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Summary

Understanding how HIV-1-infected cells proliferate and persist is key to HIV-1 eradication, but 

the heterogeneity and rarity of HIV-1-infected cells hampers mechanistic interrogations. Here, 

we used single-cell DOGMA-seq to simultaneously capture transcription factor accessibility, 

transcriptome, surface proteins, HIV-1 DNA, and HIV-1 RNA in memory CD4+ T cells from 

six people living with HIV-1 during viremia and after suppressive antiretroviral therapy. We 

identified increased transcription factor accessibility in latent HIV-1-infected cells (RORC) and 

transcriptionally active HIV-1-infected cells (IRF and AP-1). A proliferation program (IKZF3, 

IL21, BIRC5, and MKI67 co-expression) promoted the survival of transcriptionally active HIV-1-

infected cells. Both latent and transcriptionally active HIV-1-infected cells upregulated IKZF3 
(Aiolos), which correlated with proliferation of these cells. Distinct epigenetic programs drove 

the heterogeneous cellular states of HIV-1-infected cells: IRF:activation, Eomes:cytotoxic effector 

differentiation, AP-1:migration, and cell death. Our study revealed the single-cell epigenetic, 

transcriptional, and protein states of latent and transcriptionally active HIV-1-infected cells.
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eTOC blurb

HIV-1 latently infected cells are indistinguishable from uninfected cells, creating a barrier for 

cure. Using DOGMA-seq, Wei et al. identified single-cell epigenetic, transcriptional, and surface 

protein states of latent and transcriptionally active HIV-1-infected cells. The heterogeneous HIV-1-

infected cells are driven by interferon responses, cytotoxic T cell differentiation, AP-1-driven TNF 

responses, and cell death. IKZF3 promotes the proliferation of HIV-1-infected cells.
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INTRODUCTION

Despite suppressive antiretroviral therapy (ART), HIV-1-infected cells persist lifelong1–3. 

During viremia, most HIV-1-infected cells undergo productive infection with active HIV-1 

gene expression. Presumably, transcriptionally active HIV-1-infected cells should die of 

viral cytopathic effects or immune clearance. However, some transcriptionally active HIV-1-
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infected cells can survive, proliferate, and persist4. Understanding how HIV-1-infected cells 

proliferate and persist is key to HIV-1 eradication.

It is believed that CD4+ T activation cells support HIV-1 reactivation while resting 

CD4+ T cells maintain HIV-1 latency because of low expression or lack of active 

forms of transcription factors in the nucleus. However, CD4+ T cell differentiation, 

polarization, migration, and exhaustion states are heterogeneous and complex, far 

beyond the simplified dichotomous classification of activated versus resting states. 

Identification of diverse signatures for HIV-1-infected cells5–13, such as different markers 

for activation14, exhaustion15, migration7,16, T helper 1 (Th1) polarization12,17, cytotoxic 

T cell polarization11,13, or T follicular helper (Tfh) differentiation12,16, indicates the 

profound heterogeneity of HIV-1-infected cells and likely reflects the heterogeneous 

cellular states of CD4+ T cells. Understanding the heterogeneity of HIV-1-infected cells 

requires comprehensive genome-wide profiling to identify the epigenetic and transcriptional 

programs that govern CD4+ T cell differentiation and their impact on HIV-1 persistence.

The activation, proliferation, and differentiation of memory T cells is orchestrated by 

key transcription factors. Acute viral infection triggers type I interferon (IFN) response 

through IFN regulatory transcription factors (IRFs) that shape T cell differentiation18,19. 

Transcription factors, such as activator protein 1 (AP-1: JUN, FOS, and BATF)5,20,21, 

cap’n’collar (CNC: BACH1, BACH2, NFE2) family transcription factors22,23, and Maf24 

orchestrate the development of adaptive immune responses. Master transcription factors 

guide T cell polarization and commitment, such as Tbet (TBX21) and Eomesdermin 

(EOMES) for Th1 and cytotoxic effector differentiation25 and RORγt (RORC) for T helper 

17 (Th17) differentiation26. Understanding epigenetic and transcriptional programs that 

govern cell states of HIV-1-infected cells will reveal new mechanisms of HIV-1 persistence.

The development of HIV-1 cure strategies relies on identifying cellular markers that can 

distinguish HIV-1-infected cells from uninfected cells. In particular, latently infected cells 

do not express HIV-1 viral proteins and cannot be distinguished from uninfected cells. 

Technology advancement allows capture of rare HIV-1-infected cells (<0.1% in the CD4+ 

T cells in peripheral blood) for single-cell profiling5–13. Using HIV-1 RNA expression 

as a surrogate for transcriptionally active HIV-1-infected cells, single-cell transcriptional 

profiling of transcriptionally active HIV-1 RNA+ cells revealed HIV-1 persistence in 

cytotoxic CD4+ T cells11,13. However, single-cell transcriptome profiling of transcriptionally 

inactive HIV-1 RNA− infected cells remains a major challenge: no study was able to 

capture the single-cell transcriptional landscape of transcriptionally inactive infected cells 

for genome-wide examination.

Here, we examined the epigenetic, transcriptional, and surface protein expression 

transcriptionally inactive (HIV-1 DNA+ RNA−) and in transcriptionally active (HIV-1 

RNA+) HIV-1-infected memory CD4+ T cells from six people living with HIV-1 during 

viremia and after suppressive ART. Using DOGMA-seq27, we identified chromatin 

accessible transcription factor binding regions by assay for transposase-accessible chromatin 

with sequencing (ATAC-seq), transcriptional programs by RNA-seq, and cell surface protein 

expression by antibody-derived tag (ADT) sequencing for 156 surface proteins within 
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the same single cells. We identified transcription factor Aiolos (encoded by IKZF3) may 

promote proliferation of HIV-1-infected cells and found that the heterogeneous HIV-1 

were driven by interferon responses, cytotoxic T cell differentiation, and AP-1-driven 

TNF responses. This study represents the first single-cell high-dimensional mapping of 

the epigenetic, transcriptional, and surface protein expression landscapes of transcriptionally 

inactive and active HIV-1-infected cells.

RESULTS

Single-cell DOGMA-seq captured epigenetic, transcriptional, and surface protein states of 
memory CD4+ T cells during HIV-1 infection

Paired memory CD4+ T cells from six people living with HIV-1 in the Sabes cohort28,29 

recruited in a previous study13 during viremia [average 31 days from estimated date of 

detectable infection] and after one year of suppressive ART were profiled by DOGMA-

seq27. Memory CD4+ T cells from four age, sex, and ethnicity-matched uninfected 

individuals were new to this study and served as controls (Table S1). Briefly, we used 

DOGMA-seq to simultaneously capture chromatin accessibility landscape and HIV-1 DNA 

(from ATAC-seq), cellular transcriptome and HIV-1 RNA (from RNA-seq), and 156 surface 

proteins (ADT sequencing) in the same single cells (Figure 1A). After removing low quality 

cells, we captured 93,209 single cells (25,778 in viremia, 56,771 in viral suppression, 

and 10,660 in uninfected controls) (Table S2). Batch effects were corrected by Harmony 

(for RNA-seq), reciprocal Latent Semantic Indexing (rLSI) (for ATAC-seq), and reciprocal 

Principal Component Analysis (rPCA) (for ADT). Cells formed distinct clusters by 

epigenome (ATAC-seq) (Figure S1A), transcriptome (RNA-seq) (Figure S1B), and surface 

protein (ADT) (Figure S1C) profiles. A weighted combination of ATAC-seq, RNA-seq, and 

ADT profiles allowed for an integrated view of the epigenetic regulators, transcriptional 

program, and surface protein expression within the same single cells on a harmonized 

Weighted Nearest Neighbor (WNN) Uniform Manifold Approximation and Projection for 

Dimension Reduction (UMAP)30 plot (Figure 1A, Figure S1D–S1E). No apparent batch 

effect was present after integration (Figure S1F). While ATAC-seq identified cell-type 

specific transcription factor accessibility (Figure S1A, S1G), RNA-seq identified cell-type 

specific transcriptome (Figure S1B, S1H), and ADT identified surface protein expression 

profiles (Figure S1C, S1I), integrating all three modalities more faithfully depicted the 

heterogeneous T cell differentiation states (Figure 1A). We identified 15 memory CD4+ T 

cell subsets (clusters) (Figure 1B, Figure S1G–I, Table S2). Per cell, we identified a median 

of 785 genes, 1,553 RNA unique molecular identifiers (UMIs), 62 surface proteins, 700 

protein UMIs, 3,143 unique ATAC fragments, and 4,198 ATAC UMIs (Table S2).

Acute HIV-1 infection increases IKZF3 expression in proliferating cells

We first examined how acute HIV-1 infection shaped the epigenetic, transcriptional, and 

protein expression states of memory CD4+ T cells (Figure S2). Chromatin accessibility of 

binding motifs was significantly enriched for AP-1 family transcription factors (JUN, FOS, 

and BATF), CNC family transcription factors (including four transcription activators (NF-E2 

and NF-E2 like 1, 2, 3) and two repressors (BACH1 and BACH2)), and Maf during viremia 

(Figure S2A). The significantly upregulated genes were type I IFN response genes (ISG15, 
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IFI44, IFI44L, MX2, TRIM22), PDE4B (which promotes cytokine IL-2 production)31, 

and SYTL2 (encoding Slp-2 for lytic granule secretion)32 during viremia (Figure S2B). 

The significantly upregulated surface proteins during viremia were of T cell activation 

(CD38, major histocompatibility complex (MHC) class II (HLA-DP, -DQ, -DR), ICOS, 

SLAMF2, CD74, CD134, CD2, CD3, CD101), immune checkpoint (PD-1), Th1 polarization 

(CXCR333, CCR534), cytotoxic T cell differentiation (KLRG1, GPR56), migration (integrin 

α1, α4, and β1), and anti-inflammatory Treg pathways (CD39, CD73)35 during viremia 

(Figure S2C).

To identify distinct gene programs that were induced during viremia de novo, we performed 

Weighted Gene Correlation Network Analysis (WGCNA)36 to identify genes that are highly 

co-expressed in cells in viremia but not in viral suppression and uninfected conditions. 

WGCNA discovers sets of coregulated gene that may be co-regulated as they are determined 

to be pairwise correlated37. Among five statistically significant gene modules identified by 

WGCNA in viremia (Table S2), the proliferation gene program revealed co-expression of the 

proliferation gene MKI67, cell survival gene BIRC5 (Survivin)38, and T cell activation gene 

ICOS. To contrast the degree that RNA expression was correlated among genes identified 

in the proliferation gene program, the Pearson’s correlation coefficients for gene pair RNA 

expression were visualized and compared in heatmap (Figure 1C–1D). Indeed, genes in 

the proliferation program had higher RNA co-expression in viremia in comparison to viral 

suppression and uninfected conditions. To verify that the proliferation gene program was 

most enriched in the proliferating cluster during viremia, the normalized per-cell averaged 

RNA expression for proliferation gene program (module score, see Methods) was measured 

as a score of gene program enrichment. Indeed, the proliferation gene program scores 

were overall higher in viremia than in viral suppression and uninfected conditions in the 

proliferating cluster (Figure 1E, S3A, S3B).

We next focused on the proliferating cluster to determine the cellular states of proliferating 

T cells during in HIV-1 infection versus uninfected condition (Figure 1F–1H). We first 

identified transcription factors having binding motifs that were enriched in accessible 

chromatin. During viremia, accessibility of transcription factors of type I IFN responses 

(IRF, STAT1/STAT2), T cell activation [AP-1 (JUN, FOS, BATF), NFAT], effector 

differentiation (TBX21 and EOMES), and memory development (FOXO1) were all enriched 

(Figure 1G). Comparing proliferating versus all other clusters, accessibility of IFN 

regulatory transcription factors (IRF, STAT1/STAT2) were the most prominently enriched 

(Figure S3C, S3D).

