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Abstract

Alzheimer’s disease (AD) is characterized by cognitive and memory impairments and neuro-

pathological abnormalities. AD has no cure, inadequate treatment options, and a limited

understanding of possible prevention measures. Previous studies have demonstrated that

AD model mice that received a diet high in the essential nutrient choline had reduced amy-

loidosis, cholinergic deficits, and gliosis, and increased neurogenesis. In this study, we

investigated the lifelong effects of perinatal choline supplementation on behavior, cognitive

function, and amyloidosis in AppNL-G-F AD model mice. Pregnant and lactating mice were

given a diet containing either 1.1 g/kg (control) or 5 g/kg (supplemented) of choline chloride

until weaning and subsequently, all offspring received the control diet throughout their life.

At 3, 6, 9, and 12 months of age, animals were behaviorally tested in the Open Field Test,

Elevated Plus Maze, Barnes Maze, and in a contextual fear conditioning paradigm. Immuno-

histochemical analysis of Aβ42 was also conducted on the brains of these mice. AppNL-G-F

mice displayed hippocampal-dependent spatial learning deficits starting at 3-months-old

that persisted until 12-months-old. These spatial learning deficits were fully prevented by

perinatal choline supplementation at young ages (3 and 6 months) but not in older mice (12

months). AppNL-G-F mice also had impaired fearful learning and memory at 9- and 12-

months-old that were diminished by choline supplementation. Perinatal choline supplemen-

tation reduced Aβ42 deposition in the amygdala, cortex, and hippocampus of AppNL-G-F

mice. Together, these results demonstrate that perinatal choline supplementation is capable

of preventing cognitive deficits and dampening amyloidosis in AppNL-G-F mice and suggest

that ensuring adequate choline consumption during early life may be a valuable method to

prevent or reduce AD dementia and neuropathology.

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common

form of dementia. AD is characterized clinically by cognitive deficits and neuropathologically
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by the accumulation of amyloid-beta (Aβ) plaques, neurofibrillary tangles, and neuroinflam-

mation. Although AD was first described by Dr. Alois Alzheimer in 1907, effective treatment

options for the disease have remained elusive. For this reason, there has been an increased

interest in possible prevention methods for this disease. Choline is an essential nutrient used

in the synthesis of phosphatidylcholine, is a precursor for the neurotransmitter acetylcholine,

and may serve as a methyl group donor for the synthesis of S-adenosylmethionine which can

be used to methylate multiple substrates, including DNA and histones [1]. Although choline is

recognized as an essential nutrient, only about 10% of Americans reach its daily recommended

intake level [2]. One of the hallmarks of AD is the loss of the basal forebrain cholinergic neu-

rons that are critical for learning and memory, and perinatal choline supplementation in mice

and rats increases the size of these neurons and enhances their acetylcholine synthesis and

release [3–7]. Numerous animal studies have shown that maternal choline supplementation

has lifelong beneficial effects on cognition and brain development in their offspring [3, 4, 8, 9].

Perinatal choline supplementation in rats has also been shown to enhance hippocampal long-

term potentiation, improve spatial learning and memory, and to modulate the expression of

genes encoding proteins that are critical for long-term potentiation and are involved in mem-

ory processing [4, 5, 10–15]. Choline supplementation also reduces brain amyloid deposition

in APP.PS1 AD model mice [10, 16, 17]. In contrast, maternal choline deficiency has negative

effects on brain development, cognitive performance, and adult neurogenesis [18, 19] and low

levels of dietary choline intake are associated with AD-neuropathological progression and

increased risk for dementia and AD [20, 21]. Together, these data support the notion that ade-

quate choline consumption may be a potential avenue for AD prevention or risk mitigation.

In 2014, Saito and colleagues developed the AppNL-G-F AD mouse model with the goal to

overcome one of the major disadvantages of the transgenic AD mouse models which are char-

acterized by the overexpression of the amyloid precursor protein (APP) controlled by an exog-

enous promoter. Among other drawbacks, this led to an overproduction of APP C-terminal

fragment (βCTF-β/α), and APP intracellular domain that is not apparent in AD in humans

[22]. AppNL-G-F mice do not overexpress APP and thus are thought to better represent some

aspects of AD. The AppNL-G-F model accomplishes this by knocking in a humanized version of

the Aβ amino acid sequence into App while also incorporating the Swedish (KM670/671NL),

