θ), where θ is the response rate. Let x = Σi
nyi denote the number 

of responses among n subjects treated in the control arm. Given a single historical 

data set Dℎ with xℎ responses out of nℎ subjects, a commonly used informative prior is 

π1(θ) = Beta a + xℎ, b + nℎ − xℎ , constructed by applying a beta-binomial model to Dℎ with 

a vague/noninformative prior π0(θ) = Beta(a, b). Schmidli et al. (2014) recommended the 

uniform prior by setting a = b = 1.

Let θ ℎ = a + xℎ / a + b + nℎ  denote the estimate of θℎ implied by π1(θ). The 

SAM prior is given by πsam (θ) = wBeta a + xℎ, b + nℎ − xℎ + (1 − w)Beta(a, b), where 

w = R /(1+R) with R =
θℎ

x 1 − θℎ
n − x

max θℎ + δ x 1 − θℎ − δ n − x, θℎ − δ x 1 − θℎ + δ n − x . Owing to its 

conjugacy, given πsam (θ) and the trial data D, the posterior of θ is given by 

p θ ∣ D, Dℎ = w*Beta a + xℎ + x, b + nℎ + n − xℎ − x + 1 − w* Beta(a + x, b + n − x), where w*

is given by w* = wz1
wz1 + (1 − w)z0

, z0 = B(a + x, n − x + b)
B(a, b) , and z1 = B a + xℎ + x, b + nℎ + n − xℎ − x

B a + xℎ, b + nℎ − xℎ
, 

with B( ⋅ , ⋅ ) standing for beta function. In the case that Dℎ consists of multiple potentially 

heterogeneous data sets, the MAP prior πMAP(θ) can be used as π1(θ). The resulting SAM 

prior is given by πsam (θ) = wπMAP(θ) + (1 − w)Beta(a, b), where w is the same as above with 

θ ℎ = ∫ θπMAP(θ)dθ.

We briefly discuss the SAM prior for a continuous endpoint y N θ, σ2 . Let yℎ and s denote 

the sample mean and standard error of Dℎ. We take π1(θ) = N yℎ, s2/n , obtained as p θ ∣ Dℎ

with NP p θ, σ2 ∝ σ2 −1. Strictly speaking, p θ ∣ Dℎ  follows a t distribution with the degree 

of freedom of nℎ‐1, but it can be well approximated by a normal distribution given that 

nℎ is typically moderate and large. We use the unit information prior as π0(θ), that is, 
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π0(θ) N yℎ, σ2 , where σ2 = s2 is an estimate of σ2. Here, the NP used to obtain π1(θ) is 

different from π0(θ), exemplifying the flexibility of the SAM prior, but π1(θ) can be built upon 

π0(θ). The SAM prior is given by πsam(θ) = wN yℎ, s2/n + (1 − w)N yℎ, s2 , with w =R/ 1 + R

and R = exp{− 1
2Σi = 1

n (yi − θℎ
σ )

2
− max{− 1

2Σi = 1
n (yi − θℎ − δ

σ )
2
, − 1

2Σi = 1
n (yi − θℎ + δ

σ )
2
}}, where θ ℎ = yℎ

and σ is the sample vari ance estimate based on D or the pooled sample estimate based on D
and Dℎ.

The SAM prior method can also be extended to the analysis of survival endpoints. More 

details can be found in the Supporting Information.

2.2.2 | Statistical properties—SAM prior has the following desirable large-sample 

properties. The proof is provided in the Web Appendices.

Theorem 1.: The SAM prior (5) converges to π1(θ) if Dℎ and Dc are congruent (i.e., θℎ = θ), 

and converges to π0(θ) if Dℎ and Dc are incongruent (i.e., θ − θℎ = δ).

Corollary 1.: The SAM prior is information-borrowing consistent in the sense that when the 

sample size of D and Dℎ are large, it achieves full information borrowing contained in π1(θ)
if Dℎ and D are congruent (i.e., θℎ = θ), and it discards Dℎ if Dℎ and D are incongruent (i.e., 

θ − θℎ = δ).

