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Abstract

Dilated cardiomyopathy (DCM) is defined as dilation and/or reduced function of one or both 

ventricles and remains a common disease worldwide. An estimated 40% of cases of familial 

DCM have an identifiable genetic cause. Accordingly, there is a fast-growing interest in the 

field of molecular genetics as it pertains to DCM. Many gene mutations have been identified 

that contribute to phenotypically significant cardiomyopathy. DCM genes can affect a variety of 

cardiomyocyte functions, and particular genes whose function affects the cell–cell junction and 

cytoskeleton are associated with increased risk of arrhythmias and sudden cardiac death. Through 

advancements in next-generation sequencing and cardiac imaging, identification of genetic DCM 

has improved over the past couple decades, and precision medicine is now at the forefront of 

treatment for these patients and their families. In addition to standard treatment of heart failure and 

prevention of arrhythmias and sudden cardiac death, patients with genetic cardiomyopathy stand to 

benefit from gene mechanism–specific therapies.
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EPIDEMIOLOGY AND PATHOGENESIS OF DILATED CARDIOMYOPATHY

The cardiomyopathies are defined as myocardial disorders with abnormal structure or 

function of the heart. Broadly, these can be subdivided into dilated cardiomyopathy 

(DCM), hypertrophic cardiomyopathy (HCM), arrhythmogenic cardiomyopathy (ACM), 

and left ventricular noncompaction cardiomyopathy. DCM is characterized by dilation 

and loss of function of one or both ventricles and can be due to secondary causes such 

as infiltrative disease, metabolic derangements, valvular disease, toxins, medication, and 

many more. Although ischemic cardiomyopathies are more common in the United States 

(59% versus 41%) (1), patients with nonischemic DCM are more likely to be women, 

nonwhite, and younger than those with ischemic cardiomyopathies. The true prevalence of 
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nonischemic DCM is not fully identified but is likely underestimated. An epidemiological 

study performed in Olmstead county, MN, from 1975 to 1984 using autopsy data, 

echocardiography, and angiography found a DCM prevalence of 36.5 in 100,000 patients 

and a man-to-woman ratio of 3:4 (2). This differs from several other studies performed in 

various regions, a difference that may reflect geographical and ethnic contributions to the 

frequency of DCM (3–6). Up to 50% of nonischemic DCM is genetic or idiopathic (7). 

Familial DCM is defined as (a) the presence of two or more relatives with DCM or (b) the 

presence of one relative with DCM and sudden cardiac death (SCD) prior to the age of 35 

years. An estimated 40% of cases of familial DCM have an identifiable genetic cause (8). 

As such, there is a fast-growing interest in the field of molecular genetics as it pertains to 

DCM. Many genes have been identified that may contribute to phenotypically significant 

cardiomyopathy (9).

HCM:

hypertrophic cardiomyopathy

ACM:

arrhythmogenic cardiomyopathy

A significant portion (20–38%) of DCM may have an oligogenic basis; multiple rare 

variants from different unlinked loci and inconstant penetrance may cause a similar 

phenotype of DCM. The effects of environmental insults such as myocarditis, chemotherapy, 

and alcohol on the phenotypic expression of DCM in patients with genetic mutations 

are termed gene–environment interactions (GxE) and have also been studied (10, 11). In 

contrast, HCM and ACM fit more classically into a Mendelian model due to few highly 

penetrant rare variants affecting the sarcomere or desmosome, respectively. In fact, for HCM 

and ACM, a single mutation may explain most genetic causes in individual families (12–14). 

As with HCM, variants in the sarcomere genes are a frequent cause of DCM. For example, 

truncating mutations in the giant sarcomeric protein Titin (TTN) are the most common cause 

of DCM in adults but may also cause HCM (15–18) in rare cases. Mechanistically, the 

distinction from HCM is that DCM variants of the sarcomere gene are generally a loss-of-

function mutation resulting in impaired force generation and decreased systolic function of 

the ventricle. DCM-causing mutations are not limited to the sarcomere. They may affect 

force transmission, mechanical stress, signaling, desmosomal proteins, nuclear structure and 

function, ion channel activity, protein turnover, and calcium hemostasis (19).

