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Abstract

Recent advances in immunotherapy have not addressed the challenge presented by ovarian 

cancer. Although the peritoneum is an “accessible” locus for this disease there has been limited 

characterization of the immunobiology therein. We investigated the ID8-C57BL/6J ovarian cancer 

model and found marked depletion of B1 cells from the ascites of the peritoneal cavity. There 

was also selective loss of the B1 and marginal zone B cell subsets from the spleen. Immunity to 

antigens that activate these subsets validated their loss rather than relocation. A marked influx of 

myeloid-derived suppressor cells correlated with B cell subset depletion. These observations are 

discussed in the context of the housekeeping burden placed on innate B cells during ovarian cancer 

and to foster consideration of B cell biology in therapeutic strategies to address this challenge.
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1. Introduction

Immunity evolved not only to resist external challenges but also to serve in an internal, 

“housekeeping” function that operates in the absence of overt inflammation. Apoptotic, 

senescent, and neoantigen-expressing cells require clearance. In addition, routine, tempered 

engagement with diverse commensal microflora is essential to ensure epithelial integrity 

[1]. The immune system is efficient in these capacities for most of our lifespan. However, 
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with advancing age homeostasis is challenged by genomic instability, cellular senescence, 

immune dysregulation, and microbiome changes, factors increasingly shown to foster the 

emergence of cancer [2].

The barrier role of epithelial linings and the dynamics of their renewal renders their 

maintenance particularly important [3]. The high mitotic activity of underlying stem cells 

and proximity to environmental mutagens can promote cancer in epithelial tissue [4]. 

Typically, cancer evolves over years with the gradual emergence, selection, and persistence 

of cellular variants that influence their local environment, a hallmark being the temperance 

of immunity [5]. This slow evolution and cellular complexity confound study of tumor 

microenvironment (TME) development.

The murine ID8 ovarian cancer (OvCa) model transcends these challenges as a rapidly 

developing carcinoma in an accessible site rich in immunomodulatory molecules and diverse 

immunoregulatory cells [6]. Ascites fluid, characterized as an aqueous TME, accumulates 

in the peritoneal cavity (PerC) as OvCa expands sharing key features found in human 

serous ovarian carcinoma [7–11]. The peritoneal cavity (PerC) is enriched for B-1 B cells 

that produce anti-inflammatory IL-10 and “natural” antibodies, primarily IgM, specific 

for commensal microflora, apoptotic cell ligands, and self-carbohydrates, glycolipids, and 

glycoproteins. These “innate-like” B cells serve a vital role in housekeeping and controlling 

inflammation yet have not been investigated in the ID8 model [12].

In this report, changes in B cell biology during OvCa are described. PerC B-1 B cells 

were found to disappear with advancing disease. Intriguingly, spleen B-1 cells and marginal 

zone B (MZB) were also depleted, whereas B2 cells persisted. The concomitant loss of a 

thymus-independent immune responses associated with these B cell subsets confirmed their 

depletion rather than relocation. This selective loss could reflect the BCR specificity of these 

subsets and their limited potential for self-renewal [13]. The results are discussed in the 

context of the stress placed on innate humoral immunity during ovarian cancer.

2. Materials and methods

2.1 Mice

Two- to six-month old female C57BL/6J mice were obtained from the Jackson Laboratory, 

Bar Harbor, ME. Mice, bred and maintained at Rider University, were handled in accordance 

with NIH, Animal Welfare Act, and Rider University IACUC guidelines. ID8 (H-2b)-

histocompatible female mice bearing xid were generated by crossing H-2d BALB.xid female 

(XdXd) mice with H-2b C57BL/6J (XY) males to generate H-2b/d F1 male (XdY) and 

female (XdX) mice that were then interbred to generate H-2b/d F2 (XdXd, xid) and (XdX, 

wild-type) females for ID8 transfer. The xid trait was tracked by ELISA assessing reduced 

IgM production [14]. Eight to twenty week old female mice were i.p. injected with 5 × 106 

ID8 cells.