In contrast, some existing information-borrowing methods, such as PPs and CPs, may not 

possess these desirable properties. This is because the observation unit used to estimate 

the information-borrowing parameter (e.g., power parameter, shrinkage parameter) in these 

approaches is the data set rather than the subject (Jiang et al., 2023; Neuenschwander et al., 

2000). Increasing the number of subjects does not guarantee the convergence of the estimate 

of the information-borrowing parameters. Our simulation study, described later, shows that 

compared to PPs and CPs, SAM priors are more responsive and adaptive to prior-data 

conflict and exhibit better performance in controlling bias and type I errors in the presence 

of such conflict. Furthermore, compared to CPs, posterior inference for SAM priors is often 

simpler and analytically trackable. SAM priors are also more flexible and can seamlessly 

handle single or multiple Dℎ by choosing different forms of π1(θ), as described previously. 

This flexibility can be challenging for CPs and PPs.

Compared to elastic priors, which are also information-borrowing consistent, SAM priors 

are simpler. Elastic priors require simulation to calibrate the elastic function to achieve 

desirable finite-sample operating characteristics. In contrast, SAM priors are essentially 

calibration-free. Once the CSD is elicited, SAM priors are fully specified.

Compared to fixed-weight mixture priors, such as robust MAP priors, SAM priors offer the 

advantage of adaptivity and self-adjustment of the mixing weight based on the degree of 

prior-data conflict. This leads to more adaptive information borrowing, resulting in generally 

smaller bias, mean square errors (MSEs), and better type I error control in the presence of 

prior-data conflict, as demonstrated through simulation (see Section 3). In addition, SAM 
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priors are data-driven and remove the need to prespecify mixing weights, thus avoiding 

selection bias and potential data dredging inherent in fixed-weight mixture priors. This 

property of SAM priors aligns with the considerations in the draft Guidance for Industry on 

Interacting with the FDA on Complex Innovative Trial Designs for Drugs and Biological 

Products, which states: “Bayesian CID proposals should include a robust discussion of the 

prior distribution...a Bayesian proposal should also include a discussion explaining the steps 

the sponsor took to ensure information was not selectively obtained or used. In cases where 

downweighting or other non-data-driven features are incorporated in a prior distribution, the 

proposal should include a rationale for the use and magnitude of these features.”

3 | SIMULATION STUDIES

3.1 | Simulation setting

We investigated the operating characteristics of the SAM prior via simulation. We assume 

that Dℎ is a single historical data set, but the results are applicable to Dℎ that consists of 

multiple historical data sets. This is because given π1(θ) and θ ℎ, no matter whether they are 

obtained based on a single data set or multiple data sets (e.g., using the MAP prior), the 

same SAM prior and thus the same results will be obtained. We considered both binary 

and normal endpoints. As shown in Table 1, for the binary endpoint we considered three 

response rates for Dℎ, that is, θℎ = 0.4, 0.3, and 0.2, and generated Dℎ from Bernoulli  θℎ

with sample size nℎ=300,300, and 250, respectively. We generated control arm data D from 

Bernoulli(θ) and varied the value of θ to simulate different degrees of prior-data conflict. 

We generated treatment arm data Dt from Bernoulli θt  and varied the value of θt to simulate 

different treatment effect sizes (see Table 1), and assumed 2:1 randomization between the 

treatment and control arms. When θℎ = 0.4, 0.3, and 0.2, we set the control arm sample 

size n = 150, 150, and 125, respectively, and the treatment arm sample size nt= 300, 300, and 

250, respectively. The sample sizes were chosen such that the power of the methods under 

comparison is mostly in the range of 70–90%. In all simulation scenarios, CSD δ = 0.1 and 

NP π0(θ) Unif(0, 1) were used.