As with adults, genetic testing has become integral to the diagnosis, prognostication, and 

treatment of the pediatric population. Although DCM variants that directly disturb aspects 

of cardiomyocyte function are also present in younger patients, many genes associated with 

inborn errors of metabolism cause DCM (20, 21). Interestingly, a genetic cause in a pediatric 

patient is identified more commonly than in an adult patient (54% versus 27%) (22, 23). 

The 5-year survival in pediatric DCM that is familial is 94%, but this same cohort of 

patients has a relatively high 5-year transplantation rate of 38% (24, 25). These trends differ 
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in idiopathic DCM and myocarditis, emphasizing the importance of genetic testing in all 

pediatric patients with DCM (26).

DIAGNOSIS AND IMAGING

When evaluating for genetic DCM, it is essential to perform a detailed medical history. 

In addition, clinicians should obtain baseline hematologic and metabolic data, as well as a 

baseline electrocardiogram, which may abnormal in HCM, ACM, or DCM. Furthermore, 

patients should undergo ambulatory cardiac monitoring to evaluate arrythmia burden for 

further risk stratification. Building a detailed three-generation family history is crucial for 

determining risk factors for disease progression and SCD as well as classifying cases as 

familial or sporadic DCM (27). Echocardiography should be included in the initial work-

up and screening for patients with suspected DCM. Cardiac magnetic resonance imaging 

(CMRI) can also be useful in characterization of cardiomyopathy and is frequently utilized 

in the diagnosis of genetic DCM.

The imaging diagnosis of DCM on echocardiogram is defined as the presence of fractional 

shortening of <25%, left ventricular ejection fraction (LVEF) of <45%, and left ventricular 

end diastolic diameter of >2.7 cm/m2 or >117% predicted when corrected for age and body 

surface area (>2 standard deviations from the upper limits of normal values) (28). Any 

known secondary cause of myocardial disease must be excluded prior to making a diagnosis 

of genetic or idiopathic DCM (29). Phenotype-negative individuals who have confirmed 

variant mutations for DCM may undergo screening by echocardiography every 1–5 years.

Echocardiography

On 2D echocardiography, the LVEF is assessed using the biplane Simpson method with 

the use of contrast agents to opacify the left ventricular endocardium in the case of poor 

image quality (30). Linear measurements for estimation of LVEF (Teichholz method) 

should be avoided due to inaccuracy. Also useful in the estimation of LVEF is 3D 

echocardiography, which has shown greater reproducibility, accuracy, and inter- and intra-

reader consistency when compared to conventional 2D echocardiography techniques (31, 

32). This improvement is likely due to several factors, including geometric assumptions 

with 2D echocardiography in which the heart is modeled as an ellipsoid shape, multiple 

acquisitions with 2D that can introduce more error, and foreshortening that can affect 

2D calculation. Compared to CMRI, a 3D echocardiogram underestimates left ventricular 

volumes due to overall lower spatial resolution.

Aside from the imaging definition of DCM, other associated findings may be present on a 

DCM patient’s echocardiogram. As DCM progresses, the left ventricle continues to remodel, 

becoming more spherical. This change is directly measured by an increased ratio of the 

short axis to the long axis (33). Functional mitral regurgitation results from dilation of the 

mitral valve annulus and consequent tethering of the mitral valve leaflets. Careful attention 

should be given to evaluate for left ventricular thrombus, pulmonary hypertension, and right 

ventricular dysfunction or dilation.
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Cardiac Magnetic Resonance Imaging

CMRI is currently the gold standard for assessment of biventricular volumes and 

function (34). In addition, the main strength of CMRI is the enhanced ability for tissue 

characterization and scar pattern analysis (35–38). It is a useful additional test in conjunction 

with echocardiography to further characterize the phenotype of DCM, as well as to rule out 

secondary causes of DCM (39). For instance, postischemic DCM with severe myocardial 

hypoperfusion or scarring may have a similar phenotype of ventricular dilation with 

reduced function but have distinctive findings on CMRI compared with nonischemic DCM, 

associated with different prognosis and treatment (40).