2.2 Antigens, immunizations, and ELISA

The commercially available antigens FITC-LPS (TI-1), FITC-Dextran and FITC-Ficoll 

(TI-2), and FITC-OVA (TD) (Fisher-Thermo, Waltham, MA; Sigma Chemical, St. Louis, 
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MO) were injected ip. FITC-OVA was emulsified in CFA prior to injection. Sera were 

collected on day 6 for TI Ags; day 12 for the TD Ag. FITC conjugated to the heterologous 

carrier BSA (FITC-BSA) was used as the ELISA plating Ag. Absorbance values for pre-

immune sera served as the control. ELISA was conducted as described [15].

2.3 In vitro/vivo propagation of ID8 and preparation of cell suspensions

The C57BL/6 ovarian epithelial carcinoma cell line ID8, generously provided by Dr. K.F. 

Roby, U. Kansas Medical Center, was maintained in DMEM containing 4% FBS, 100 u/ml 

penicillin, 100 ug/ml streptomycin, 5 ug/ml insulin, 5 ug/ml transferrin, and 5 ng/ml selenite 

[6]. Cells were washed 2X in sterile PBS prior to injection, 5 × 106 cells in 0.2 mls PBS 

i.p. Animals were evaluated daily for ascites accumulation and euthanized 5–7 days after 

abdominal swelling for peritoneal lavage and organ harvest. Mice were euthanized prior to 

gaining > 20% of their pre-treatment body weight, typically reaching this endpoint 5 to 9 

weeks post injection [7,16]. Cell counts and necropsy revealing tumors on the mesothelium 

validated ID8 expansion

Spleen cell suspensions were generated by gentle mincing with frosted glass slides. RBC 

depletion was performed with ACK (Ammonium-Chloride-Potassium) lysis buffer followed 

by washing with Hanks Balanced Salt Solution (HBSS) buffer. PerC cell suspensions were 

harvested by gentle lavage of the peritoneum. The volume of hemorrhagic ascites was 

recorded and a fraction subjected to hypotonic lysis to remove RBCs. Viable cell counts 

were determined by Trypan Blue (Life Technologies) exclusion.

2.4 Immunofluorescence staining and flow cytometry

B lymphocytes and myeloid cells were identified by multiparameter flow cytometric 

analyses on an Attune NxT (FisherThermo Waltham, MA) or FACSCalibur (Becton 

Dickinson, Franklin Lakes, NJ) flow cytometer by FSC/SSC gating on lymphocytes and 

myeloid populations using FlowJo software. 106 cells were incubated with a “blocktail” 

comprised of 2% 2.4G2 MAb (Fc Block, eBioscience), 3% BSA, and 2% normal rat serum 

(Jackson ImmunoResearch, West Grove, PA) for 20 minutes at 4° C before the addition of 

fluorochrome-labeled MAbs for an additional 30 minutes on ice. Cells were washed with 

FACs buffer before analysis.

The following FITC- or Alexa Fluor® 488-,PE-, PerCP-Cy5.5, PE-Cy7-, APC-, Alex Fluor 

700, and/or APC-Cy7- labeled MAbs (eBioscience, BioLegend, BD Pharmingen, or R&D 

Systems) were used: CD11b (M1/70), CD43 (eBioR2/60), CD21/35 (eBio8D9(8D9)), CD23 

(B3B4), CD93 (AA4.1), CD19 (eBio1D2(1D3)), CD5 (53–7.3), anti-IgM (eB121-15F9), 

anti-IgD (11–26c(11–26)), CD45RB (RA3-6B2), anti-Ly6G/Gr-1 (RB6-8C5), anti-Class II 

MHC (M5/114), anti-F4/80 (BM8) were used.

2.5 Statistical Analyses

Unless specified otherwise, data sets were compared using the Student’s t-test with p-

values below 0.05 considered statistically significant. * = P<0.05, ** = P<0.01, *** = 

P<0.001, **** = P<0.0001compared to each relative control. Multiple testing correction was 

performed on graphs with multiple t-tests using the Holm-Šídák method.
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3. Results

3.1 FACs characterization of hemorrhagic ascites- loss of PerC B-1 cells

Our initial experiments concentrated on characterizing peritoneal cavity (PerC) lymphocyte 

biology during OvCa development in the ID8/C57BL/6J model [6]. Following ip injection of 

the ID8 carcinoma cell line, hemorrhagic ascites develops in ~70% of recipients [6,17]. We 

focused on B cells due to their distinctive subset biology, notably enrichment for B1 cells, 

in the PerC. Based on both percent representation of all lymphocytes and their total number, 

multiparameter FACS analyses revealed depletion of IgM+IgD+ and IgM++IgD− B cells 

in mice with ascites. In contrast, IgM+IgD++ B cells were increased based on percentage 

but comparable to control mice based on cell number (Fig. 1A–C). Based on CD5/CD43 

expression, the frequency and total number of B1a and B1b cells were reduced in ascites 

while the frequency of B2 cells increased and their total numbers were unchanged (Fig. 