For the normal endpoint, we generated Dℎ from N θℎ = 0, σ2 , the control arm data D

from N θ, σ2 , and the treatment arm data Dt N θt, σ2 , where σ is the standard deviation 

and set as σ = 3. As shown in Table 2, we varied the value of θ to simulate different 

degrees of prior-data conflict, and varied the value of θt to obtain the treatment effect size 

d = θt − θ /σ = 0.2 (small), 0.5 (medium), and 0.8 (large). We assumed 2:1 randomization 

between the treatment and control arms. Given the small, medium, and large effect sizes, 

we set nℎ=350, 60, and 30; n =175, 30, and 12; and nt=350, 60, and 24. The sample size 

was chosen such that power of the designs under comparison was mostly between 70% 

and 90%. We set CSD δ = 0.2σ, 0.5σ, and 0.8σ for small, medium, and large effect size 

setting, respectively, and used a unit information prior (Kass & Wasserman, 1995) as π0(θ), 
that is, π0(θ) = N(0, 3). In both binary and normal endpoint simulations, we considered Dℎ

fixed to imitate the practice (e.g., generated Dℎ once under each setting with the constraint 

that yℎ = θℎ) and generated the replicates of the trial data D and Dt. Under each simulation 

configuration, 2000 simulations were conducted.
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We compared the SAM prior, constructed using LRT, to the following methods: (1) a 

conventional NP approach that ignores the historical data and generates the posterior based 

on π0(θ), (2) a fixed-weight mixture prior with w = 0.5 (Mix50), (3) a PP with a uniform 

prior Unif(0,1) for the power parameter, and (4) a CP with log(τ) Unif( − 30, 30) where τ is 

the shrinkage parameter (Hobbs et al., 2011). The same criterion is used across the methods 

to evaluate the efficacy of the treatment: the treatment is deemed superior to the control if 

Pr θt − θ > 0 ∣ D, Dt, Dℎ > C, where the probability cutoff C is calibrated independently for 

each method using simulation such that the type I error is 5% when the null (i.e., θt = θ) 

is true and that Dℎ and D are congruent (i.e., θℎ = θ). The values of C are provided in the 

Supporting Information.

3.2 | Simulation results

Figure 1 depicts the relative bias and relative mean square error (RMSE) of the posterior 

mean estimate of θ under SAM, Mix50, PP, and CP for the binary endpoint, with NP serving 

as the reference. The relative bias is the difference between the bias of a method and the 

bias of NP, while the RMSE is the difference between the MSE of a method and the MSE 

of NP. Figure 1A indicates that SAM exhibits a uniformly smaller bias than Mix50, CP, 

and PP across the range of θ, implying its better adaptation to prior-data conflict than the 

other methods. SAM’s bias diminishes more rapidly than the other methods as the prior-data 

conflict grows. SAM’s superiority arises from its capability to self-adjust w based on the 

extent of prior-data conflict, as shown in Figure 2. The value of w is highest when θ = θℎ, 

but quickly decays as θ moves away from θℎ, reducing information borrowing and therefore 

bias. Figure 1B demonstrates a comparable pattern in RMSE. When θ is equal to or near θℎ, 

all methods display similar reductions in MSE due to information borrowing. When θ is very 

near to θℎ, SAM’s MSE is slightly higher than other methods because SAM is data-driven 

and leads to slightly less borrowing after accounting for data uncertainty. When θ deviates 

from θℎ, SAM’s RMSE is substantially lower than the other methods.

Table 1 summarizes the type I error rate and power of the different methods. All methods 

are calibrated to control the type I error rate at 5% under the null hypothesis where 

θt = θ (scenario 1.1). In scenarios 1.2–1.4 where the treatment is effective, SAM exhibits 

substantial power gain over NP and shows higher or comparable power to Mix50, PP, and 

CP. For example, in scenario 1.2, the power of SAM is 22.6% higher than that of NP. 

Scenarios 1.5–1.8 represent the situations where there is prior-data conflict between Dℎ and 

D. In scenarios 1.5–1.6 where the treatment is not effective, SAM outperforms Mix50, PP, 

and CP in controlling type I errors. For instance, in scenario 1.6, the type I error of SAM is 

8.4%, whereas the type I error of Mix50 is 12.2%, and the type I errors of PP and CP are 

26.2% and 20.0%, respectively. In scenarios 1.7–1.8 where the treatment is effective, SAM 

exhibits higher power to detect the treatment effect than that of PP and CP. For example, in 

scenario 1.8, the power of SAM is 73.9%, while the power of Mix50, PP, and CP are 60.0%, 