Artic (E693G), and Beyrether/Iberian (I716F) mutations that lead to familial AD, in order to

accelerate brain amyloidosis. AppNL-G-F AD model mice start developing plaques and signs of

neuroinflammation starting around two months of age and these pathological hallmarks prog-

ress in an age-dependent manner [22, 23]. Spatial and fearful memory impairments have been

reported starting at 6 months of age in AppNL-G-F mice and continue to be present at least up

until 18-months-old [22–25]. Measures of anxiety in AppNL-G-F mice have been inconsistent

with some studies finding slight differences at early ages that are then flipped the other direc-

tion at later ages or no real difference in anxiety in AppNL-G-F mice compared to wildtype [24,

26, 27]. Furthermore, anxiety measures in AppNL-G-F mice seem to be dependent on type of

test, age, and testing environment. Although several studies have evaluated AD mouse models

behaviorally and pathologically across various ages, none have investigated the effects of peri-

natal choline supplementation across the lifespan within any AD mouse model [23–33]. Cho-

line supplementation has been shown to improve behavioral deficits in the APP.PS1 AD

mouse model at 11 months of age [17] but the effects of choline supplementation on amyloid-

osis and behavior in the AppNL-G-F mouse model, and any AD mouse model, have not been

studied across life. In this study, we investigated the effects of both the AppNL-G-F genotype and

of perinatal choline supplementation on anxiety and exploratory behavior, spatial and fearful

learning and memory, and Aβ42 pathology in 3-, 6-, 9-, and 12-month-old wildtype and

AppNL-G-F mice.
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Materials and methods

Ethics statement

All procedures were conducted in accordance with the Animal Welfare Act (Animal Welfare

Assurance Number A-3316-01) and to the principles of the National Institute of Health Guide

for the Care and Use of Laboratory Animals (“The Guide”). All studies were approved by the

Institutional Animal Care and Use Committee of Boston University.

Animals and animal care

C57BL/6J (WT) mice were purchased from Charles River Laboratories (Worcester, MA, USA)

and then bred in-house. Knock-in App KM670/671NL (Swedish), E693G (Artic), I716F (Ibe-

rian) (AppNL-G-F) mice were obtained from RIKEN BioResource Center under a Material

Transfer Agreement and then bred in-house. One week prior to mating, mice were placed on

either a control AIN76A diet (#110098 Dyets Inc., Bethleham, PA) consisting of carbohydrates

(66.00%), protein (20.30%), and fat (5.00%), [as sucrose (500g/kg), casein (200g/kg), corn-

starch (150g/kg), cellulose (50g/kg), corn oil (50g/kg), mineral mix #200000 (35g/kg), vitamin

mix #300050 (10g/kg), DL-methionine (3g/kg), and choline chloride (1.1g/kg)], or on a cho-

line-supplemented AIN76A diet (#110184 Dyets Inc., Bethleham, PA), differing only by con-

taining 5.0 g/kg of choline chloride, creating control diet and choline-supplemented groups.

Homozygous AppNL-G-F and C57BL/6J females were crossed correspondingly with homozy-

gous AppNL-G-F and C57BL/6J males. The pregnant dams continued to consume their specific

prenatal diets through the birth of the litter and lactation until weaning of the pups on postna-

tal day 21 (S1 Fig). Subsequently, all offspring consumed the control diet and water ad libitum
and were randomly divided into four experimental age groups: 3-, 6-, 9-, and 12-months of

age. Animals were group housed by sex with a maximum of 5 mice per cage with controlled

ambient temperature and humidity between 20-22ºC and 50–70%, respectively. Mice were

housed on a reverse 12-hour light-dark cycle (11 pm-11 am lights on). Mice were euthanized

after completion of behavioral testing at 3-, 6-, 9-, or 12-months of age (S1 Fig).

Behavioral testing

All mice were acclimated to the testing room at least 30 minutes prior to testing. Before and

after individual tests, surfaces and testing apparatuses were sanitized with 70% ethanol. Mice

were weighed before the Open Field Test and after Contextual Fear Conditioning to test for

any significant weight gain or reduction during the behavioral testing period. There were no

differences in mouse weight due to genotype or perinatal diet, nor did behavioral testing sig-

nificantly alter mouse weight. During testing, all mice from one cage were placed in individual

holding cages where they remained until the end of the testing sessions. Holding cages were

used during the experiment to prevent the emotional reactivity of a mouse that just completed

the task from influencing the behavior of an untested mouse, among other potential artifacts.