1D–F). These data reveal significant depletion of both B1a and B1b B cells, prominent 

“housekeeping” cells that are typically enriched in the PerC.

3.2 Spleen B-1 and MZB cells are depleted in mice with OvCa

The loss of peritoneal B-1 cells in hemorrhagic ascites fostered assessing the impact of 

OvCa on spleen (SP) B cells. As noted in the PerC, IgM+IgD+ and IgM++IgD− B cells 

were depleted in the spleen of mice with OvCa. Again, the percentage of IgM+IgD++ B 

cells increased but the actual number of B2 cells was lower (Fig. 2A–C). Unlike in the 

PerC, the percentage of SP B1 cells was similar to the control. However, as in the PerC, 

both B1 subsets, B1a (CD5loCD43+) and B1b (CD5−CD43+), were reduced in the spleen 

(Fig. 2D–F). In addition, another “innate-like” B cell subset associated with “housekeeping”, 

marginal zone B (MZB; CD21/35+CD1d+) cells, was also depleted in the SP of mice with 

OvCa (Fig. 2F–I) [18].

3.3 Transitional B cell depletion during OvCa

In addition to having “housekeeping” functions, B1 cells exhibit limited reconstitution 

from bone marrow (BM) sourced from adult mice [19,20]. In contrast, B2 cells are 

replenished from BM throughout adult life [20]. To assess B cell production during OvCa, 

we monitored SP transitional B cells, the recent BM emigrants defined by correlated CD93/

CD19/IgM/CD23 expression [21] (Fig. 3). Although the number of both mature (CD93−) 

and immature (CD93+) SP B cells were reduced during OvCa, the percentage of mature 

cells was unchanged (Fig. 3A–C). The number of each of the three (T1, T2, T3) transitional 

subsets was reduced during OvCa (Fig. 3E). However, the percentage of the T3 subset, the 

immediate precursors for B2 (IgM+IgD++) cells, was greater than the control (Fig 3A,D). In 

contrast, the percentage of T2 cells was reduced (Fig. 3A,D). Overall, the transitional B cell 

data were consistent with the B cell subset alterations observed for mature SP B cells [22].

3.4 MDSC expansion in the PerC of mice with OvCa

A hallmark of cancer progression is immune suppression typically manifest by a diverse 

array of regulatory white blood cells [23]. PerC cells are enriched for macrophages, which 

have been shown to suppress lymphocyte activation in vitro [24,25]. Assessing the myeloid 
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fraction of hemorrhagic ascites, we observed a marked influx of myeloid-derived suppressor 

cells (MDSCs) characterized by expression of CD11b and Gr-1 and lacking markers 

typically associated with macrophages (Class II MHC, F4/80; Fig. 4A–C). MDSCs were 

also prominent in the SP, however, unlike in the PerC, a small number of CD11b+Gr-1+ 

cells were typically found in the SP of control mice (not shown). The presence of MDSCs 

in the PerC of mice with OvCa reinforces the proposal that hemorrhagic ascites acts as an 

“aqueous” TME [7].

3.5 Mice bearing xid resist OvCa

In addition to steady state production of “natural” antibodies directed against microflora, B1 

cells constitutively produce IL-10 which tempers inflammation and cell-mediated immunity 

[26]. We speculated that the PerC B1 loss during OvCa might increase inflammation and 

accelerate disease progression. To test this hypothesis, we assessed OvCa development in 

mice expressing the X-chromosome-linked immune deficiency, xid [27]. These mice have 

markedly fewer B1 cells due to defective Bruton’s tyrosine kinase, btk, signaling [28, 29]. 

Compared with wild-type littermates, mice bearing defective btk had slower progression to 

ascites and more of them had no signs of overt disease (Fig. 5). These results were consistent 

with prior research showing better anti-cancer immunity when btk signaling is inhibited 

[30–34].