44.6%, and 47.4%, respectively. The results under θℎ = 0.3 (scenarios 2.1–2.8) and θℎ = 0.2
(scenarios 3.1–3.8) are similar to scenarios 1.1–1.8.
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Figure 3 displays the relative bias and RMSE for a normal endpoint, while Table 2 

summarizes the corresponding type I error and power. The findings are largely consistent 

with those observed for the binary endpoint. Specifically, SAM demonstrates superior 

adaptability to prior-data conflict, as evidenced by its uniformly lower bias than Mix50, 

CP, and PP. When little to no prior-data conflict is present, SAM yields a similar reduction 

in MSE as the other methods, but it produces lower MSE in scenarios with substantial 

prior-data conflict. Furthermore, SAM yields comparable power gain to Mix50, CP, and PP 

when there is little to no prior-data conflict, while demonstrating better type I error control 

and higher power in the presence of prior-data conflict.

We also investigated the operating characteristics of the SAM prior for a survival endpoint. 

The results are generally consistent with those of the normal and binary endpoints, see the 

Supporting Information for details.

3.3 | Sensitivity analysis

To assess the sensitivity of the SAM prior to the specification of CSD, we considered 

δ = 0.15 for the binary endpoint. The results are similar to those with δ = 0.1 and provided in 

the Supporting Information (Figure S1 and Table S1). For the normal endpoint, the primary 

simulation considered varying CSDs, showing similar robustness. In addition, we examined 

how the mixture weight varied in relation to the CSD for both binary and continuous 

endpoints and presented the findings in the Supporting Information (Figure S4). The results 

demonstrate that the mixture weights are peaked within the CSD and drop significantly 

beyond that as the prior-data conflict increases. We also evaluated the performance of the 

SAM prior constructed using PPR. The results are similar to these described above and 

provided in the Supporting Information.

4 | APPLICATION

Ankylosing spondylitis is a chronic immune-mediated inflammatory disease characterized 

by spinal inflammation, progressive spinal rigidity, and peripheral arthritis. Consider 

a randomized clinical trial to compare a treatment with a control in patients with 

ankylosing spondylitis. The primary efficacy endpoint is binary, indicating whether a patient 

achieves ≥20% improvement at week six according to the Assessment of SpondyloArthritis 

International Society criteria (Anderson et al., 2001). Nine historical data sets are available 

for the control; see the Supporting Information (Table S5) for the data set (Wang et al., 

2021). The response rate of the historical controls varies from 0.17 to 0.47, with the 

sample size ranging from 6 to 153. The MAP prior was constructed and served as π1(θ)
to incorporate the historical control data. The resulting MAP prior is approximated by a 

mixture of conjugate priors, given by π1(θ) = 0.63Beta(42.5, 77.2) + 0.37Beta(7.2, 12.4). The 

mean of MAP prior is θ ℎ = 0.36.

To evaluate the performance of the SAM prior for this trial, we conducted simulations 

by generating the control arm data D from Bernoulli(θ) while varying the value of θ to 

simulate scenarios with varying degrees of prior-data conflict. The treatment arm data Dt

were generated from Bernoulli θt  with different values of θt representing different treatment 
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effect sizes. The total sample size of the trial is 105, randomized in a 1:2 ratio to the control 

and treatment arms. We considered the treatment arm to be superior to the control arm 

if Pr θt − θ > 0 ∣ D, Dt, Dℎ > C, where C was calibrated by simulation to control the type I 

error at 5% under the null hypothesis. We set δ = 0.2 and π0(θ) Unif(0, 1). We compared the 

performance of the SAM prior with the robust MAP prior. For the robust MAP prior, we 

considered two choices of weight, namely, w = 0.5 or 0.9, denoted as Mix50 and Mix90, 

respectively. We also used the NP approach that ignores the historical data as a reference.

Figure 4 displays the relative bias and MSE for Mix50 and SAM based on 2000 simulations. 