Animal testing was conducted in a cross-sectional manner so every animal was tested only at

one age. All mice were behaviorally tested in the following order: Open Field Test, Elevated

Plus Maze, Barnes Maze, and Contextual Fear Conditioning. All tests were performed such

that animals were given at least two days of no testing between different tasks: Open Field;

2-day break; Elevated Plus Maze; 2-day break; Barnes Maze; 3-day break, Contextual Fear

Conditioning. Number of animals per group are shown in S1 Table.

Open field test. The Open Field Test was conducted using a 45 x 60 x 45 cm arena made

of plexiglass [34]. Each mouse was placed in the corner and released to explore the apparatus

for 15 minutes. Light illumination was set to 140 lux and white noise was set to 55 dB.
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Ethovision XT 14 recording software (version 14.0.132.6, Noldus Information Technology,

Leesburg, VA, USA) was used to track and quantify the animal’s total distance traveled, veloc-

ity, and time spent in central (25 x 40 cm) and peripheral zones (within 10 cm around the

perimeter).

Elevated plus maze. Animals were tested for anxiety-like behaviors in the Elevated Plus

Maze (EPM) [35]. The EPM consisted of two open arms (30 × 10 cm) and two closed arms

(30 × 10 × 20 cm) extending from a central area (10 × 10 cm) and elevated 46 cm above the

testing table. Testing was completed using 290 lux light illumination and 55 dB of white noise.

Testing commenced by placing and releasing the animal in the center of the apparatus. The

animal was allowed to explore the maze for 5 minutes. Times spent in the open arms, center,

and closed arms and the number of entries into the open arms and closed arms were recorded.

An entry into the open or closed arm was called when all four paws of the mouse were within a

given region. Test parameters were scored by Ethovision XT 14 recording software (version

14.0.132.6, Noldus Information Technology, Leesburg, VA, USA).

Barnes maze. To examine spatial learning and memory function, the mice were tested

using the Barnes Maze [36]. A 92 cm diameter gray platform elevated 46 cm above the testing

table with 20 holes (5 cm diameter) equally spaced 2.5 cm from the perimeter was used. Test-

ing was conducted in a well-lit (270 lux) room with salient extra maze cues and a white noise

machine producing noise at 68 dB. A dark escape pod (10 x 10 x 8 cm) was attached under-

neath one of the holes and held at a constant position throughout the entirety of testing. The

animals were tested in in three phases: habituation (Day 1), training (Days 2–4), and probe/

memory recall (Day 5). The habituation phase occurred on the first day in which each animal

had one trial of two minutes to explore the maze. If the animal entered the escape pod, the trial

was stopped and the animal returned to their home cage. However, if the animal did not enter

the escape hole by the end of the 2-minute period, the animal was gently guided into the escape

pod and let sit in the escape pod for 30 seconds before being returned to its home cage.

Twenty-four hours after the habituation phase, the animals began the training phase in which

the animals completed three trials per day for three consecutive days. During the training

phase, each trial was a maximum of 90 seconds. Like the habituation phase, during the training

phase, if the animal entered the escape pod before 90 seconds elapsed, the trial was stopped

and the animal returned to its cage. If the animal did not enter the escape pod before the end

of the 90 seconds, the animal was gently guided into the escape pod before being returned to

its cage. During the habituation and training phases, latency to reach the target hole, latency to

escape, and number of errors were recorded. Primary latency was defined as the time to iden-

tify the target hole the first time by placing the head within the threshold of the target hole, as

mice did not always enter the target hole upon first identifying it. Errors were defined as the

number of incorrect head pokes that broke the threshold of a non-target hole before reaching

the target hole. The probe/memory recall phase occurred 24 hours after the last training day

and consisted of only one trial that lasted 30 seconds where the escape hole was closed with an

opaque plug to test how well the animal remembered where the escape pod was placed in the

previous days’ trials. At the end of the 30 seconds, the animal was returned to its home cage.

Measures of latency to reach target hole, time spent per quadrant, mean distance from target

hole, and number of errors were recorded for the probe/memory recall phase. For each trial,

test parameters were scored by Ethovision XT 14 recording software (version 14.0.132.6, Nol-

dus Information Technology, Leesburg, VA, USA).