To determine which genes were epigenetically regulated by transcription factors that had 

enriched binding motif chromatin accessibility during viremia in proliferating cells, we 

identified gene regions that had significantly increased chromatin accessibility (ATAC 

peaks) and overlapped with The Encyclopedia of DNA Elements (ENCODE) candidate 

cis-regulatory elements (cCREs) (Figure 1I, S3E, Table S2) and increased RNA expression 

(Figure 1G, 1J) in the proliferating cluster in viremia, and the corresponding transcription 

factor binding motifs that were present in these regions of increased accessibility (Figure 

1I). Examples were T cell differentiation genes (IKZF3, CCL5, IFNG), type I IFN response 

gene (IFI16), and T cell proliferation gene (IL2RB). For instance, IKZF3 (encoding Aiolos, 

Wei et al. Page 5

Immunity. Author manuscript; available in PMC 2024 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an Ikaros zinc finger family transcription factor that regulates lymphocyte proliferation and 

differentiation)39 accessibility was increased in viremia at a putative regulatory element 

(identified as an open chromatin ATAC peak) (Figure 1I). Motifs found in this highly 

accessible footprint bind to IRF7, JUN:FOS, NFAT, and T-box transcription factors, all 

of which had enriched binding motif accessibility in the proliferating cluster in viremia 

(Figure 1F). Consistent with increased chromatin accessibility, IKZF3 had increased RNA 

expression in the proliferating cluster (Figure 1J). To provide a more direct demonstration 

of the relationships shown between chromatin accessibility at the highlighted cCRE (Figure 

1I) and RNA expression (1J), we found that IKZF3 RNA+ cells had increased chromatin 

accessibility at the IKZF3 gene than IKZF3 RNA− cells in the Proliferating cluster (Figure 

S4A). Similarly, CCL5 RNA+ cells had increased chromatin accessibility at the CCL5 
gene, IFI16 RNA+ cells had increased chromatin accessibility at the IFI16 gene, IFNG 
RNA+ cells had increased chromatin accessibility at the IFNG gene, and IL2RB RNA+ cells 

had increased chromatin accessibility at the IL2RB gene. Importantly, ATAC peaks that 

had increased chromatin accessibility (highlighted in red in Figure S4A–S4E) shared the 

same gene coordinates as significantly differentially accessible peaks identified in Figure 

1I. Together, these results suggest that type I IFN response, T cell differentiation, and 

proliferation may be epigenetically upregulated during viremia in proliferating cells.

We identified a relationship between Aiolos (IKZF3) binding at CCL5 locus and CCL5 
expression in proliferating cells. First, we found that Aiolos binding motif in the CCL5 
cCREs had increased chromatin accessibility in viremia (Figure 1I, peaks highlighted 

red). Second, the same CCL5 cCREs had increased chromatin accessibility in proliferating 

cells that were enriched in Aiolos binding motif accessibility (IKZF3 Chromatin Variation 

Across Regions (chromVAR) z-score > 0) in comparison to proliferating cells that were 

low in Aiolos binding motif accessibility (IKZF3 chromVAR z-score < 0) (Figure S4F). 

Third, proliferating cells that were enriched in Aiolos binding motif accessibility had 

upregulated CCL5 expression in comparison to proliferating cells that were low in Aiolos 

binding motif accessibility (Figure S4G). Finally, a differential transcription factor binding 

motif accessibility (chromVAR) analysis between CCL5+ proliferating cells and CCL5− 

proliferating cells revealed that IKZF3 had significantly increased global accessibility in 

cells that were CCL5+. We noted that, in addition to Aiolos, AP-1, IRF, STAT1:STAT2, 

and T-box family transcription factors may also bind at CCL5 cCREs (Figure 1I). In 

addition to CCL5, we also identified Aiolos binding motif in significantly differentially 

accessible ATAC peaks in several gene loci (See Table S2 for annotated cCREs and binding 

transcription factors for differentially accessible ATAC peaks shown in Figure S3E, and the 

corresponding gene expression and protein expression fold changes).

To identify immune pathways that were induced during viremia in proliferating cells, we 

identified significantly upregulated genes in viremia in the proliferating cluster (Figure 1G). 

We found increased expression of type I IFN response gene (IFI16), T cell differentiation 

genes (IKZF3, CCL5, IFNG), and T cell proliferation gene (IL2RB) during viremia but 

not in viral suppression, in agreement with Gene Ontology analysis (Figure S3F, S3G). 

Using significantly downregulated genes, Gene Ontology revealed downregulated response 

to virus and type I IFN response in viral suppression in the proliferating cluster (Table S2). 

In agreement with above, Gene Set Enrichment Analysis (GSEA) revealed enrichment of 
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type I IFN responses (Figure S3H) and Th1 polarization (Figure S3I; including SERPINB9, 

a granzyme B inhibitor) during viremia in proliferating cells.

Finally, differential surface protein expression analysis revealed significant upregulation of 

markers of activation, Th1 polarization [CXCR3, CCR5, CD119 (IFNγ receptor)], and T 

cell migration (integrin α4, integrin β2) (Figure 1H) during viremia in proliferating CD4+ 

T cells. Of note, IL2RB had consistently higher chromatin accessibility (Figure 1I, S3E), 

higher RNA expression (Figure 1G, 1J), and higher surface protein expression (Figure 1H) 

in proliferating cells during viremia versus viral suppression and uninfected conditions.

Single-cell DOGMA-seq identified the cellular states of transcriptionally inactive and 
transcriptionally active HIV-1-infected cells

To examine the epigenetic, transcriptional, and protein expression differences between 

HIV-1-infected cells versus uninfected cells, we mapped ATAC-seq reads and RNA-seq 

reads to HXB2 HIV-1 reference genome and to autologous virus (Figure 2) to identify 

HIV-1 DNA+ cells and HIV-1 RNA+ cells, respectively. Of note, HIV-1 DNA+ cells can be 

transcriptionally silent or have low HIV-1 RNA expression below the detection limit.

To define the sensitivity of HIV-1 DNA detection, we mapped HIV-1 DNA from a separate 

DOGMA-seq dataset that we recently described40–42. Of 14,780 cells from HIV-1-infected, 

stably integrated Jurkat cell lines, each have known HIV-1 integration sites10,41,42, we 

identified 5,220 HIV-1 DNA+ cells (35.32% sensitivity) at 1 read per cell threshold and 

4,197 HIV-1 DNA+ cells (28.40% sensitivity) at 2 reads per cell threshold. Despite that these 

HIV-1-infected Jurkat cells had active HIV-1 expression and high chromatin accessibility at 

the HIV-1 provirus40, the detection of HIV-1 DNA remained low (28.4%). We anticipated 

that using ATAC-seq to detect HIV-1 DNA in HIV-1-infected cells in the clinical samples 

may be even lower. Given the small proportion of the ~9,719 bp HIV-1 genome among 

the 6×109 bp for the diploid human genome, an integrated HIV-1 proviral genome only 

accounted for 0.00016% of the human genome in one infected cell. Given that each infected 

cell has only one copy of HIV-1 proviral DNA but many copies of HIV-1 RNA, we expected 

to identify HIV-1 RNA+ cells with no detectable HIV-1 DNA (not captured by ATAC-seq). 

In addition, HIV-1 may integrate into low accessible heterochromatin which would not be 

captured by ATAC-seq. To define the sensitivity of HIV-1 RNA detection using DOGMA-

seq, a threshold of 2 HIV-1 RNA reads among a mean of 48,223 total RNA reads captured 

per cell from the HIV-1+ participants indicated that if 0.004% of cellular RNA reads were 

HIV-1 reads then the cell would be detected as HIV-1+.

To increase the specificity of HIV-1 genome mapping and to guard against potential 

sequencing artifacts, HIV-1+ cells were defined by the presence of ≥2 reads of HIV-1 RNA 

or HIV-1 DNA or both per cell (Table S3). This threshold yielded no HIV-1 RNA+ cells 

or HIV-1 DNA+ cells in samples from four uninfected participants (n = 10,660) or from 

uninfected Jurkat cells (n = 9,560). Given the rarity of HIV-1-infected cells (~879/106, 

0.09%) during viremia43, the false negative rate (HIV-1 DNA− and HIV-1 RNA− cells 

actually being an HIV-1-infected cell) was <0.1%.
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Per participant, we identified 1.19%–3.07% of memory CD4+ T cells in viremia (Figure 

S5A, Table S3) and 0.02%–0.06% in viral suppression were HIV-1-infected (Figure S5B, 

Table S3). No HIV-1-infected cells were detected in uninfected controls (Figure S5C, Table 

S3). We defined HIV-1 DNA+ RNA− cells as HIV-1 DNA+ cells that had undetectable 

HIV-1 expression (transcriptionally inactive HIV-1-infected cells). We combined HIV-1 

DNA− RNA+ cells with HIV-1 DNA+ RNA+ cells and defined them as HIV-1 RNA+ cells 

(transcriptionally active HIV-1-infected cells). In total, we identified 233 HIV-1 DNA+ 

RNA− cells (0.90%) and 256 HIV-1 RNA+ cells (0.99%) [including 218 HIV-1 DNA− RNA+ 

cells (0.85%) and 38 HIV-1 DNA+ RNA+ cells (0.15%)] in viremia (Figure 3A), and 19 

HIV-1 DNA+ (0.03%) and 14 HIV-1 RNA+ cells (0.02%) [including 11 HIV-1 DNA− RNA+ 

cells (0.02%) and 3 HIV-1 DNA+ RNA+ RNA− cells (0.005%)] in viral suppression (Figure 

3B). Pooled HIV-1 DNA+ cells and HIV-1 RNA+ cells were distributed across different 

memory CD4+ T cell subsets without clear bias in cell-type compositions when compared 

with HIV-1− cells (Figure 3C). In addition, no significant bias was observed in the numbers 

of HIV-1 RNA reads recovered in HIV-1 RNA+ cells per cell-type (Figure S5D, S5E). Of 

note, we sequenced on average 50,131 ATAC read pairs and 48,223 RNA read pairs per cell 

and reached sequencing saturation across 10x runs (Figure S5F). Most HIV-1 DNA reads 

were captured within the HIV-1 LTR promoter (Figure 2) and reflected increased chromatin 

accessibility at HIV-1 promoter than protein coding regions40. Between participants, no 

notable differences were observed in the HIV-1 genome mapping (Figure S5G–S5J).

RORC, BACH2, and Maf transcription factors shaped transcriptionally inactive HIV-1-
infected cells while AP-1, IRF, BACH2, and Maf shaped transcriptionally active HIV-1-
infected cells

We first examined the epigenetic landscape of HIV-1-infected cells (Figure 3D–3F). During 

viremia, binding motifs for retinoid acid-related (RAR) orphan receptors (RORB and 

RORC, encoding RORβ and RORγt) had significantly increased chromatin accessibility 

in HIV-1 DNA+ cells (Figure 3D, 3F). Notably, RORγt (encoded by RORC) is a master 

transcription factor that drives Th17 differentiation. We then compared the transcription 

factor binding potential of HIV-1 RNA+ cells versus uninfected cells. We found that the 

binding motifs of AP-1 (JUN, FOS, BATF), the CNC family (NFE2L2, BACH1, BACH2), 

Maf, and IRF transcription factors were prominently enriched in accessible chromatin of 

HIV-1 RNA+ cells (Figure 3E, 3F). Similarly, HIV-1 DNA+ cells also had enriched AP-1, 

CNC, and Maf transcription factor binding motif accessibility but to a lesser extent than 

HIV-1 RNA+ cells (Figure 3F). Of note, these were the same transcription factors that had 

enriched chromatin accessibility in memory CD4+ T cells during viremia (Figure S2A). 