3.6 Loss of TI-2 antigen response in mice with OvCa

The loss of specific B cell subsets from specific anatomic locations did not preclude their 

relocation to unassessed body sites. To address this concern, mice were immunized with 

thymus-dependent (TD) and thymus-independent (TI) antigens. B1 and MZB cells are 

responsible for the type 2 TI (TI-2) antigen response as well as a small portion of the TD 

response typically associated with B2 cells; all B cells respond to TI-1 antigens, albeit with 

B1 and MZB cells responsible for a significant portion of this response [18,35]. Mice with 

OvCa had significantly reduced TI-2 responses compared to controls, while TI-1 and TD 

responses remained relatively intact (Fig. 6A). Detailed analyses were performed on the TI 

responses between control mice, those receiving ID8 but not developing ascites, and those 

with ascites. While responses to the TI-1 antigen were not significantly different between 

the groups (p = 0.27), there were significant differences between groups responding to TI-2 

antigens (p = 0.0016). Further analysis determined that significantly fewer mice with ascites 

responded to TI-2 antigens than control mice (p = 0.0073; Fig. 6B). These results provide 

functional evidence for the selective loss of B1 and MZB cells in mice experiencing the 

hemorrhagic ascites associated with OvCa.

4. Discussion

Nearly all ovarian cancers are epithelial in origin and the majority metastasize into the 

peritoneum, a site with distinct B cell biology in mice [13,36,37]. However, there has been 

little research of the impact of OvCa on PerC B cells. Herein, we report that PerC B1 

B cells were depleted in mice with hemorrhagic ascites. In contrast, “conventional” (B2) 

B cells persisted. B1 depletion was also observed in the spleen which also exhibited a 

reduction of MZB cells. Reduced immunity to antigens that engage these B cell subsets 
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validated their absence. The loss of B cells correlated with an influx of immunosuppressive 

myeloid cells, a feature found in human ovarian cancer [38]. These results demonstrate that 

an evolving cancer can induce the selective loss of B cell subsets, particularly those that 

maintain tissue homeostasis. They also validate the utility of the ID8 OvCa model to study 

cancer development via ascites, an accessible, “liquid” TME [39].

The question remains as to why these subsets were particularly sensitive to OvCa. An 

obvious factor that could account for the loss of B1 cells is their distinctive distribution. 

Upon activation, B1 cells rapidly accumulate in aggregates of peritoneal adipose tissue, 

particularly within the milky spots of the omentum and splenoportal fat [40–43]. These 

fat-associated lymphoid clusters (FALC) are a source of “natural helper” cells that support 

B1 renewal and IgA production [44]. Typically having a high B1:B2 cell composition, 

the omentum becomes “clogged” in OvCa patients, with impaired drainage contributing to 

ascites accumulation [39,45,46]. This proangiogenic, “premetastatic niche” creates a TME 

enriched with anti-inflammatory cells and adipocytes whose lipids fuel not only tumor 

growth, but also the distinctive fatty acid metabolism of B1 cells [41,47–50]. The success 

of omentectomy as a treatment strategy validates the importance of this site in OvCa 

progression [51–53]. As MZB cells are optimally positioned to filter blood, they are likely 

engaged in the earliest responses to shed OvCa antigens and they too have recently been 

found to have similar metabolic requirements, specifically lipid uptake, as B1 cells [50, 54]. 

Thus, the anatomic distribution of these cells positions them to address the marked antigen 

load of the ascites generated during OvCa expansion.

The limited diversity BCR repertoire of MZB and B1 cells ensures specificities essential 

for housekeeping functions [18]. Antibody production directed at expired RBCs, apoptotic/

necrotic cells, and commensal microflora are routine functions for these cells [12]. 