Late gadolinium enhancement (LGE) imaging comprises a standard sequence with CMRI 

to evaluate for focal myocardial fibrosis. A majority (58%) of DCM patients have no LGE, 

while up to 28% may have a characteristic midmyocardial pattern of enhancement (41, 

42). The presence or absence of LGE has large prognostic implications. A study following 

472 patients with DCM for 5.3 years noted that those with midmyocardial LGE had a 

threefold increase in all-cause mortality and fivefold increase in a composite end point of 

SCD and aborted SCD. A smaller study with 65 patients also showed worse prognosis for 

DCM patients with midmyocardial LGE, reporting an eightfold increase in heart failure, 

appropriate internal defibrillator (ICD) firing, and cardiac death (43).

ICD:

internal defibrillator

There is overlap between ACM and DCM. Specific genes such as LMNA, SCN5A, FLNC, 

RBM20, PLN, DSP, DES, and TMEM43 can cause an arrhythmogenic DCM and may 

require ICD outside of the traditional primary prevention criteria (44–49). CMRI is also 

used clinically in DCM patients for additional SCD risk stratification. For example DSP 
and FLNC mutations may have a characteristic extensive ring-shaped LGE, which is a 

midmyocardial or subepicardial LGE pattern in three contiguous walls on the short axis 

view (50). Other forms of DCM do not typically present with this ring-shaped enhancement 

and can have heterogenous scar patterns (Figure 1).

Genetics

There have been remarkable achievements in the field of genetics due to advancements in 

next-generation sequencing, and now a person’s entire genome can be evaluated with a 

single test. Many gene variants have been identified in the pathogenesis of DCM (Table 1). 

Most of the DCM genes are inherited in an autosomal dominant pattern and have variable 

penetrance (51). Autosomal recessive, X-linked, mitochondrial inheritance patterns and de 

novo mutations also occur (52). As discussed, DCM genes encode a wide variety of cellular 

functions.

TTN

The giant protein TTN forms the “elastic” filament of the sarcomere, essential for the 

mechanical compliance of the heart muscle (53). TTN is the largest macromolecule in the 
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human body, composed of 27,000–33,000 amino acids, and is encoded by the gene TTN, 

which contains 363 exons. It is heavily expressed in striated muscle tissue including cardiac 

myocytes (54). Modifications at the genetic, transcriptional, and post-translational levels can 

lead to loss or gain of function and present as HCM, ACM, or DCM. Truncating TTN 
variants (TTNtv) are the most common causes of genetic DCM, accounting for 20–25% of 

all cases. Interestingly, at least a subset of peripartum cardiomyopathy cases are attributable 

to TTNtv (55, 56). Greater than 60,000 missense variants of TTN have been identified, but 

the clinical significance of missense variations in TTN remains unknown (9).

LMNA

LMNA missense and truncating mutations account for up to 8% of genetic DCM cases. 

Proteins Lamin A and Lamin C are encoded by the LMNA gene via differential splicing. 

Mutations in LMNA lead to phenotypic expressions including premature aging, myopathies, 

and DCM (57). LMNA mutations also lead to conduction abnormalities, atrial and 

ventricular arrythmias, and SCD, which usually precede DCM and have nearly complete 

penetrance by the seventh decade of life (58, 59).

PLN

The gene PLN encodes phospholamban, a small, 52–amino acid transmembrane protein 

that inhibits sarcoplasmic reticulum Ca2+ATPase in its unphosphorylated form. The R14del 

mutation of PLN is a founder mutation in the Netherlands and Germany, associated with 

ACM and DCM. Although, as with other DCM genes, mutations in PLN have variable 

penetrance, lethal arrythmias have been described (60, 61).