Overall, binding motifs of AP-1, CNC, Maf, and IRF family transcription factors had 

enriched accessibility in HIV-1-infected cells, while accessibility of RORβ and RORγt 

transcription factor binding motifs were additionally enriched in HIV-1 DNA+ cells.

Transcription factor IKZF3 was associated with the survival and proliferation of 
transcriptionally active HIV-1-infected cells

To identify the transcriptional landscape of HIV-1-infected cells, we identified significantly 

upregulated genes in these cells versus HIV-1− cells during viremia (Figure 4A–4C). We 

identified 19 genes that were significantly upregulated in both HIV-1 DNA+ cells and 

Wei et al. Page 8

Immunity. Author manuscript; available in PMC 2024 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIV-1 RNA+ cells (Table S2). Among them, eight genes were closely associated with T 

cell differentiation: a lymphocyte differentiation gene (IKZF3, encoding transcription factor 

Aiolos), three type I IFN response genes (STAT1, IFI44, IFI44L), two cytotoxic T cell 

effector genes [GZMA, SYTL2 (mediating lytic granule secretion)44], one T cell activation 

gene (PDE4B mediating IL-2 production)45, one T cell migration gene (ITGA4)(Figure 4A, 

4B). Of note, IKZF3 was also upregulated in the proliferating cells (Figure 1G).

We noted that many HIV-1+ cells were recovered in the Th17 cluster during viremia (Figure 

3C, S5A). To examine whether the significantly upregulated genes identified in HIV-1+ cells 

versus HIV-1− cells were driven by HIV-1 enrichment in specific cell subsets such as Th17, 

we examined the RNA expression for the eight key genes described above (IKZF3, STAT1, 

IFI44, IFI44L, GZMA, SYTL2, PDE4B, and ITGA4) in the 15 cell clusters in viremia 

(Figure S6A). We found that the RNA expression of these genes were not significantly 

higher in Th17 in comparison with other clusters, albeit Th17 cells harbored the largest 

number of HIV-1− and HIV-1+ cells (Figure S6B, S6C, Table S3), suggesting that Th17 

cellular RNA profile was not the dominate contributor of the transcriptional profile of 

HIV-1+ cells.

In HIV-1 DNA+ cells, the upregulated genes were involved in cytotoxic T cell differentiation 

(GZMA, GZMK, KLRB1, CCL5, LTB) and T cell migration (ITGA4, T cell homing 

integrin α4) (Figure 4A), consistent with previous finding of enrichment of HIV-1-infected 

cells in cytotoxic CD4+ T cells11,13 and migratory cells7,16,46. In HIV-1 RNA+ cells, 

the upregulated genes included cytotoxic T cell differentiation [GZMA, CTSC (encoding 

cathepsin C)], T cell migration [ITGA4 and ITGB7 (integrin β7)], type I IFN responses 

(STAT1, STAT2, MX1), T cell differentiation transcription factors (FOSL2, REL, MAF, 

STAT5B), and a cell survival gene (CFLAR, encoding c-FLIP that prevents T cell death) 

(Figure 4B). Gene Ontology analysis of significantly upregulated genes showed that HIV-1 

DNA+ cells were enriched of integrin pathways (Figure S6D–S6E) while HIV-1 RNA+ 

cells had heightened type I IFN and viral responses (Figure S6F–S6G). In contrast, Gene 

Ontology analysis of significantly downregulated genes showed significant downregulation 

of autophagy regulation in HIV-1 DNA+ cells and significant downregulation of negative 

regulations of cell growth and differentiation in HIV-1 RNA+ cells (Table S2).

We wanted to identify the transcriptional landscape of HIV-1-infected cells during viral 

suppression. However, we did not feel confident using the low number of cells captured 

to identify cellular markers. Instead, we asked whether cellular genes upregulated during 

viremia remained upregulated during viral suppression. In HIV-1 DNA+ cells, we found 

that cytotoxic markers GZMA, GZMK, KLRB1, and LTB were upregulated both in viremia 

and after viral suppression (Figure 4D). In HIV-1 RNA+ cells, we found that cytotoxic T 

cell markers (CTSC, SYTL2), type I IFN response genes (IFI44, STAT1, STAT2), survival 

gene CFLAR, and T cell differentiation transcription factor IKZF3 were upregulated both in 

viremia and after viral suppression (Figure 4E).

To distinguish the transcriptional programs in HIV-1-infected cells, we identified co-

expressed genes de novo using WGCNA. We found a proliferation program that 

distinguished co-expressed genes between HIV-1 DNA+ cells, HIV-1 RNA+ cells, and 
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HIV-1− cells (Figure 4F, 4G). These co-expressed genes (such as IKZF3, IL21 (a key Tfh 

cytokine), BIRC5 (Survivin), and MKI67) were involved in cell division and differentiation 

in Gene Ontology analysis (Figure 4H) and may support the proliferation of HIV-1 RNA+ 

cells despite active HIV-1 RNA expression. Of note, BIRC538 and IL-216 are cellular factors 

known to promote HIV-1 persistence. We next identified distinct immune pathways that 

shaped the transcriptional landscape of HIV-1-infected during viremia. Using GSEA, we 

found significant enrichment of an integrin pathway in HIV-1 DNA+ cells (P < 0.05, Figure 

4I) and IL-6/JAK/STAT3 signaling in HIV-1 RNA+ cells (P < 0.05, Figure 4J).

Transcriptionally inactive HIV-1-infected cells expressed Th1/Th17, T cell activation, and 
migratory markers

Increased expression of cellular markers have been reported in HIV-1-infected cells, such as 

Th1 polarization (CXCR3 and CCR5)5,12, activation markers (HLA-DR14, CD247, ICOS12, 

SLAM5), cytotoxic T cell markers [KLRB148 and Granzyme B13], exhaustion markers 

(PD-1, CTLA-4, and TIGIT)15, Tfh polarization (CXCR5 and PD-1)12, and homing marker 

VLA-4 (integrin α4β1)5,7,16. Furthermore, targeted HIV-1 proviral genome sequencing 

identified protein signatures enriched in CD4+ T cells harboring intact HIV-1 proviruses, 

such as PD-1, TIGIT, KLRG1, HVEM, CD49d (integrin α4), and CD95 (Fas receptor)6. 

Using DOGMA-seq, we identified 7 surface proteins that were significantly upregulated in 

both HIV-1 DNA+ cells and HIV-1 RNA+ cells, including Th1 polarization markers (CCR5, 

CXCR3, and KLRB1), T cell migration marker (ITGAL) and T cell activation markers 

[CD38, LFA-2, and SLAM] (Figure 5A, 5B, 5C), consistent with previous studies5,6. 

A total of 18 proteins were upregulated in HIV-1 RNA+ cells, including markers of 

Th1 and Th1* (Th1/Th17) polarization (CCR5, CCR6, CXCR3, KLRB1, and the IFNγ 
receptor CD119), migration (Integrin α4, Integrin αL, and HCAM), and T cell activation 

(Figure 5B). Notably, CD81 degrades SAM Domain And HD Domain 1 (SAMHD1) and 

enhances HIV-1 reverse transcription49. Given that the low number of HIV-1 DNA+ cells 

and HIV-1 RNA+ cells captured during viral suppression were not sufficient to perform 

robust statistical analysis, we asked whether protein markers upregulated during viremia 

were also upregulated during viral suppression. We found seven protein markers that were 

significantly upregulated in HIV-1 RNA+ cells in viremia were also upregulated in HIV-1 

RNA+ cells in viral suppression (Figure 5D, 5E). Of note, SLAM and CCR5 protein 

expression were upregulated in both HIV-1 DNA+ cells and HIV-1 RNA+ cell in viremia 

and viral suppression. Overall, we found that surface protein markers of Th1 polarization 

and T cell activation were upregulated in HIV-1 DNA+ cells versus HIV-1− cells, whereas 

surface protein markers of Th1 and Th1/Th17 polarization (Figure 5F), migration (Figure 

5G), and T cell activation (Figure 5H) were upregulated in HIV-1 RNA+ cells versus HIV-1− 

cells.

The heterogeneous HIV-1-infected cells comprised four distinct cell states: IRF, cytotoxic, 
AP-1, and cell death

We identified epigenetic, transcriptional, and protein signatures in HIV-1+ memory CD4+ 

T cells. While differences existed between participants, these programs were not driven by 

specific participants (Figure S7). We asked whether we could dissect the heterogeneity of 

HIV-1-infected CD4+ T cell reservoir. First, we collected all identified HIV-1-infected cells 
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to determine distinct cell clusters by their transcriptional profiles (Figure 6A). We found 

that clustering of HIV-1+ cells did not result from batch effects by infection conditions, 

HIV-1 RNA expression (Figure 6B), or from study participants who differed in peak viral 

loads (Figure 6C, Table S1). Each cluster had distinct transcriptional profiles (Figure 6D), 

distinctly enriched transcription factor accessibility (Figure 6E), and distinct surface protein 

expression profiles (Figure 6E). Indeed, four phenotypically distinct populations of HIV-1+ 

cells were determined across six HIV-1+ study participants.

We annotated each cluster of HIV-1-infected cells based on their distinct cellular 

profiles (transcription factor accessibility, transcriptional programs, and surface protein 

expression): (a) the IRF cluster had increased IRF and STAT1/STAT2 transcription factor 

accessibility (Figure 6E), ‘activation/proliferation’ gene co-expression program (Figure 

6H: co-expression of ICOS, BIRC5, IL21, and MKI67), and activation surface proteins 

(Figure 6F: HLA-DR, ICOS, and CD38); (b) the Cytotoxic cluster had increased Eomes 

transcription factor accessibility (Figure 6E), upregulated cytotoxic effector T cell gene 

markers (Figure 6D: GZMA, GZMH, NKG7, CCL5, IFNG, ZEB2), ‘cytotoxic’ gene co-

expression program (Figure 6I: co-expression of GZMB, GZMH, NKG7, IFNG, and ZEB2), 

and cytotoxic surface proteins (Figure 6F: GPR56 and KLRG1); (c) the AP-1 cluster had 

increase AP-1 transcription factor accessibility (Figure 6E), increased JUN and FOS RNA 

expression (Figure 6D), ‘TNF’ gene co-expression program (Figure 6J: co-expression of 

JUN, FOS, TNFAIP3, and NFKBIA), and migratory surface proteins (Figure 6F: HCAM, 

PSGL-1, integrin α6 and β1); (d) the MT (mitochondrial gene) cluster had upregulated 

mitochondrial gene expression (Figure 6D), likely reflecting cell death.

Both transcriptionally inactive and active HIV-1-infected cells upregulate IKZF3 expression

Our findings all pointed to the plausibility that IKZF3 promoted the proliferation and 

survival of HIV-1-infected cells, particularly during acute HIV-1 infection. We showed 

that AP-1, IRF7, NFATC3, and Tbox transcription factors may bind to an accessible cis-

regulatory element in IKZF3 (Figure 1I) to regulate its expression (Figure 1J). In addition, 

IKZF3 was co-expressed with cellular proliferation and survival genes such as IL21, MKI67, 

and BIRC5 (Figure 4G) in HIV-1 RNA+ cells. We next compared IKZF3 gene accessibility 

and gene expression by infection conditions (Figure 7A) and between HIV-1+ and HIV-1− 

cells in viremia (Figure 7B) across memory CD4+ T cell subsets. IKZF3 gene accessibility 

(Figure 7A) and RNA expression (Figure 7A) were increased during viremia in proliferating 

cells. Comparing between HIV-1+ and HIV-1− proliferating cells, IKZF3 gene accessibility 

was significantly higher in HIV-1 DNA+ cells (Figure 7B–7D) and IKZF3 gene expression 

was significantly higher in both HIV-1 DNA+ cells and HIV-1 RNA+ cells (Figure 7B, 7E). 