Contextual fear conditioning. Contextual fear conditioning (CFC) was used to evaluate

amygdala and hippocampal-dependent fearful learning and memory [37]. CFC was conducted

in three sessions separated by 24 hours: a training session (Day 1) and two re-exposure sessions

(Day 2 and Day 3). On Day 1, animals were placed in the conditioning chamber (17 x 17 x 25
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cm) with white wall plates and a wire floor (Context 1) and allowed to habituate for 2 minutes

before the onset of the first trial tone (20 seconds, 2000 Hz). A mild electric shock (2 seconds,

0.5 mA) was administered via the wire floor during the last 2 seconds of the tone followed by a

resting period of 100 seconds. Each animal received five of these conditioning trials on Day 1

and remained in the conditioning chamber for 2 minutes after the last shock delivery before

being returned to their cage. On Day 2, animals were placed in the same chamber but with

black-and-white striped-wall plates and a solid floor (Context 2) to assess their response to the

tone. After a 2-minute habituation, a tone (20 seconds, 2000 Hz) was administered in the

absence of any shock and repeated for a total of five tones separated by 100 seconds each. On

Day 3, animals were placed in the original context (Context 1) for 5 minutes without the pres-

ence of any tone or shock to assess context association. All testing was done using 240 lux illu-

mination. The murine fear response in anticipation of the shock was measured using

Ethovision XT 14 recording software (version 14.0.132.6, Noldus Information Technology,

Leesburg, VA, USA) as percentage of time spent freezing (absence of all but respiratory move-

ments for at least 3 seconds) to assess emotional reactivity during training (Day 1) and fear

memory during retention tests (Day 2 and 3).

Brain processing

Mice were humanely euthanized one week after completion of behavioral testing at 3-, 6-, 9-,

or 12-months of age by CO2 inhalation followed by decapitation. Brains were quickly extracted

and sectioned down the midline. The right hemisphere was immediately fixed in 10 volumes

of PLP fixative (10mM sodium periodate, 75mM lysine, 4% paraformaldehyde; pH 7.4) for 24

hours at 4ºC, then cryoprotected in a graded series of 10% and 20% glycerol/2% dimethylsulf-

oxide, in 0.1 M phosphate buffer, pH 7.3 solution for 24 hours each. Serial, frozen sections

(40μm, coronal) were cut from anterior to posterior on a frozen sliding microtome and cut

sections stored in a 0.02% sodium azide in 0.1 M PBS (pH 7.3) solution until time of staining.

Amyloid-beta-42 immunohistochemistry

Anterior hippocampal sections that capture the hippocampus, primary somatosensory cortex,

and basolateral and basomedial amydalar nuclei (Bregma -1.5mm—-1.9mm) were selected

and washed with gentle agitation for 10 minutes in PBS and then transferred to 70% Formic

Acid for 1 minute with gentle agitation. The sections were blocked in 0.1 M PBS (pH 7.3)/10%

goat serum for 1 hour at room temperature. Sections were incubated with rabbit anti-Aβ42

antibody (Invitrogen #700254; 1:1000) overnight with gentle agitation at room temperature in

a solution of 0.3% Triton-X 100, 2% goat serum, 0.008% sodium azide, in 0.1M PBS (pH 7.3).

The next day, sections were washed with 0.1 M PBS (pH 7.3) three times for 10 minutes each

before being incubated with goat anti-rabbit IgG (H+L) HRP conjugated antibody (Millipore

#AP307P; 1:750) in a solution of 2% goat serum/0.1 M PBS (pH 7.3) for 3 hours with gentle

agitation at room temperature. Sections were then washed with 0.1 M PBS (pH 7.3) three

times for 10 minutes each before being developed in a solution containing diaminobenzidine,

sodium imidazole, and hydrogen peroxide. These immunohistochemical procedures on sec-

tions slated to constitute a set used for comparative studies were performed at the same time

with the same reagents under identical conditions. Mounted sections were analyzed on an