RBM20

The gene RBM20 encodes the RNA binding motif 20 protein, a 1,227–amino acid protein 

that is expressed in both the atria and the ventricles. Mutations in RBM20 are responsible 

for 1–5% of genetic DCM (62). RBM20 function regulates cardiac splicing including the 

splicing of TTN. Thus, given the downstream consequences of RBM20 mutations, their 

presentation may be similar to those of TTNtv.

SCN5A

The gene SCN5A encodes the alpha unit of the main cardiac sodium channel, Nav1.5 (63). 

Mutations in this gene have been associated with ACM syndromes such as Brugada and long 

QT syndrome. Missense mutations in SCN5A have also been identified in DCM and carry a 

higher risk for arrythmias (46, 47).

Cytoskeletal Genes

Various genes encode cardiac cytoskeletal proteins and are associated with DCM. Mutations 

in the dystrophin gene can lead to DCM in Duchenne’s muscular dystrophy, which has 

an X-linked inheritance pattern (64). Mutations in the sarcoglycan genes can also produce 

cardiomyopathy associated with muscular dystrophy from sarcolemmal instability. The gene 

FLNC encodes filamin C, and mutations have been described in both ACM and DCM. 

Filamin C has a critical function in cardiomyocytes, interacting with actin, Z-disk, the 
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desmosome, and the dystrophin complex (65). Truncation mutations in FLNC cause DCM 

that is associated with a high rate of arrythmias and SCD (66).

MANAGEMENT AND EMERGING THERAPIES

The current standard treatment of DCM with reduced LVEF (<40%) is directed toward 

heart failure, aiming to promote reverse remodeling, improve left ventricular dilation, and 

improve cardiac function. The current guidelines include a combination of four evidence-

based therapies (67): (a) angiotensin-converting enzyme inhibitors, angiotensin receptor 

blockers, or angiotensin receptor/neprilysin inhibitor; (b) evidence-based beta-blockers; (c) 

aldosterone antagonists; and (d) SGLT2 (sodium-glucose transport protein 2) inhibitors. 

Reassessment of LVEF is typically performed after 3 months of uninterrupted medical 

therapy. Patients with persistently low LVEF (<35%) are at high risk for SCD and benefit 

from ICD (67), while those with a wide QRS (>150 ms), left bundle branch block, and 

NYHA (New York Heart Association) class II benefit from cardiac resynchronization 

therapy. Finally, patients who have refractory heart failure should be referred for advanced 

therapies including left ventricular assist device and transplant.

However, the heart failure guidelines concept of “one size fits all” does not fully apply 

to DCM. Patients who are carriers of ACM gene mutations, such as mutations of FLNC, 

DSP, LMNA, or PLN, may require ICD based on arrhythmic risk factors (68) rather than 

based on severe left ventricular dysfunction. Also, the understanding of the genetic cause 

provides novel treatment opportunities. Emerging treatments for DCM include gene therapy 

for gene replacement (as in regenerative medicine advanced therapy trials) or direct genome 

editing by CRISPR/Cas-9 technology (currently being tested in vitro and in vivo), signaling 

pathway modifiers [REALM-DCM trial (NCT03439514)], and modifiers of myofilament 

function 9 (65, 69, 70).

CONCLUSIONS

DCM is defined as dilation or loss of one or both ventricles and remains a common disease 

process worldwide. Through advancements in next-generation sequencing and cardiac 

imaging, identification of genetic DCM has improved over the past couple decades, and 

precision medicine is now at the forefront of treatment for these patients and their families. 

In addition to standard treatment of heart failure and prevention of SCD, patients with 

genetic cardiomyopathy stand to benefit from gene mechanism–specific therapies.
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Figure 1. 
Phase-sensitive inversion recovery MRI sequences showing examples of nonischemic 

patterns of LGE in DCM (arrows).

(a) Characteristic ring-like subepicardial LGE in patient with DCM and DSP mutation. 