Overall, IKZF3 had increased gene accessibility and gene expression in proliferating cells 

under viremia, especially HIV-1-infected cells.

To validate whether Aiolos (encoded by IKZF3) protein expression was indeed increased 

during acute HIV-1 infection, we infected activated primary CD4+ T cells (both total CD4+ 

T cells and memory CD4+ T cells) from uninfected individuals with replication-competent 

NL4–3 reference strain and three R5-tropic clinical isolates as previously reported50 and 

measured Aiolos protein expression using flow cytometry. HIV-1 infection was measured 
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by HIV-1 p24 expression and CD4 downregulation. We found that HIV-1-infected cells 

had higher Aiolos protein expression as measured by mean fluorescent intensity (MFI), 

both in total CD4+ T cells and in memory CD4+ T cells (Figure 7F, 7G). We then asked 

whether Aiolos protein expression correlated with Ki-67 protein expression, as we saw 

in transcriptome analysis (Figure 4F). Indeed, Aiolos+ cells had higher Ki-67 (encoded 

by MKI67) protein expression, which was more prominent in HIV-1+ cells than HIV-1− 

cells (Figure 7I–7J), indicating that Aiolos expression may promote the proliferation of 

HIV-1-infected cells. Overall, both single-cell DOGMA-seq and in vitro validation results 

showed that IKZF3 expression was increased in HIV-1-infected cells and correlated with 

proliferation marker Ki-67 expression.

DISCUSSION

Our study examined the single-cell epigenetic, transcriptional, and protein expression 

profiles of a total of 93,209 memory CD4+ T cells, including 25,778 cells from viremia 

and 56,771 cells from viral suppression from six people living with HIV-1 and 10,660 cells 

from four uninfected individuals. Among them, we identified 489 HIV-1-infected cells (233 

HIV-1 DNA+ cells and 256 HIV-1 RNA+ cells) in viremia and 33 HIV-1-infected cells (19 

HIV-1 DNA+ cells and 14 HIV-1 RNA+ cells) in viral suppression.

Our study revealed the single-cell trimodal cellular states of HIV-1-infected cells, 

particularly the latent HIV-1-infected cells. We identified transcription factors that governed 

cellular programs of HIV-1-infected cells across the central dogma of molecular biology. 

Specifically, we found four distinct populations HIV-1-infected cells: IRF, cytotoxic, AP-1, 

and MT clusters. Through a genome wide understanding of the cellular programs of 

HIV-1-infected cells, we identified T cell immune programs that shaped the cell states of 

HIV-1-infected cells (Figure 6): some cells may die of viral cytopathic effects (MT cluster), 

others may survive and proliferate by taking advantage of T cell differentiation programs. 

During acute infection, type I IFN responses shaped a subset of HIV-1-infected cells that had 

heightened IRF transcription factor binding motif accessibility and drove T cell activation 

and proliferation programs (characterized by upregulation of survival and proliferation genes 

IL21, BIRC5, and MKI67 and surface proteins of activation ICOS, HLA-DR, CD38) (IRF 

cluster). Some cells differentiated toward cytotoxic CD4+ T cells, driven by terminal effector 

transcription factors (EOMES) and characterized by markers of cytotoxic T cell effectors 

(upregulated GZMB, GZMH, NKG7, IFNG and surface proteins GRP56 and KLRG1) 

(Cytotoxic cluster). Other infected cells were driven by AP-1 transcription factors and were 

upregulated in migratory proteins (integrin β1, HCAM, PSGL-1, CCR5, CCR6) (AP-1 

cluster). Overall, we identified distinct immune programs among the heterogeneous HIV-1-

infected CD4+ T cells.

We postulated that upregulation of specific cellular markers in HIV-1-infected cells could 

be caused by preferential infection of cells that expressed these markers, or preferential 

proliferation of these cells despite HIV-1-infection, or both. For example, HIV-1 may 

preferentially infect activated Th1 cells because they expressed higher co-receptor CCR5 

protein expression (Figure 5F). Alternatively, HIV-1 infection can be stochastic, but cells 

that had strong activation and proliferation programs (IL21, BIRC538, MKI67) (Figure 6G) 
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or cytotoxic T cells (GZMB, GZMH, IFNG, NKG713) (Figure 6H) could more favorably 

proliferate and persist over time.

Taking advantage of the genome wide epigenetic and transcriptional profiling, we identified 

the transcription factor Aiolos (encoded by IKZF3) and its impact on the proliferation of 

HIV-1-infected cells, which could not be identified by existing multi-omic methods. Aiolos 

had enriched chromatin accessibility and RNA expression in proliferating cells (Figure 1G, 

1J, 7A) and in HIV-1-infected cells (Figure 4A, 4B, 7B, 7D, 7E). Enrichment of Aiolos 

protein expression in HIV-1-infected cells was validated during in vitro productive infection 

(Figure 7F–7J) and ex vivo in activated CD4+ T cells from virally suppressed individual 

in an independent study9. Transcription factors that may activate IKZF3 gene expression 

were IRF7, AP-1, and NFAT (Figure 1I), which were also the major transcription factors 

that govern T cell proliferation in viremia (Figure 1F). Aiolos expression correlated with 

proliferation maker Ki-67 expression in HIV-1-infected cells, both at RNA expression 

(Figure 4G) and at protein expression (Figure 7G–7J). Given that Aiolos drives Bcl-2 

expression39 and NF-κB signaling51 and promotes cellular survival and proliferation, Aiolos 

may be a transcription factor that drives the proliferation of HIV-1-infected cells. Testing 

whether Aiolos inhibitors (such as lenalidomide, an FDA-approved drug for multiple 

myeloma52) can halt the proliferation of HIV-1-infected cells without damaging normal 

immune responses can be a strategy for HIV eradication interventions.

While no cellular markers can serve as the sole marker specific for HIV-1-infected cells 

for therapeutic targeting, understanding epigenetic and transcriptional regulation of HIV-1-

infected cells in the contexts of T cell differentiation53,54 and T cell clonal expansion 

dynamics55 guide the development of therapeutic strategies. Our study advances our 

understanding of HIV-1 reservoir to a big picture understanding of T cell proliferation and 

the phenotypic complexity of HIV-1-infected cells.

Limitations of the study

The major limitations of the study were the low number of HIV-1-infected cells identified 

during viral suppression which inherently limited the conclusions that could be drawn from 

the suppressed time point, the inability to infer proviral genome intactness (DOGMA-seq 

recovers fragmented DNA and RNA reads), the limited HIV-1 DNA detection by ATAC-seq, 

and that HIV-1 DNA+ RNA− cells having undetectable HIV-1 RNA may not necessarily 

be transcriptionally silent because of the detection limit of HIV-1 RNA by single-cell RNA-

seq-based approaches. While plate-based methods56 may enhance HIV-1+ read recovery, 

the low-throughput is not sufficient for clinical samples. An additional limitation of the 

study is that all participants were young Hispanic males, so the generalizability of our 

conclusions to people of different age, sex, and ethnicity remains to be determined. Given 

that a significant proportion of our findings are consistent with previous single-cell profiling 

of HIV-1-infected cells, such as AP-1 in ATAC-seq5, T cell phenotypes in RNA-seq and 

surface protein profiling5–7,12, and identification of cytotoxic T cells as the most clonal 

population13, at least part of our results have been confirmed by other studies.
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STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Ya-Chi Ho (ya-chi.ho@yale.edu)

Materials availability—This study did not generate new reagents.

Data and code availability

• Single-cell DOGMA-seq sequencing data have been deposited at Gene 

Expression Omnibus and is publicly available from the date of publication. 

Accession numbers are listed in the Key Resources Table.

• All code used to generate results have been deposited on Github and is publicly 

available from the date of publication. DOI of the analysis scripts is listed in the 

Software and Algorithms section of the Key Resources Table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODELS AND STUDY PARTICIPANT DETAILS

Participant details—The demographics of six people living with HIV-1 and four age, 

sex, and ethnicity-matched uninfected study participants from the Sabes study28,29 are 

detailed in Table S1. The Sabes study was reviewed and approved by the Institutional 

Review Board (IRB) of the Fred Hutchinson Cancer Research Center, the non-government 

organization Associatión Civil Impacta Salud y Educación, Lima, Peru (Impacta), and the 

ethics committee of Impacta and the Peruvian National Institute of Health. All participants 

provided informed consent, including consent for storage and future use of specimens.

From the six participants living with HIV-1, we obtained paired blood samples during 

viremia and after viral suppression under the Sabes study protocol28,29. Of note, the six 

participants living with HIV-1 were the same participants participated in our previous 

study13. Briefly, uninfected study participants were tested monthly with third-generation 

HIV-1 immunoassays. Seronegative samples were tested for HIV-1 RNA by pooled 

nucleic acid amplification (NAAT) assays. After specimens were collected during viremia, 

participants were randomly assigned to immediate and deferred ART (either EFV/FTC/TDF 

or EGV/COBI/TFC/TDF) initiation arms. In the immediate ART arm, ART was initiated 

at the baseline visit (< 2 months of estimated date of infection). In the deferred arm, 

ART was initiated 24 weeks after the baseline visit (6 to 8 months after estimated date of 

infection). The virally suppressed specimens were taken after one year of suppressive ART 

(plasma viral load < 200 copies/mL at 6 months prior to blood sampling). We obtained 

blood samples from 3 participants from the immediate ART arm (SI236, SI640, SI829) and 

3 participants from the deferred arm (SD739, SD799, SD910) to ensure that our results are 

generalizable to participants who started ART early (<6 months) versus late (>6 months). 

Uninfected study participants were identified at the initial HIV-1 screening (seronegative by 
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whole blood HIV-1 antibody immunoassay followed by NAAT test for HIV-1 RNA) and 

re-tested monthly for a 2-year period.

Experimental models—For in vitro models, we established four HIV-1-infected and 

stably integrated Jurkat cell lines (using single-round HIV-1 reporter virus HIV-1-d6-GFP), 

each having known HIV-1 integration sites in actively transcribed genes as described 

previously10,41,42. For flow cytometry, primary CD4+ T cells and primary memory CD4+ 

T cells from de-identified uninfected individuals (New York Blood Center) were infected 

with replication-competent NL4–3 reference strain and three R5-tropic reconstructed clinical 

isolates 10CB6, 16CB3, and 20CB3 as previously reported50 for 3 days.

METHOD DETAILS

Memory CD4+ T cell isolation, cell hashing for pooling, and cell staining 
with barcoded antibodies—Aliquots of 20 million viably frozen peripheral blood 

mononuclear cells (PBMC) were thawed. Dead cells were removed by immunomagnetic 

depletion using EasySep Dead Cell Removal Annexin V kit (STEMCELL Technologies, 

catalog no. 17899) following vendor-recommended protocols. Then, memory CD4+ T 

cells were purified by immunomagnetic negative selection using Memory CD4+ T cell 

Isolation Kit removing CD45RA+ cells and non-CD4+ T cells (Miltenyi Biotec, catalog no. 

130-091-893).

To pool samples, purified memory CD4+ T cells from participants were each stained with 

uniquely barcoded TotalSeq-A hashing antibodies (BioLegend) and incubated at 4°C for 30 

minutes. Cells were washed with 1 mL wash media and pelleted (500 g for 5 minutes at 

4°C) for a total of 3 washes. Cells were then resuspended in 1 mL wash media and pooled 

(6 viremic samples, 6 virally suppressed samples, and 4 uninfected samples were pooled 

separately).

The pooled samples were stained with a panel of 154 cell surface proteins and 9 isotype 

controls included in TotalSeq-A Human Universal Cocktail (V1.0, BioLegend, catalog no. 