Marked increases in DAMPs, including glycosylated glycoproteins and glycolipids, and 

lysophosphatidylcholine, are found in the plasma and ascites of ovarian cancer patients, and 

antibodies directed at these antigens have been shown to control carcinoma in this body 

site [55–61]. Dying or dead ID8 cells and their extracellular vesicles/exosomes increase 

antigen burden and tax this housekeeping system [62–64]. The extravascular RBCs and 

hemoglobin of hemorrhagic ascites are endogenous danger signals [65]. Similar B cell 

pathology has been observed during the blood-stage of malaria, the stress-induced RBC 

death (eryptosis) of sepsis, and the RBC-induced apoptotic death of B1 cells during 

autoimmune hemolytic anemia [63,66–71]. OvCa also fosters dysbiotic inflammation, 

evidenced as distinct microbiota in the peritoneal fluid, contributing additional antigen 

burden [72,73]. Linked activation of the BCR and TLR is essential for B-1 activation and 

costimulatory TLR ligands such as mitDNA (TLR-9), HMGB1 (TLR-2,4,9), histones, LPS 

(TLR-4), and hsps (TLR-2,4) are found in ascites [74–79]. In toto, the volume of DAMPs 

generated during OvCa may overwhelm the innate, humoral immunity provided by these 

cells, leading to their “exhaustion” and elimination [80, 81]. The metabolic burden placed 

on these subsets during their rapid response to these antigens could overwhelm their ability 

to handle lipid peroxides leading to ferroptosis, an observation recently ascribed specifically 

to the B1 and MZB subsets, but not B2 cells which have better antioxidant capacity [50]. 

It is significant to note that the expression of ferroptosis-associated genes is an emerging 

prognostic biomarker for OvCa [82].
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Due to a gene signature associated with plasma cell development, MZB cells have an 

increased propensity to differentiate into plasma cells [83,84]. Thus, their loss could reflect 

rapid differentiation into plasmablasts. However, marked immunoglobulin production was 

not observed during OvCa (not shown). Nonetheless, the loss of these subsets should lead 

to their replacement by the bone marrow (BM). B1 cells are distinct from B2 cells in their 

reduced production by BM from older mice [85, 86]. Increased homeostatic proliferation 

would be required for their self-renewal further increasing their metabolic load and the 

resultant oxidative stress [87,88]. This could particularly be the case with hematopoiesis 

disrupted by the inflammation associated with OvCa [89]. A novel form of emergency 

hematopoiesis, emergency myelopoiesis (EM), has been described for OvCa, where B cell 

precursors are subverted to produce immunosuppressive, macrophage-like B cells resulting 

in reduced B1 and increased B2 cell representation in the PerC [90]. In similar research, 

septic peritonitis promoted IL10 production by macrophage-like B cells and increased EM 

[91]. The DAMP burden of OvCa increases IL10 production by diverse myeloid cells, as 

well as B1 and MZB cells, fostering EM and generating immunosuppressive myeloid cells, 

including granulocytic (Gr-1+) MDSCs [92]. High IL6, IL10, and VEGF levels are ascites 

hallmarks and factors that promote MDSC production [41,93–95]. MDSC infiltration and 

IL-1 production are known to alter B cell development [96,97]. MDSC are key drivers 

of immune suppression in the ID8 OvCa model, their removal reducing cancer expansion 

[38,98]. Mice bearing xid (btk−/−) have fewer B1 and MZB cells, thus less IL10 production. 

This might explain their resistance to ascites development when challenged with ID8 [31]. 

Furthermore, the absence of btk reduces immunosuppressive macrophage and Breg function 

[30,32]. Overall, xid appears to enhance cell-mediated immunity (Th1/CTL function) by 

fostering an immune environment having fewer immunosuppressive IL10-producing cells 

[99].

Although the ID8 model affords many parallels to the human disease process, there are 

several, important limitations. OvCa appears later in life, typically post-menopause [100]. 

The majority of studies using the ID8 model, including those described herein, work with 

considerably younger mice that lack any history of pregnancy which has been shown to 

afford some degree of protection in both mice and women [17, 101]. The median year of 

OvCa onset is 63 years, equivalent to an 18–24 month old mouse [102]. Another distinction 

is the rate of disease onset which is much faster in the mouse. Still, this model has 

key hallmarks of human OvCa particularly that of late-stage disease. It is notable that ip 

injection of NOD-scid IL2Rγ−/− (NSG) mice with tumor cell aggregates derived from fresh 

ovarian biopsy tissues reproduces many features of human OvCa, including hemorrhagic 

ascites [103].