SAM has a uniformly lower bias than Mix50. Although the RMSE of SAM is slightly 

higher than Mix50 when prior-data conflict is minor, it is substantially lower than Mix50 

when prior-data conflict presents. Table 3 summarizes the type I error rate and power of the 

two methods. When prior-data conflict is minimal, SAM yields comparable power to the 

corresponding robust MAP, which is substantially higher than NP. However, when prior-data 

conflict is present, SAM demonstrates better type I error control and higher power than 

the robust MAP. For example, in scenario 6 the type I error of SAM is 10.3%, whereas 

the type I error of Mix50 and Mix90 is 12.8% and 25.0%, respectively. In scenario 8, the 

power of SAM is 11.3% and 28.7% higher than that of Mix50 and Mix90. The superior 

performance of SAM can be attributed to its adaptive self-adjustment of the mixing weight 

according to prior-data conflict (see Figure 4C). We noted that one trial (Baeten et al. 2013) 

used to generate the MAP prior has a small sample size (n = 6). We conducted a sensitivity 

analysis by excluding that data set. The results are similar and reported in the Supporting 

Information.

5 | CONCLUSION

We have proposed SAM priors as a means of achieving dynamic information borrowing 

from historical data. The SAM prior is both data-driven and self-adapting, favoring the 

informative (noninformative) prior component when there is little (substantial) evidence 

of prior-data conflict. This approach helps to circumvent selection bias and potential data 

dredging, which may compromise the fixed-weight mixture prior approach. Our findings 

demonstrate that SAM priors possess desirable finite-sample and large-sample properties, 

ensuring information-borrowing consistency. Simulation shows that SAM outperforms 

fixed-weight mixture priors and other existing methods, demonstrating better adaptation 

to prior-data conflict.

The SAM prior is highly flexible, enabling researchers to utilize different existing methods 

to construct the informative prior component π1(θ). This customization facilitates targeted 

information borrowing. For instance, in a small pediatric trial that seeks to leverage 

information from a large adult data set containing thousands of observations, it may be 

preferable to limit the maximum amount of information borrowed from historical data. 

To achieve this, researchers can either inflate the variance of p θ ∣ Dℎ  or employ a PP (to 

downweight the likelihood) when constructing π1(θ).

We view the requirement for CSD specification as a significant advantage of the SAM prior, 

rather than a drawback, compared to fixed-weight mixture priors and other methods such as 
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PP and CP. Information-borrowing methods inevitably entail trade-offs between type I error 

inflation and power, as well as between bias and efficiency. Therefore, clinical knowledge 

and judgment, such as CSD specification, are crucial for informing the analysis and design 

and regulating the operating characteristics of the method. This reflects clinical practice and 

accommodates the unique characteristics of individual trials. Furthermore, our sensitivity 

analysis reveals that SAM priors are not significantly impacted by certain variations in CSD, 

reinforcing their robustness.

Some may worry that the SAM prior doubly utilizes the data, like other empirical Bayes 

approaches. In the context of borrowing information through shrinkage estimates, empirical 

Bayes has been shown to perform well and often yield more sensible results than full Bayes 

(Carlin & Louis, 2000; Efron & Morris, 1971, 1972). Our simulation results also support 

this conclusion.

Measuring the amount of information borrowed from historical data is often of interest, with 

effective sample size (ESS) being a common metric. However, the calculation of ESS for 

mixture priors presents some challenges. Wiesenfarth and Calderazzo (2020) studied several 

approaches and found that the method of Morita et al. (2008) is unsuitable for mixture 

priors due to the limited characterization of information in mixture distributions. Alternative 

approaches, such as Schmidli et al. (2014) and Gravestock and Held (2019), better capture 

the characteristics of mixture distributions but are not data-dependent. Wiesenfarth and 

Calderazzo (2020) and Reimherr et al. (2021) proposed data-dependent ESS approaches. 

For SAM priors, we prefer the latter two methods as they align with the objective of 

achieving dynamic borrowing. However, ESS calculation is a complex concept that depends 

on the choice of a reference NP and the measure of information, for which there is no 

consensus. Different approaches may yield different ESS values. Further research is needed 

to appropriately measure the information of mixture priors.