399907). We additionally stained for CD30 (clone BY88, BioLegend, catalog no. 333913) 

and CD197 (CCR7, clone G043H7, BioLegend, catalog no. 353247) that were not included 

in the Universal Cocktail (for a total of 156 surface proteins). All barcoded antibodies were 

prepared following recommended protocols. The pooled samples (~1.5 × 106 cells in each 

viremic and virally suppressed pools) were resuspended in 61.5 μL staining buffer and 

incubated with 7.5 μL Human TruStain FcX (BioLegend, catalog no. 422302) at 4°C for 10 

minutes. Next, 3 μL of CD197 was added to each sample followed by incubation at 37°C for 

10 minutes then chilled on ice for 5 minutes. Next, 3 μL of CD30 and 75 μL of TotalSeq-A 

Human Universal Cocktail (3 tests) were added to each sample at 4°C for 30 minutes. Cells 

were washed with 1 mL wash media and pelleted (500 g for 5 minutes at 4°C) for a total 

of 3 washes. The pooled uninfected sample (~0.5 × 106 cells) were stained with the same 

protocols at one third volumes.

Cell permeabilization—After antibody staining, cells were permeabilized without 

fixation with 0.01% digitonin solution according to the DOGMA-seq protocol27. The 

digitonin lysis buffer (0.01% DIG, 20 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 mM MgCl2 
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and 2 U/μL RNase inhibitor) and digitonin wash buffer (20 mM Tris-HCl pH 7.4, 150 

mM NaCl, 3 mM MgCl2 and 1 U/μL RNAse inhibitor) were prepared and chilled on 

ice. Antibody-stained cells were resuspended in 100 μL digitonin lysis buffer on ice for 5 

minutes then washed with 1 mL digitonin wash buffer and pelleted (500 g for 5 minutes 

at 4°C). Cells were then resuspended in 150 μL digitonin wash buffer and counted using 

Trypan blue staining to verify permeabilization.

DOGMA-seq library preparation and sequencing—Cells were processed according 

to the Chromium Next GEM Single Cell Multiome ATAC + Gene Expression protocol (10x 

documentation GC000338 Rev A) with modifications described in the original DOGMA-seq 

protocol27. We chose the digitonin (DIG) protocol instead of the low-loss lysis (LLL) 

protocol for its lower mitochondrial DNA capture (0.04% versus 25.3%) and to increase 

ATAC-seq-based HIV-1 DNA capture. The digitonin protocol showed superior performance 

in a separate benchmarking study80. See Document S1 for specific protocol modifications 

and all primers used (ADT and HTO additive primers, SI-PCR and RPX primers, and 

D7X primers). Pooled samples were sequenced in multiple 10x runs (n = 6, 3, 1 for 

virally suppressed, viremic, and uninfected samples, respectively). Per run, 41,000 cells 

were loaded into the 10x Genomics Chromium Controller with a target barcode recovery 

of 24,000 and singlet recovery of 19,400. Libraries were sequenced on NovaSeq 6000 with 

a target of ~50,000 ATAC read pairs (500 million per run), ~40,000 RNA read pairs (400 

million per run), and ~10,000 ADT/HTO barcode reads (100 million per run) for a total of 

100,000 reads per cell. Because our goal was to capture rare HIV-1 reads, our sequencing 

specifications were two times the recommended sequencing requirements for Single Cell 

Multiome (10x Genomics, 25,000 ATAC read pairs/cell and 20,000 RNA read pairs/cell) 

and for CITE-seq (10x Genomics, 20,000 RNA read pairs/cell and 5,000 ADT reads/cell) 

to ensure good sequencing saturation (Table S2) and to increase sensitivity of HIV-1 read 

detection. We recovered on average 13,229 cells that passed CellRanger knee call, and an 

average of 50,131 ATAC read pairs, 48,223 RNA read pairs, and 1,049 usable Antibody 

barcodes per cell (Table S2). The final libraries were quantified using a Qubit dsDNA HS 

Assay Kit (Invitrogen) and a High Sensitivity D1000 DNA kit on Agilent 2200 TapeStation 

system.

Single-cell analyses

DOGMA-seq data pre-processing: Raw sequence files from Chromium Single Cell 

Multiome ATAC + Gene Expression sequencing (ATAC & RNA) were demultiplexed with 

CellRanger-Arc v2 (10x Genomics) mkfastq and reads were aligned to the hg38 reference 

genome using CellRanger-Arc count. Raw sequence files from Single Cell Gene Expression 

with Feature Barcoding (RNA & ADT/HTO) were demultiplexed with CellRanger v5 (10x 

Genomics) mkfastq and reads were aligned to the hg38 reference genome using CellRanger 

count. Cell barcodes that passed knee call by CellRanger and CellRanger-Arc were used for 

downstream analyses.

Removal of low-quality cells and demultiplexing: Cells that passed knee call in filtered 

count matrices were used to initialize Seurat Objects 62,81. The objects were filtered by 

RNA to remove cells with ≥ 25% mitochondrial gene content, ≤ 200 genes, and RNA UMI 
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counts ≤ 500 or ≥ 10,000. Of note, mitochondrial DNA and RNA are inevitably captured 

in the DOGMA-seq method. Therefore, we used a higher mitochondrial gene cutoff than 

RNA-based capture such as ECCITE-seq. The objects were then filtered by ATAC to remove 

cells with ≤ 500 unique ATAC fragments, nucleosome signal strength ≥ 1, transcription start 

site (TSS) enrichment score ≤ 2, and ATAC UMI counts ≤ 500 or ≥ 100,000.

To remove doublet and negative cells by hashtag oligos (HTOs), the HTO data was 

normalized by centered log-ratio (CLR) transformation. Cells from individual sequencing 

runs were demultiplexed based on HTO enrichment using MULTIseqDemux82 implemented 

in Seurat v481, with automated threshold finding set to TRUE, range of quantile values from 

0.1 to 0.999, and maximum number of iterations set to 10. Hashtag-defined doublets and 

barcodes without hashtag assignment were discarded. ATAC & RNA Seurat objects from 

individual sequencing runs were then merged by unified set of ATAC peaks across datasets 

using Signac v1.763. To create a Seurat object containing all three assays (ATAC, RNA, and 

protein), the ATAC & RNA object was merged with the RNA & protein object by shared 

GEX barcode and 10x run.

Data normalization, batch effect correction by integration, and data visualization: We 

normalized and corrected for batch effect for each ATAC, RNA, and protein data to account 

for technical variation from separate 10x runs. The ATAC data was normalized by latent 

semantic indexing [LSI: term frequency-inverse document frequency (TF-IDF) followed 

by singular value decomposition (SVD)] in Signac v1.763 to correct for differences in 

cellular sequencing depth and across peaks to assign higher values to rare peaks. To 

correct for batch effects between ATAC datasets, we performed integration by identifying 

pairwise anchors (pairwise correspondences between single cells across datasets) using 

FindIntegrationAnchors in Seurat v4 with reciprocal LSI reduction method. The RNA data 

were normalized by LogNormalize (feature expression measurement divided by the total 

expression in each cell multiplied by a scale factor of 10,000 then natural-log transformed) 

in Seurat v4. To correct for batch effects between RNA datasets, we performed PCA before 

integration by Harmony64. Finally, the ADT (protein) data was normalized across cells using 

the centered log ratio (CLR) method in Seurat v4. To correct for batch effects between ADT 

datasets, we performed integration by identifying pairwise anchors with reciprocal PCA 

reduction method.

We next clustered the cells by shared nearest neighbor space and visualized them in 

low dimensional projections. To visualize the integrated ATAC data in low dimensional 

space, the LSI coordinates were integrated across the dataset using IntegrateEmbeddings 

(Signac v1.7) with ATAC integration anchors and visualized using UMAP. To visualize the 

integrated RNA and the integrated protein data, the batch corrected data were scaled and 

centered followed by PCA dimensionality reduction, and cells were visualized in UMAP. To 

cluster the cells, we simultaneously considered all 3 (ATAC, RNA, and protein) modalities 

that were independently preprocessed by performing weighted-nearest neighbor (WNN) 

analysis62. Twenty nearest neighbors for each cell were calculated based on the weighted 

combination of ATAC, RNA, and protein similarities using FindMultiModalNeighbors in 

Seurat v4 with integrated ATAC LSI, Harmony, and integrated protein PCA components 

(2:30, 1:13, and 1:10 numbers of components, respectively). Weighted nearest neighbors 
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were used in cluster determination in Seurat v4 with the smart local moving (SLM) 

algorithm and an optimized resolution parameter of 0.6 as determined by Clustree 

evaluation65 and visualized by UMAP.

Downstream data processing: Gene accessibility was measured in Signac v1.7 (determined 

as number of fragments mapping to each gene coordinate extended by 2kb upstream region 

to include promoter regions). Gene accessibility data were normalized by LogNormalize in 

Seurat v4 to adjust for gene accessibility measurements by the total accessibility in each cell 

multiplied by median count as scale factor.

For differentially accessible ATAC peak analyses, ATAC peaks celled by CellRanger-Arc 

were recalled using Model-based Analysis of ChIP-Seq 3 (MACS3) v3.0.066 with default 

parameters in Signac v1.7. Peaks were assigned to genes by distance to nearest TSS 

and the detailed genomic annotations of the regions occupied by center of peaks were 

determined by annotatePeaks.pl with hg38 reference genome using HOMER v4.1170. In-

peak candidate cis-regulatory elements were predicted by ENCODE Registry of candidate 

cis-Regulatory Elements (cCREs)83 All predicted TF-binding motifs found in accessible 

peaks were obtained using genome.ucsc.edu with JASPAR Transcription Factors Track 

Settings. Transcription factor binding motifs were retrieved from JASPAR CORE 202273 

collection and all predicted transcription factor binding sites found in accessible regions 

met prediction confidence of P < 0.05 as determined by PWMScan and visualized in 

UCSC Genome Browser84. Transcription factor accessibility deviations (measured in Z-

scores) were computed using chromVAR v1.1872 with human genome reference hg38 

and transcription factor binding motif references from the JASPAR2022 Core Vertebrates 

database73.

For protein expression datasets, we normalized the ADT data and performed two steps 

of corrections for protein expression composition biases. For all analyses of differentially 

expressed surface proteins, ADT data was normalized and denoised using DSB v1.074 

to correct for ambient unbound protein noise by considering protein expression in empty 

droplets and to correct for cell-to-cell technical noise by shared variance between isotype 

controls and background protein counts (denoise.counts = TRUE, use.isotype.control = 

TRUE). For all visualizations of protein expression trends (in dot plot), we normalized the 

data across cells (margin = 2) using NormalizeData in Seurat v4 with centered-log-ratio 

(CLR) transformation method as this approach maintains authentic values for fractions 

of cells expressing the protein feature in dot plots (versus DSB transformation which 

reflects the standard deviation scores against ambient capture noise). Both DSB and CLR 

are standard normalization approaches that account for composition biases in single-cell 

ADT datasets85, with DSB values additionally correct for background noise74 for a more 

statistically robust differential expression analysis (for volcano plots) but do not reflect 

true 0 count data (in dot plot). In the second steps, for all features used in comparisons 

between populations (or cells grouped by different conditions), the group mean expression 

of each surface proteins was compared to that of its specific isotype controls by Two-Sample 

Z-test. A protein feature is kept for population comparisons if Z > 2 (2 standard deviation 

difference).
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Cell subset identification: 15 clusters of memory CD4+ T cells were distinguished 

by weighted nearest neighbor analysis, and cell subsets were manually annotated by 

accessibility of key transcriptional factors in the epigenomic landscape, then by RNA 

expression of marker genes in the transcriptional profile, then by differential surface protein 

expression.