Reduced numbers of B cells in the ascites of ovarian cancer patients have correlated 

with negative patient outcomes [104–107]. The loss of MZB and B1 cells described 

herein fits this pattern. IgA production, a key function of B1 cells, is known to control 

OvCa as well as provide immunity to commensal microflora thus tempering dysbiosis 

and its associated cancer-promoting inflammation [108–111]. Gut T cell priming against 

microflora, a key factor in generating the peripheral memory T cell pool, is curtailed by 

the loss of these subsets [112,113]. Via IL10 production and PDL1 expression, B1 cells 

temper inflammation; IL10 ablation promotes tumor growth and increases MDSC generation 
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[114–116]. Considering the limited success of T cell-focused, checkpoint inhibition therapy 

for OvCa, strategies that consider B cell biology continue to emerge [110,117,118]. There 

is growing appreciation for the innate, natural antibody response to cancer neoantigens and 

the positive outcomes of tumor-infiltrating B and plasma cells [55,56,119–124]. Since it is 

one of the earliest, most fundamental forms of immunity, we would posit that strategies 

to enhance the innate humoral response to ovarian cancer are likely to improve patient 

outcomes.
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TI thymus independent

TME tumor microenvironment
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Fig. 1. 
PerC B1 B cell subsets are decreased during ovarian cancer. (A) Representative flow 

cytometric profiles of IgM and IgD distribution among PerC B cells. (B) Frequency of 

B cells and (C) cells per thousand total cells. δ−, δ+, or δ++ represent IgD-negative, IgD 

-low, or IgD-high cells; μ+ or μ++ represent IgM-low or IgM-high cells (D) Representative 

profiles of B1 subsets based on CD5 and CD43 expression. (E) Frequency of B1 cell 

subsets and (F) cells per thousand total cells. FACS profiles were pre-gated on single, 

lymphocytes, CD19+. Data sets compared using unpaired t tests *p<0.05 **p<0.01 

***p<0.001 ****p<0.0001
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Fig. 2. 
Spleen B1 and MZB cells are decreased during ovarian cancer. (A) Representative flow 

cytometric profiles of IgM and IgD distribution among spleen B cells. (B) Frequency of 

B cells and (C) total numbers. (D) Representative profiles of spleen B1 subsets based 

on CD5 and CD43 expression. (E) Frequency of B cell subsets and (F) total numbers. 

(G) Representative profiles of MZB cells based on CD1d and CD21/35 expression. (H) 

Frequency of MZB B cells and (I) total numbers. (A-F) FACS profiles were pre-gated on 

single, lymphocytes, CD19+. (G-I) FACS profiles were pre-gated on single, lymphocytes. 

Data sets compared using unpaired t tests *p<0.05 **p<0.01 ***p<0.001 ****p<0.0001
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Fig. 3. 
Transitional B cells are decreased in the spleen during ovarian cancer. (A) Representative 

flow cytometry profiles demonstrating gating strategy used to define transitional B cell 

subsets. (B) Frequency of B cells and (C) total numbers. (D) Frequency of transitional B cell 

subsets and (E) total numbers. FACS plots were pre-gated on single, lymphocytes, CD19+. 

Transitional B cells were gated based on CD93 FMO. Data sets compared using unpaired t 

tests *p<0.05 **p<0.01 ***p<0.001 ****p<0.0001
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Fig. 4. 
Myeloid cells are expanded during ovarian cancer. (A) Representative flow cytometry 

profiles of myeloid cells based on CD11b and Gr-1 expression. (B) Frequency of myeloid 

cells and (C) cells per thousand total cells. FACS plots were pre-gated on single, FWD SSC. 

Unpaired t test ****p<0.0001
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Fig. 5. 
XID mice resist ovarian cancer. WT and XID mice were monitored for ascites development 

following ID8 administration. Kaplain-Meier survival analysis, *p<0.05
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Fig. 6. 
Humoral responses to TI-2 antigens are diminished during ovarian cancer. (A) Mean 

response index to TI-1, TI-2, and TD antigens in control mice or those with ovarian cancer. 

Each data set was compared by ANOVA ***p<0.001 (B) Frequency of responding mice in 

the TI-1 and TI-2 groups. Mice were immunized ip with FITC-LPS (TI-1), FITC-Dextran 

(TI-2), FITC- Ficoll (TI-2), or FITC-OVA (TD) and bled on day 6 (TI) or 12 (TD) post-

immunization. Total anti-FITC immunoglobulin levels were measured by ELISA. Data were 

compared by the Chi-square test with Bonferroni correction **p<0.01.
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