The SAM prior does not currently incorporate covariate information, which could further 

improve the efficiency of information borrowing. Along the line of Wang et al. (2019), one 

practical solution is to first use propensity score matching to identify a subset of Dℎ that is 

comparable to the current trial population based on covariates, and then apply the SAM prior 

to borrow information from the subset. This propensity score-integrated approach increases 

the chance of borrowing information by leveraging more congruent data, while also reducing 

the impact of violating the assumption of no nonmeasured confounders required by the 

propensity score method. This approach possesses a double robustness property. However, 

it is important to choose an appropriate posterior probability cutoff C to control type I error 

given the added step of propensity score matching. In addition, using patient-level covariates 

can standardize other elements that may make the data more congruent, such as the length of 

follow-up for the response and response criteria, which will be the focus of future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
(A) Relative bias and (B) relative mean square error (RMSE) for the posterior mean estimate 

of θ for the self-adapting mixture (SAM) prior, mixture prior with w = 0.5 (Mix50), power 

prior (PP), and commensurate prior (CP) for a binary endpoint, with a noninformative prior 

(NP) as the reference. The vertical dotted line indicates θ = θℎ. This figure appears in color 

in the electronic version of this article, and any mention of color refers to that version. MSE, 

mean square error.
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FIGURE 2. 
Mixture weight for the self-adapting mixture (SAM) prior is self-adapting to prior-data 

conflict (i.e., θ − θℎ) for binary and normal endpoints. The vertical dotted line indicates 

θ = θℎ. This figure appears in color in the electronic version of this article, and any mention 

of color refers to that version.
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FIGURE 3. 
(A) Relative bias and (B) relative mean square error (RMSE) for the posterior mean estimate 

of θ for the self-adapting mixture (SAM) prior, mixture prior with w = 0.5 (Mix50), power 

prior (PP), and commensurate prior (CP) for a normal endpoint, with a noninformative prior 

(NP) as the reference. The vertical dotted line indicates θ = θℎ. This figure appears in color 

in the electronic version of this article, and any mention of color refers to that version. MSE, 

mean square error.
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FIGURE 4. 
(A) Relative bias and (B) relative mean square error (RMSE) for the posterior mean estimate 

of θ for the self-adapting mixture (SAM) prior and robust meta-analytic predictive (MAP) 

prior with w = 0.5 (Mix50) and 0.9 (Mix90) in ankylosing spondylitis trial. Panel (C) depicts 

how the weight of the SAM prior self-adapts to prior-data conflict (i.e., θ − θℎ). The vertical 

dotted line indicates θ = θℎ. This figure appears in color in the electronic version of this 

article, and any mention of color refers to that version. MSE, mean square error.
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TABLE 1

Type I error rate and power when using a noninformative prior (NP), self-adapting mixture (SAM) prior, 

mixture prior with w = 0.5 (Mix50), power prior (PP), and commensurate prior (CP) with a binary endpoint.