HIV-1+ cell identification: To identify HIV-1 RNA+ cells, HIV-1 transcripts were identified 

per cell barcode by mapping RNA reads to HXB2 reference sequence and participant 

autologous HIV-1 sequences (Table S3, mapping to autologous sequences was previously 

shown to increase mapping rate by approximately 20% and increase spliced HIV-1 RNA 

capture for these same participant samples13) using STAR v2.757 with a pipeline that we 

have previously established for ECCITE-seq13. Briefly, STAR was run in two pass modes: 

first pass to identify and annotate splice sites in input HIV-1 reference genomes, and 

second pass to realign reads to annotated HXB2 genome. The maximum number of multiple 

alignments allowed was set to 100. Reads that mapped to multiple HIV-1 references or 

sites (e.g., LTR) were deduplicated. Barcodes and UMIs from associated Read 1 file were 

extracted and matched to mapped reads. To guard against index hopping and sequencing 

artifacts, cells with a minimum of 2 HIV-1 reads per barcode were considered positive. 

No false positive HIV-1 RNA+ cells were identified in uninfected participant samples (n = 

10,660 cells).

To identify HIV-1 DNA+ cells, HIV-1 DNA fragments were identified per cell barcode by 

mapping adapter-trimmed mate-pair ATAC reads to participant autologous HIV-1 sequence 

and to HXB2 reference sequence using Bowtie 2 v2.4.258 in local alignment and -a 

(search for and report all alignments) modes. To account for in vivo hypermutation events 

and HIV-1 sequence diversity, we allowed for 1 mismatch (-N 1) per seed length of 10 

(-L 10) during multi-seed alignment. All other parameters were kept at --very-sensitive 

pre-set (-D 20; -R 3; -i S,1,0.50). Reads that mapped to multiple HIV-1 references or 

sites (e.g., LTR) were deduplicated. Barcodes and UMIs from associated Read 2 file were 

then extracted and matched to mapped reads. To guard against false positive detection, all 

HIV-1-mapped reads were verified by matching to the Los Alamos HIV Sequence Database 

(https://www.hiv.lanl.gov/). Testing on 14,780 HIV-1-infected primary CD4+ T cells, our 

HIV-1 DNA alignment approach recovered 5,220 HIV-1 DNA+ cells (35.32% sensitivity) at 

1 HIV-1 read per cell threshold and 4,197 HIV-1 DNA+ cells (28.40% sensitivity) at 2 HIV-1 

reads per cell threshold. To guard against index hopping and sequencing artifacts, cells with 

a minimum of 2 HIV-1 reads per barcode were considered positive. No false positive HIV-1 

DNA+ cells were identified in uninfected ATAC datasets (n = 10,660 and 9,560 cells in 

uninfected participant samples and uninfected Jurkat samples). We additionally performed 

alignment by BWA-MEM v0.7.1786, which was less sensitive than Bowtie2 for our datasets 

(capturing 90% – 95% HIV-1 reads identified by Bowtie2) and yielded no additional HIV-1 

DNA reads.

Analyses of differential gene and peak, and transcription factor accessibility, RNA and 
surface protein expression: Differential gene and peak and transcription factor accessibility 

analyses and differential RNA and protein expression were performed using FindMarkers 
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(comparisons of 2 groups) or FindAllMarkers (comparisons of > 2 groups) in Seurat v4, 

with the following specifications: 1) pseudocount.use = 1, 2) minimum percent of cells 

expressing the feature (min.pct) and 3) log2 fold change (logfc.threshold) feature selection 

filter cutoffs as specified in figure legends. As intended by Seurat V4, only features 

that met ‘min.pct’ and ‘logfc.threshold’ cutoffs were retained, so that poorly expressed 

genes or genes having extremely low differential expression do not skew the differential 

expression results (i.e., the FDR-adjusted P value). Of note, no min.pct values were set 

for chromVAR deviation scores or DSB-normalized protein expression since they were Z-

scores. For differential gene accessibility analyses, accessibility expression were normalized 

with LogNormalize method using a scale factor of median UMI count in each cell. The 

Wilcoxon Rank-sum test was used to determine fold change significance. For differential 

peak accessibility analyses, we added as latent variable the total number of in-peak UMIs to 

account for the effect of differential sequencing depth on the result. Logistic regression was 

used to determine fold change significance. For differential transcription factor accessibility 

analyses, the Wilcoxon Rank-sum test was used to determine significant differences of 

mean deviation scores. For differential gene expression analyses, RNA expression was 

normalized with LogNormalize method using a scale factor of 10,000. The Wilcoxon Rank-

sum test was used to determine fold change significance. For differential surface protein 

expression analyses, protein expression was normalized by DSB. A protein feature was kept 

for comparison if its group mean expression is greater than the group mean expression 

of its isotype control with Z > 2 (2 standard deviation difference) by Two-Sample Z-test. 

The Wilcoxon Rank-sum test was used to determine fold change significance. To adjust 

for sample size for a fair comparison between groups when HIV-1+ cells were compared 

to HIV-1− cells, HIV-1− cell groups were downsized to match the same number of cells in 

HIV-1+ cell groups with 1,000 bootstrap replicates. The 1,000 P values were transformed to 

follow a standard Cauchy distribution and a combined P value is calculated as the weighted 

sum of Cauchy transformed P values75. For all comparisons, P values were corrected for 

multiple comparisons using the Benjamini-Hochberg (FDR) procedure87.

The averaged expression for all significantly differentially expressed features shown in 

heatmaps and dot plots were calculated using feature-level scaled values (using ScaleData 

in Seurat v4: distribution of each feature is centered to mean of 0 and per-cell feature 

expression is the standard deviation from the mean) using all cells that belong to the 

cell clusters or conditions under comparison, so that all features can be shown on the 

same scale (all feature expression share the same scale). This scaling is applied for all 

features shown in heatmaps and dot plots (gene, protein, peak) except for transcription 

factor accessibility (which is in chromVAR Z-score). For all dot plot comparisons between 

HIV-1+ cells versus HIV-1− cells, all features that were significantly upregulated in the 

HIV-1-infected cell groups during viremia were retained if they also had ‘percent expressed’ 

in significantly upregulated group ≥ ‘precent expressed’ in HIV-1-negative cell group in 

viremia, where ‘percent expressed’ is the percentage of cells in the group that express the 

feature (percentage of cells with feature count > 0).

Gene module identification by WGCNA, Gene Ontology (GO) analysis, and pathway 
enrichment by GSEA: Co-expressed gene modules were discovered through Weighted 

Wei et al. Page 20

Immunity. Author manuscript; available in PMC 2024 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gene Co-expression Network Analysis (WGCNA)36 as previously described88. Briefly, 

Seurat object was split by condition of interest and the expression matrix of 50 genes 

most positively and negatively associated with the first < 10 principal components were 

used as input for WGCNA v1.7037. A soft power was selected as recommended where 

possible88: the first power with a scale-free topology > 0.8, but this soft power was reduced 

if fewer than 3 modules with a minimum gene size of 10 were identified. The vectorized 

topological overlap matrix (TOM) dissimilarity matrix was compared with 10,000 randomly 

generated and vectorized TOM dissimilarity matrices from the same gene list used for 

module discovery. Module was determined as significant if FDR-adjusted P < 0.05 (one-

sided Wilcoxon rank-sum test) in at least 95% of 10,000 tests. Similar modules were 

merged using a dissimilarity threshold of 0.5 (MEDissThres = 0.5). See Table S2 for all 

WGCNA modules identified. To visualize gene pair co-expression, 36601 × 36601 gene pair 

Pearson’s correlation coefficients were determined using the corSparse function in qlcMatrix 

R package. For list of genes identified in WGCNA gene modules, we made a custom 

script to generate a pairwise gene expression Pearson’s correlation coefficient heatmap for 

cells in each condition. Condition-specific heatmaps were merged along the diagonal split 

(highlighted in black) to provide a visual contrast of the degree of gene pair co-expression in 

each of the two conditions (no correlations were calculated for cells between conditions).

For GSEA, all 36,601 genes were ranked by log2 fold change in gene expression 

comparisons between groups. Gene ranks were used to determine significantly enriched 

gene sets and build enrichment plot using fGSEA v1.22 with default settings77. Queried 

gene sets were retrieved from MSigDB v2022.189,90 using msigdbr v7.5.178(R package 

version 7.5.1). Specifically, a total of 111,635 reference gene sets from the H (hallmark), 

C2 (curated), and C7 (immunologic signature) collections were retrieved from MSigDB. 

Enrichment score for each gene set was measured by the weighted Kolmogorov–Smirnov 

statistic. Significance of enrichment scores was estimated by the nominal P value. A gene set 

was considered significantly enriched when P < 0.05.

For Gene Ontology analysis, we used all significantly differentially expressed genes to test 

for significant Gene Ontology terms using topGO v2.4876(R package version 2.48.0.) with 

Biology Process (GO:BP) subontology91 and org.Hs.eg.db v3.8.2 (human genome wide 

annotation primarily based on mapping using Entrez Gene identifiers69, R package version 

3.8.2). Gene Ontology terms were considered significant when P < 0.01 using Fisher’s 

exact test. For Figure S6, Gene Ontology analysis was performed using all genes detected 

in WGCNA modules to test for significant GO terms in the H (hallmark), C2 (curated), 

GO (Gene Ontology), and C7 (immunologic signature) MSigDB v2022.1 collections as 

test references. The hypergeometric P value was calculated as the probability of randomly 

drawing k number of observed overlapping genes between query gene list and reference 

gene set from a total of 36,601 genes. Gene Ontology terms were considered significant 

when FDR-adjusted P < 0.05.

Enrichment of WGCNA gene module was scored as previously described92 using 

AddModuleScore in Seurat v4, which calculates the per-cell average RNA expression of 

all genes in module subtracted by the aggregated expression of a set of 100 randomly 

selected genes in the same cells. Note that module score considers the average expression 
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of all genes in a gene set where the weight of each gene expression is the same. This may 

lead to some cells having high module scores scattered across the UMAP albeit having poor 

gene co-expression in those cells, since the scores may be skewed by genes that are highly 

expressed across clusters. Significance of module score differences between cell groups 

were tested using Wilcoxon rank-sum test.

Flow cytometry: Primary CD4+ T cells or primary memory CD4+ T cells were isolated 

by magnetic negative depletion (by STEMCELL catalog no. 17952 or Miltenyi catalog 

no. 130-091-893) from de-identified uninfected individuals (New York Blood Center) and 

activated with anti-CD3/CD28 antibodies for 3 days in the presence of IL-2 at 30 U/ml. 

Cells were infected with replication-competent NL4–3 reference strain and three R5-tropic 

reconstructed clinical isolates 10CB6, 16CB3, and 20CB3 as previously reported50 for 3 

days. Cells were stained with LIVE/DEAD Fixable Near-IR–Dead Cell Stain Kit (Thermo 

Fisher catalog no. L34975), stained with Human BD Fc Block (BD Biosciences catalog no. 