(b) Anteroseptal midmyocardial LGE in a patient with idiopathic DCM. (c) Patient with 

Duchenne’s muscular dystrophy demonstrating subepicardial LGE of the anterolateral and 

inferolateral walls. Abbreviations: DCM, dilated cardiomyopathy; LGE, late gadolinium 

enhancement; MRI, magnetic resonance imaging.
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Table 1

Genes causing dilated cardiomyopathy

Gene Gene symbol Mode of inheritance Classificationa

ATP Binding Cassette Subfamily C Member 9 ABCC9 AD Limited

Actin Alpha Cardiac Muscle 1 ACTCI AD Moderate

Ankyrin Repeat Domain 1 ANKRDI AD Limited

BAG Cochaperone 3 BAG3 AD Definitive

Cysteine And Glycine Rich Protein 3 CSRP3 AD Limited

Cardiotrophin 1 CTFI AD Limited

Desmin DES AD Definitive

Desmoglein 2 DSG2 AD Limited

Desmoplakin DSP AD Definitiveb

Dystrobrevin Alpha DTNA AD Limited

EYA Transcriptional Coactivator And Phosphatase 4 EYA4 AD Limited

Filamin C FLNC AD Definitive

GATA Zinc Finger Domain Containing 1 GATADI AR Limited

Integrin Linked Kinase ILK AD Limited

Junctophilin 2 JPH2 AR Moderate

Laminin Subunit Alpha 4 LAMA4 AD Limited

LIM Domain Binding 3 LDB3 AD Limited

Lamin A/C LMNA AD Definitive

Leucine Rich Repeat Containing 10 LRRC10 AR NKDR/AMO

MIB E3 Ubiquitin Protein Ligase 1 MIB1 AD NKDR/AMO

Myosin Binding Protein C 3 MYBPC3 AD Limited

Myosin Heavy Chain 6 MYH6 AD Limited

Myosin Heavy Chain 7 MYH7 AD Definitive

Myosin Light Chain 2 MYL2 AD Limited

Myosin Light Chain 3 MYL3 AD Disputed

Myopalladin MYPN AD Limited

Nebulette NEBL AD Limited

Nexilin F-Actin Binding Protein NEXN AD Moderate

NK2 Homeobox 5 NKX2–5 AD Limited

Natriuretic Peptide A NPPA AR NKDR

Obscurin OBSCN AD Limited

PDZ And LIM Domain 3 PDLIM3 AD Disputed

Phospholamban PLN AD Moderateb

Plakophillin 2 PKP2 AD Disputed

Pleckstrin Homology And RUN Domain Containing M2 PLEKHM2 AR Limited

PR/SET Domain 16 PRDM16 AD Limited
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Gene Gene symbol Mode of inheritance Classificationa

Presenilin 1 PSEN1 AD Disputed

Presenilin 2 PSEN2 AD Limited

RNA Binding Motif Protein 20 RBM20 AD Definitive

Sodium Voltage-Gated Channel Alpha Subunit 5 SCN5A AD Definitive

Sarcoglycan Delta SGCD AD Limited

T-Box Transcription Factor 20 TBX20 AD Limited

Titin-Cap TCAP AD Limited

Transmembrane Protein 43 TMEM43 AD Definitiveb

Troponin C1, Slow Skeletal And Cardiac Type TNNC1 AD Definitive

Troponin I3, Cardiac Type TNNI3 AD Moderate

TNNI3 Interacting Kinase TNNI3K AD Limited

Troponin T2, Cardiac Type TNNT2 AD Definitive

Tropomyosin 1 TPM1 AD Moderate

Titin TTN AD Definitive

Vinculin VCL AD Moderate

a
https://www.clinicalgenome.org/.

b
In arrhythmogenic right ventricular cardiomyopathy.

Abbreviations: AD, autosomal dominant; AMO, animal model only; AR, autosomal recessive; NKDR, no known disease relationship.
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