Scenario θ θt NP SAM Mix50 PP CP

Case 1:θℎ = 0.4
Congruent

1.1a 0.4 0.4 0.051 0.051 0.050 0.050 0.051

1.2 0.4 0.5 0.636 0.862 0.878 0.875 0.874

1.3 0.41 0.51 0.655 0.866 0.903 0.904 0.910

1.4 0.38 0.48 0.636 0.822 0.828 0.820 0.817

Incongruent

1.5a 0.5 0.5 0.056 0.160 0.221 0.271 0.329

1.6a 0.55 0.55 0.056 0.084 0.122 0.262 0.200

1.7 0.3 0.4 0.657 0.652 0.480 0.490 0.413

1.8 0.25 0.35 0.690 0.739 0.600 0.446 0.474

Case 2:θℎ = 0.3
Congruent

2.1a 0.3 0.3 0.050 0.051 0.050 0.051 0.050

2.2 0.3 0.4 0.657 0.888 0.894 0.890 0.902

2.3 0.31 0.41 0.649 0.882 0.908 0.912 0.912

2.4 0.28 0.38 0.667 0.852 0.854 0.839 0.840

Incongruent

2.5a 0.4 0.4 0.048 0.140 0.208 0.260 0.310

2.6a 0.45 0.45 0.049 0.079 0.122 0.253 0.186

2.7 0.2 0.3 0.720 0.711 0.544 0.554 0.453

2.8 0.17 0.27 0.773 0.804 0.646 0.544 0.518

Case 3:θℎ = 0.2
Congruent

3.1a 0.2 0.2 0.051 0.050 0.050 0.050 0.050

3.2 0.2 0.3 0.698 0.881 0.912 0.904 0.902

3.3 0.21 0.31 0.696 0.882 0.922 0.904 0.926

3.4 0.18 0.28 0.707 0.867 0.886 0.868 0.874

Incongruent

3.5a 0.3 0.3 0.058 0.144 0.211 0.264 0.304

3.6a 0.35 0.35 0.054 0.074 0.136 0.251 0.190

3.7 0.1 0.2 0.832 0.796 0.658 0.638 0.550

3.8 0.07 0.17 0.898 0.876 0.782 0.635 0.688

a
Type I error.
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TABLE 2

Type I error rate and power when using a noninformative prior (NP), self-adapting mixture (SAM) prior, 

mixture prior with w = 0.5 (Mix50), power prior (PP), and commensurate prior (CP) with a normal endpoint. 

The mean of Dℎ is θℎ = 0.

Scenario θ θt NP SAM Mix50 PP CP

Case 1: small effect sized = 0.2

Congruent

1.1a 0 0 0.051 0.051 0.050 0.050 0.050

1.2 0 0.6 0.712 0.910 0.922 0.912 0.926

1.3 −0.1 0.5 0.712 0.874 0.892 0.878 0.894

1.4 0.1 0.7 0.712 0.898 0.932 0.936 0.949

Incongruent

1.5a 0.9 0.9 0.046 0.070 0.134 0.326 0.205

1.6a 0.6 0.6 0.046 0.140 0.251 0.336 0.328

1.7 −0.6 0 0.709 0.652 0.532 0.526 0.460

1.8 −0.9 −0.3 0.708 0.726 0.617 0.430 0.512

Case 2: medium effect sized = 0.5

Congruent

2.1a 0 0 0.051 0.051 0.050 0.051 0.051

2.2 0 1.5 0.736 0.901 0.908 0.926 0.940

2.3 −0.2 1.3 0.734 0.888 0.892 0.903 0.916

2.4 0.1 1.6 0.737 0.896 0.912 0.938 0.950

Incongruent

2.5a 1.5 1.5 0.052 0.126 0.161 0.324 0.312

2.6a 1.8 1.8 0.052 0.088 0.139 0.338 0.264

2.7 −1.5 0 0.724 0.703 0.593 0.522 0.454

2.8 −1.8 −0.3 0.722 0.725 0.606 0.443 0.433

Case 3: small effect sized = 0.8

Congruent

3.1a 0 0 0.051 0.051 0.050 0.051 0.050

3.2 0 2.4 0.708 0.893 0.872 0.936 0.931

3.3 −0.3 2.1 0.704 0.884 0.860 0.906 0.912

3.4 0.1 2.5 0.708 0.890 0.874 0.941 0.939

Incongruent

3.5a 2.4 2.4 0.064 0.112 0.150 0.340 0.294

3.6a 2.7 2.7 0.066 0.094 0.136 0.350 0.262

3.7 −2.4 0 0.678 0.694 0.588 0.456 0.392

3.8 −2.7 −0.3 0.672 0.704 0.592 0.402 0.411

a
Type I error; Effect size d = θt − θ /σ.
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TABLE 3

Type I error rate and power of the self-adapting mixture (SAM) prior, in comparison with the robust meta-

analytic predictive (MAP) prior with w = 0.5 (Mix50) and 0.9 (Mix90), for ankylosing spondylitis trial.

Scenario θ θt NP SAM Mix50 Mix90

Congruent

1a 0.36 0.36 0.050 0.051 0.050 0.050

2 0.36 0.56 0.649 0.805 0.817 0.880

3 0.37 0.57 0.634 0.821 0.816 0.897

4 0.34 0.54 0.611 0.792 0.807 0.862

Incongruent

5a 0.56 0.56 0.058 0.117 0.143 0.277

6a 0.61 0.61 0.053 0.103 0.128 0.250

7 0.16 0.36 0.742 0.679 0.585 0.463

8 0.11 0.31 0.753 0.765 0.652 0.478

a
Type I error.
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