564219), stained with surface protein markers (CD4-APC, clone OKT4, BioLegend catalog 

no. 317416), permeabilized with eBioscience Foxp3 / Transcription Factor Staining Buffer 

(Thermo Fisher catalog no. 00-5523-00), and stained intracellular proteins HIV-1 core 

antigen-RD1 (clone KC57, Beckman Coulter catalog no. 6604667), Aiolos (BV421, clone 

14C4C97, BioLegend catalog no. 371010) and Ki67 (BUV395, clone 56, BD Biosciences 

catalog no. 564071). Note that Aiolos antibody clone 16D9C97 resulted in nonspecific 

staining and was not used. Flow cytometry was performed at Beckman CytoFLEX and 

analyzed using FlowJo v10.8.1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise stated, statistical analysis was performed using R (version 4.0.5). For all 

analyses, the statistical tests used, sample size n, mean, median, and standard deviation 

are described in the figure legends when applicable. For additional details of the statistical 

tests used for each type of analysis (e.g., WGCNA, Gene Ontology, down-sampling and 

bootstrapping for comparisons between HIV-1+ vs HIV-1− cells), see also relevant Methods 

sections. Unless otherwise stated, P values were corrected for multiple comparisons using 

the Benjamini-Hochberg (FDR) procedure87 when applicable. For all statistical analyses, 

significance was defined as FDR-adjusted P < 0.05 or P < 0.05. Poor quality cells were 

excluded from analysis (see Methods for quality control metrics). No data or subjects were 

excluded from analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell multiomics captures in vivo states of HIV-1 DNA+ and HIV-1 

RNA+ cells

• HIV-1 latently infected cells are distinct at the DNA, RNA, and protein levels

• HIV-1-infected cells have four distinct states: IRF, cytotoxic, AP-1, and cell 

death

• IKZF3 (Aiolos) promotes the proliferation of HIV-1-infected cells
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Figure 1. Single-cell DOGMA-seq captures the heterogeneous epigenetic, transcriptional, and 
surface protein states of memory CD4+ T cells during HIV-1 infection.
(A) Harmonized WNN UMAP projection of memory CD4+ T cells identified by cell-to-cell 

multimodal neighbors (weighted combination of ATAC, RNA, and protein similarities) (n 

= 93,209 cells, including 25,778, 56,771, 10,660 cells in the viremic, viral suppression, 

and uninfected conditions, respectively). (B) Pie charts indicating cell subset distributions 

in viremia, viral suppression, and uninfected conditions. (C–D) Heatmap comparisons 

of pairwise gene expression Pearson’s correlation coefficient, for the proliferation gene 

Wei et al. Page 30

Immunity. Author manuscript; available in PMC 2024 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



program identified by WGCNA. The Proliferation gene program was identified by WGCNA 

using top 50 genes most positively and negatively associated with the first 7 principal 

components in the transcriptional profiles of 25,778 cells in viremia. P < 0.05 for 

at least 95% Wilcoxon rank-sum tests against 10,000 random module permutations. 

(E) Proliferation module score per cell subset and infection condition. (F) Chromatin 

accessibility of transcription factor binding motifs in proliferating cluster cells grouped 

by conditions, represented in heatmap as comparisons of group means in ATAC-seq 

chromVAR bias-corrected deviations (Z-score). All motifs shown had significantly increased 

accessibility (P < 0.05 and mean Z-score difference ≥ 0.3). (G) Genes differentially 

expressed in proliferating cluster cells, represented in heatmap as comparisons of group 

means in normalized and scaled RNA expression. All genes passed P < 0.05 in viremic, 

min.pct ≥ 0.1, log2 fold change (FC) ≥ 0.25). (H) Surface proteins differentially expressed 

in proliferating cluster cells, represented in heatmap as comparisons of group means in 

DSB-normalized and scaled protein expression. All features passed P < 0.05 and log2FC 

≥ 0.25. The mean expression of all protein features shown were also tested to be greater 

than the mean expression of their specific isotype controls in cells from the proliferating 

cluster (Z > 2; two-sample Z-test). For all heatmaps, n = 1,073, 1,373, 281 proliferating 

cells in the viremic, viral suppression, and uninfected conditions, respectively. Statistical 

significance for heatmaps was determined by Wilcoxon rank-sum test for comparisons 

between each group and all cells in the other two groups. All P values were false discovery 

rate (FDR)-adjusted using the Benjamini-Hochberg procedure. (I and J) Matching increase 

in chromatin accessibility and scaled gene expression at IKZF3, CCL5, IFI16, IFNG, and 

IL2RB in proliferating cells in viremia. (I) Highlighted red on the genome track corresponds 

to significantly differentially accessible peaks called by MACS3 (FDR-adjusted P < 0.05, 

min.pct ≥ 0.05, log2FC ≥ 0.15) (see Figure S2) and overlap with candidate cis-regulatory 

elements as predicted by ENCODE Registry of Candidate Cis-Regulatory Elements 

(cCREs). All transcription factors were identified using the JASPAR2022 Core Vertebrates 

collection, with binding confidence of P > 0.05 by PWMscan. (I) The corresponding RNA 

expression of genes. * P < 0.05, ** P < 0.01, *** P < 0.001, Wilcoxon rank-sum test. See 

also Figures S1–S4.
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Figure 2. HIV-1 proviral and viral genome landscape captured by DOGMA-seq.
Integrative genomics viewer (IGV) plots of HIV-1 DNA+ reads (A) and of HIV-1 RNA+ 

reads (B) mapped to HXB2 reference genome and autologous HIV-1 sequences. See also 

Figures S5.
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Figure 3. Single-cell DOGMA-seq captures transcriptionally inactive HIV-1-infected cells (HIV-1 
DNA+ HIV-1 RNA−) and transcriptionally active HIV-1-infected cells (HIV-1 RNA+) and their 
respective epigenetic landscape.
(A–B) HIV-1 DNA+ cells and HIV-1 RNA+ cells were identified by mapping ATAC-seq 

and RNA-seq reads, respectively, to autologous HIV-1 and HXB2 reference sequences. 

An HIV-1-infected cell was defined as having at least 2 HIV-1 reads per barcode to 

guard against index hopping and sequencing artifacts. The Venn diagrams were drawn to 

scale with intersection depicting the subset of HIV-1-infected cells that are HIV-1 DNA+ 

RNA+ (light pink). For all downstream figures, HIV-1+ DNA+ RNA− cells were termed 
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HIV-1 DNA+ cells (blue) while HIV-1 DNA− RNA+ cells and HIV-1 DNA+ RNA+ cells 

were merged and termed HIV-1 RNA+ cells (pink). (C) Pie charts indicating cell subset 

distributions. (D–E) Volcano plots indicating transcription factors binding motifs having 

increased global chromatin accessibility (measured by chromVAR bias-corrected deviations) 

between HIV-1 DNA+ cells (n = 233) and HIV-1− cells (n = 2,238) in viremia (D) and 

between HIV-1 RNA+ cells (n = 256) and HIV-1− cells (n = 2,238) in viremia (E). (F) 

Global chromatin accessibility of transcription factor binding motifs in HIV-1 DNA+ cells 

and in HIV-1 RNA+ cells, with respect to each other and to HIV-1− cells, in viremia, 

represented in heatmap as comparisons of group means in chromVAR bias-corrected 

deviations (Z-score). All motifs shown had significantly increased accessibility (P <0.05 

and mean Z-score difference ≥ 0.2). All volcano plots and heatmap showed comparisons for 

viremia (n = 233, 256, 2,238 cells in HIV-1 DNA+, HIV-1 RNA+, and HIV-1−). Statistical 

significance for heatmaps was determined by Wilcoxon rank-sum test for comparisons 

between each group and all cells in the other two groups. For fair comparisons between 

groups in volcano plots and heatmap, HIV-1− cells were downsized to match the same 

number of cells in HIV-1+ groups with 1,000 bootstrap replicates. The 1,000 P values were 

transformed to follow a standard Cauchy distribution and a combined P value was calculated 

as the weighted sum of Cauchy transformed P values, followed by correction for multiple 

comparisons using the Benjamini-Hochberg (FDR) procedure. See also Figure S7.
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Figure 4. Transcriptionally inactive HIV-1-infected cells upregulate IKZF3, type I IFN, cytotoxic 
T cell response, and homing RNA expression..
(A–B) Volcano plots indicating differentially expressed genes in viremia between HIV-1 

DNA+ cells (n = 233) or HIV-1 RNA+ cells (n = 256) versus HIV-1− cells (n = 2,238). P 
< 0.05, min.pct ≥ 0.15, log2FC ≥ 0.25. (C) Genes highly expressed in viremia in HIV-1 

RNA+ cells and in HIV-1 DNA+ cells, represented in heatmap as comparisons of group 

means in normalized and scaled RNA expression. All genes passed P < 0.05, min.pct ≥ 0.15, 

log2FC ≥ 0.25. Statistical significance for heatmaps was determined by Wilcoxon rank-sum 
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test for comparisons between each group and all cells in the other two groups. For fair 

comparisons between groups in volcano plots and heatmap, HIV-1− cells were downsized 

to match the same number of cells in HIV-1+ groups with 1,000 bootstrap replicates. The 

1,000 P values were transformed to follow a standard Cauchy distribution and a combined 

P value is calculated as the weighted sum of Cauchy transformed P values, followed by 

correction for multiple comparisons using the Benjamini-Hochberg (FDR) procedure. (D–E) 

Dot plot of average normalized and scaled RNA expression for significantly upregulated 

genes identified in HIV-1 DNA+ cells in viremia as shown in (A) and in HIV-1 RNA+ cells 

in viremia as shown in (B) that were also upregulated in HIV-infected cells during viral 

suppression. Log2FC > 0 between HIV-1+ cells and HIV-1− cells in viral suppression. P 
values did not reach statistical significance in viral suppression because of the low number 

of HIV+ cells captured. n = 19, 14, 56,738 HIV-1 DNA+ cells, HIV-1 RNA+ cells, and 

uninfected cells in viral suppression, respectively. (F–G) Heatmap comparisons of pairwise 

gene expression Pearson’s correlation coefficients, for the proliferation (MKI67)-driven 

gene program identified by WGCNA, between HIV-1 DNA-1+ cells versus HIV-1− cells 

in viremia (F) and between HIV-1 RNA-1+ cells versus HIV-1− cells in viremia (G). 

This module was identified in HIV-1 RNA+ cells in viremia by considering top 50 genes 

most positively and negatively associated in the first 8 principal components. Module met 

significance with P <0.05 for at least 95% Wilcoxon rank-sum tests against 10,000 random 

module permutations. (H) Enriched Gene Ontology biological processes determined using 

genes in WGCNA-identified proliferation gene program as query. (I–J) To identify immune 

pathways, all 36,601 genes are ranked by log2 fold change in normalized gene expression 

between HIV-1+ and HIV-1− cell groups in viremia. Significantly enriched pathways were 

identified using GSEA. Top 10 representative leading-edge genes were shown. See also 

Figures S6–S7.
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Figure 5. Transcriptionally inactive HIV-1-infected cells upregulate Th1/Th17, T cell activation, 
and homing protein expression. .
(A–B) Volcano plots indicating differentially expressed surface proteins in viremia between 

HIV-1 DNA+ cells (n = 233) or HIV-1 RNA+ cells (n = 256) versus HIV-1− cells (n = 

2,238). P < 0.05 and log2FC ≥ 0.25. (C) Surface proteins highly expressed in viremia in 

HIV-1 DNA+ cells versus HIV-1 RNA+ cells versus HIV-1− cells, represented in heatmap as 

comparisons of group means in DSB-normalized and scaled protein expression. All proteins 

passed P < 0.05 and log2FC ≥ 0.3. The mean expression of all protein features shown were 
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also tested to be greater than the mean expression of their specific isotype controls (Z > 

2; two-sample Z-test) in HIV-1+ cells. Statistical significance for heatmaps was determined 

by Wilcoxon rank-sum test for comparisons between each group and all cells in the other 

two groups. For fair comparisons between groups, HIV-1− cells were downsized to match 

the same number of cells in HIV-1+ groups with 1,000 bootstrap replicates. The 1,000 P 
values were transformed to follow a standard Cauchy distribution and a combined P value 

is calculated as the weighted sum of transformed P values, followed by correction for 

multiple comparisons using the Benjamini-Hochberg (FDR) procedure. (D–E) Significantly 

upregulated proteins identified in HIV-1 DNA+ cells and in HIV-1 RNA+ cells (A–B) in 

viremia (D) that were also upregulated in HIV-1-infected cells in viral suppression (log2FC 

> 0 between HIV-1+ cells and HIV-1− cells in viral suppression) (E). Protein expression 

is visualized in dots plot of average CLR-normalized and scaled expression. P values did 

not reach statistical significance in viral suppression because of the low number of HIV-1+ 

cells captured. n = 19, 14, 56,738 HIV-1 DNA+ cells, HIV-1 RNA+ cells, and uninfected 

cells in viral suppression, respectively. (F–H) Ridge plot of DSB-normalized and scaled 

protein expression distributions for significantly highly expressed surface proteins identified 

in (A–B). See also Figures S6–S7.
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Figure 6. The heterogeneous HIV-1-infected T cell reservoir comprised four distinct cell states: 
IRF, cytotoxic, AP-1, and cell death.
(A–C) RNA UMAP projection of all HIV-1+ cells (n = 233, 256, 19, 14 for viremic HIV-1 

DNA+, viremic HIV-1 RNA+, suppressed HIV-1 DNA+, and suppressed HIV-1 RNA+, 

respectively) defined by transcriptional profile. Four phenotypically distinct clusters–IRF, 

Cytotoxic, AP-1, and MT clusters–were annotated (A). No apparent batch effects were 

observed by infection conditions or by HIV-1 RNA expression (B) or by study participants 

(C). Batch effects between participants were corrected by Harmony. (D) Heatmap of 

Wei et al. Page 39

Immunity. Author manuscript; available in PMC 2024 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



normalized and scaled RNA expression for most highly differentially expressed genes (by 

log2FC) in each cluster of cells. P < 0.05, min.pct ≥ 0.25, log2FC ≥ 0.25. (E) Differential 

accessibility for transcription factor binding motifs, represented in heatmap as comparisons 

of means of ATAC-seq chromVAR bias-corrected deviations (Z-score) between group. All 

motifs shown had significantly increased accessibility, by P < 0.05 and mean difference ≥ 

0.3. (F) Proteins highly expressed per cell group, represented in heatmap as comparisons 

of group means in DSB-normalized and scaled protein expression. All features passed P < 

0.05, and log2FC ≥ 0.25. The mean expression of all protein features shown were also tested 

to be greater than the mean expression of their specific isotype controls in HIV-1-infected 

cells (Z > 2; two-sample Z-test). Statistical significance for all heatmaps was determined by 

Wilcoxon rank-sum test for comparisons between each group and all cells in the other three 

groups. (G) Transcription factors with enriched binding motif accessibility and upregulated 

genes and proteins in each of the four phenotypically distinct clusters of HIV-1+ cells. (H–J) 

Heatmap comparisons of pairwise gene expression Pearson’s correlation coefficients for 

modules identified by WGCNA (using with top 50 genes most positively and negatively 

associated with the first 8 principal components in the transcriptional profiles of all 522 

HIV-1+ cells). See also Figures S6.
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Figure 7. Both transcriptionally inactive and active HIV-1-infected cells upregulate IKZF3 
expression.
(A–B) Dot plots showing mean normalized and scaled chromatin accessibility (left) and 

RNA expression (right) of IKZF3 in six main cell subsets. (C) Chromatin accessibility at 

IKZF3. (D–E) Violin plots showing differences in IKZF3 chromatin accessibility (D) and 

RNA expression (E). * P < 0.05, *** P <0.001, Wilcoxon rank-sum tests. (F) Representative 

flow cytometry plot showing Aiolos protein expression in HIV-1-infected versus uninfected 

cells. Activated primary CD4+ T cells were infected with the replication-competent NL4–3 
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reference strain and three R5-tropic clinical isolates 10CB6, 16CB3, and 20CB350. After 

lymphocyte gating, doublet discrimination, and gating for cell viability, HIV-1-infected cells 

were determined based on HIV-1 core-RD1 expression and CD4 downregulation. (G, H) 

Aiolos protein expression in HIV-1-infected and uninfected cells. Each line represents one 

biological replicate from one uninfected donor. Total CD4+ T cells (G) and memory CD4+ 

T cells (H) from 3 uninfected donors were tested for each virus. (I–J) Proportion of Ki-67 

expression among Aiolos+ HIV-1+ cells versus Aiolos− HIV-1+ cells in total CD4+ T cells 

(I) and memory CD4+ T cells (J). *** P < 0.001, paired two-tail Student’s t-test (G–J).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

TotalSeq-A Human Universal Cocktail V1.0 BioLegend CAT # 399907; RRID: AB_2888692

TotalSeq-A CD30, clone BY88 BioLegend CAT # 333913; RRID: AB_2749966

TotalSeq-A CD197, clone G043H7 BioLegend CAT # 353247; RRID: AB_2750357

TotalSeq-A anti-human Hashtag 1 BioLegend CAT # 394601; RRID: AB_2750015

TotalSeq-A anti-human Hashtag 2 BioLegend CAT # 394603; RRID: AB_2750016

TotalSeq-A anti-human Hashtag 3 BioLegend CAT # 394605; RRID: AB_2750017

TotalSeq-A anti-human Hashtag 4 BioLegend CAT # 394607; RRID: AB_2750018

TotalSeq-A anti-human Hashtag 5 BioLegend CAT # 394609; RRID: AB_2750019

TotalSeq-A anti-human Hashtag 6 BioLegend CAT # 394611; RRID: AB_2750020

CD4-APC, clone OKT4 BioLegend CAT # 317416; RRID: AB_571945

HIV-1 core antigen-RD1, clone KC57 Beckman Coulter CAT # 6604667

IKZF3-BV421, clone 14C4C97 BioLegend CAT # 371010; RRID: AB_2616875

Ki67-BUV395, clone 56 BD Biosciences CAT # 564071

Bacterial and virus strains

NL4–3 NIH HIV Reagents 
Program

CAT # ARP-114

10CB6 Ho et al.50 N/A

16CB3 Ho et al.50 N/A

20CB3 Ho et al.50 N/A

Biological samples

Blood samples from Sabes Cohort (Table S1) This study and Collora 
et al.40

N/A

Chemicals, peptides, and recombinant proteins

Digitonin 5% ThermoFisher CAT # BN2006

xGen Lockdown Reagents IDT CAT # 1072281

Protector RNase Inhibitor Sigma-Aldrich PN-3335399001

Human Cot-1 DNA Invitrogen CAT # 15279011

Dynabeads M-270 Streptavidin Invitrogen CAT # 65306

Human TruStain FcX BioLegend CAT # 422302; RRID: AB_2818986

LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit Thermo Fisher CAT # L10119

Human BD Fc Block BD Biosciences CAT # 564219

eBioscience Foxp3 / Transcription Factor Staining Buffer Thermo Fisher CAT # 00–5523-00

BD Pharmingen Purified Mouse Anti-Human CD3, Clone 
UCHT1

BD Biosciences CAT # 555330

BD Pharmingen™ Purified Mouse Anti-Human CD28, 
Clone CD28.2

BD Biosciences CAT # 556620

Recombinant Human Interleukin-2 Conn Stem CAT#C1002

Critical commercial assays
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chromium Next GEM Single Cell Multiome ATAC + Gene 
Expression Reagent Bundle

10x Genomics PN-1000283

Chromium Nuclei Isolation Kit with RNase Inhibitor 10x Genomics PN-1000494

Chromium Next GEM Chip J Single Cell 10x Genomics PN-1000230

Dual Index Kit TT Set A 10x Genomics PN-1000215

Single Index Kit N Set A 10x Genomics PN-1000212

3’ Feature Barcode Kit 10x Genomics PN-1000262

EasySeq Dead Cell Removal Annexin V kit STEMCELL CAT # 17899

EasySep Human CD4+ T Cell Isolation Kit STEMCELL CAT # 17952

Memory CD4+ T cell Isolation Kit Miltenyi Biotec CAT # 130–091-893

Kapa Hifi Hotstart Readymix Kapa Biosystems CAT # KK2602

SPRIselect 5 mL reagent kit Beckman Coulter CAT # B23317

LIVE/DEAD Fixable Near-IR-Dead Cell Stain Kit Thermo Fisher L34975

Deposited data

DOGMAseq memory CD4+ T cells This study GEO: GSE239916

Oligonucleotides

ADT: * indicates phosphorothioate: 
CCTTGGCACCCGAGAATT*C*C

Mimitou et al.27 DOGMAseq

HTO: * indicates phosphorothioate: 
GTGACTGGAGTTCAGACGTGTGC*T*C

Mimitou et al.27 DOGMAseq

SIPCR: Dual index common primer for ADT/HTO This study, see 
Methods S1

DOGMAseq

RPX: Dual index common primer for ADT This study, see 
Methods S1

DOGMAseq

D7X: Dual index common primer for HTO This study, see 
Methods S1

DOGMAseq

Software and algorithms

CellRanger-Arc v2.0 10x Genomics
https://support.10xgenomics.com/single-cell-
multiome-atac-gex/software/pipelines/latest/
installation#download

CellRanger v5.0.1 10x Genomics https://support.10xgenomics.com/single-cell-gene-
expression/software/downloads/latest

STAR v2.7 Dobin et al.57 https://github.com/alexdobin/STAR

Bowtie 2 v2.4.2 Langmead and 
Salzberg58

https://github.com/BenLangmead/bowtie2

Cutadapt v4.2 Martin59 https://cutadapt.readthedocs.io/en/stable/
installation.html

Seqtk v1.3 https://github.com/lh3/
seqtk

https://anaconda.org/bioconda/seqtk

SAMtools v1.16.1 Li et al.60 https://anaconda.org/bioconda/samtools

IGV v2.16 Robinson et al.61 https://software.broadinstitute.org/software/igv/
download

Seurat v4.3.0 Hao et al.62 https://cran.r-project.org/web/packages/Seurat/
index.html

Signac v1.7 Stuart et al.63 https://cran.r-project.org/web/packages/Signac/
index.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

Harmony v3.8 Korsunsky et al.64 https://portals.broadinstitute.org/harmony/articles/
quickstart.html

Clustree v0.5.0 Zappia and Oshlack65 https://cran.r-project.org/web/packages/clustree/
index.html

MACS3 v3.0.0 Zhang et al.66 https://github.com/macs3-project/MACS

EnsDb.Hsapiens.v86 v3.16 Rainer67 https://bioconductor.org/packages/release/data/
annotation/html/EnsDb.Hsapiens.v86.html

BSgenome.Hsapiens.UCSC.hg38 v1.4.5 Team TBD68 https://bioconductor.org/packages/
release/data/annotation/html/
BSgenome.Hsapiens.UCSC.hg38.html

org.Hs.eg.db v3.8.2 Carlson et al.69 https://bioconductor.org/packages/release/data/
annotation/html/org.Hs.eg.db.html

HOMER v4.11 Heinz et al.70 http://homer.ucsd.edu/homer/introduction/
install.htsml

TFBSTools v3.16 Tan and Lenhard71 https://bioconductor.org/packages/release/bioc/html/
TFBSTools.html

chromVAR v1.18 Schep et al.72 http://bioconductor.org/packages/release/bioc/html/
chromVAR.html

JASPAR2022 Castro-Mondragon et 
al.73

https://bioconductor.org/packages/release/data/
annotation/html/JASPAR2022.html

DSB v1.0.3 Mulè et al.74 https://cran.r-project.org/web/packages/dsb/
index.html

ACAT v0.91 Liu et al.75 https://github.com/yaowuliu/ACAT

WGCNA v1.70 Langfelder and 
Horvath37

https://cran.r-project.org/web/packages/WGCNA/
index.html

topGO v2.48 Alexa76 https://bioconductor.org/packages/release/bioc/html/
topGO.html

fGSEA v1.22 Korotkevich et al.77 https://bioconductor.org/packages/release/bioc/html/
fgsea.html

msigdbr v7.5.1 Dolgalev78 https://cran.r-project.org/web/packages/msigdbr/
vignettes/msigdbr-intro.html

R version 4.0.5 R Core Team79 https://www.r-project.org/

FlowJo V10.8.1 FlowJo https://www.flowjo.com/solutions/flowjo/downloads

Analysis scripts This study https://doi.org/10.5281/zenodo.8351067
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