Olympus B061 microscope using a 2X magnification objective. The entire hippocampus and

adjacent cerebral cortex were imaged in a single photographic frame, and a second set of

images that contained the amygdala were imaged subsequently. The photographic images

were obtained using constant exposure settings for each set of sections. Using the ImageJ soft-

ware, the region of interest was outlined to include the entire hippocampus, a consistent region
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of the cerebral cortex, and a consistent region in the amygdala encompassing both the basolat-

eral and basomedial amygdalar nuceli in each of the images (S2 Fig). Number of animals ran-

ged from 5–11 per group (Age by perinatal diet by sex) and shown in S2 Table. The staining

intensity threshold was held constant for all of the images in a given set. Total Aβ42-positive

plaque number, average Aβ42-positive plaque size, and Aβ42-positive total plaque area were

measured by the ImageJ software. Three sections per animal were used, and the data averaged

to obtain a single value for the anterior hippocampus, cerebral cortex, and amygdala of that

animal. Then, the data were used to calculate the mean and standard error for each group of

animals per region. The analysis was performed by an individual (MC), who was blind to the

identity of the samples (dietary group, age, and sex status).

Data analysis

Data for all experiments, presented as means ± SEM, were analyzed by t-test or a one- or two-

way ANOVA or ANOVA with repeated measures as appropriate using Jmp Pro 15.0.0 soft-

ware. Post hoc analyses were performed with a Tukey test. Sex was included as a covariate in all

analyses and sex-related differences were evaluated and only reported when significant. For

figures p-values are designated with asterisks, *<0.05; **<0.01; ***<0.001.

Results

Open field test and elevated plus maze

We employed both the Open Field Test and Elevated Plus Maze to explore anxiety-related

behaviors and locomotion within our mice. We found no differences between wildtype and

AppNL-G-F mice in total distance traveled during the Open Field Test at any of the ages indicat-

ing that AppNL-G-F mice did not display locomotor abnormalities (p>0.05 for all, ANOVA,

S3A Fig). AppNL-G-F mice did, however, show subtle anxiety-related differences compared to

wildtype mice. In the Open Field Test, there was an overall significant effect of the AppNL-G-F

genotype as AppNL-G-F mice spent less time in the center than wildtype mice at both 9- and

12-months of age (9-Months- F(1, 65) = 5.50, p = 0.022; 12-Months- F(1, 62) = 5.51, p = 0.022;

ANOVA, S3B Fig). In the Elevated Plus Maze, there was also a significant effect of genotype, as

AppNL-G-F mice spent significantly more time in the open arms or middle of the platform than

wildtype mice, but only at 12-months of age (F(1, 62) = 6.91, p = 0.011; ANOVA, S4B Fig). No

other genotype differences were found in the Open Field Test at 3- or 6-months of age or in

the Elevated Plus Maze at 3-, 6-, or 9-months of age (S3 and S4 Figs). Together, these data

show that AppNL-G-F mice do not have locomotor dysfunction and have subtle anxiety-related

differences as compared to wildtype mice. These subtle changes found in the Open Field Test

and Elevated Plus Maze are unlikely to explain the marked performance differences between

AppNL-G-F and wildtype mice in learning and memory tests like the Barnes Maze and Contex-

tual Fear Conditioning reported below. Further detailed analysis of both the Open Field Test

and Elevated Plus Maze is included in the S1 File.

Barnes maze

To assess hippocampal-dependent spatial learning and memory, we performed the Barnes

Maze that included a habituation day followed by three trial days with three tests per day and

concluded with a probe test 24-hours after the last test of the last trial day. In 3-month-old

mice, both wildtype and AppNL-G-F mice decreased their latency to the target hole across the

trial days indicating that the animals were learning the location of the hole (Wildtype- F(2,

102) = 28.75, p<0.0001; AppNL-G-F- F(2, 90) = 11.72, p<0.0001; Fig 1A). There was an overall
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significant effect of genotype on latency to reach the target hole during the trial days as

3-month-old AppNL-G-F mice took significantly longer to reach the target hole than wildtype

mice (F(1, 64) = 9.99, p = 0.002, repeated measures ANOVA). There was also an overall effect

of genotype by perinatal diet during the trial days in 3-month-old mice (F(3, 64) = 3.97,

p = 0.012, repeated measures ANOVA). Post-hoc analysis found that the genotype by perinatal

diet effect was due to the significant increase in latency to reach the target hole during the trial

days in control diet AppNL-G-F mice (38.67 ± 3.3s) compared to control diet wildtype mice

(24.95 ± 2.8s) (p = 0.012, Tukey). However, 3-month-old AppNL-G-F mice that received the

choline supplemented perinatal diet did not show a significant impairment in learning the

location of the target hole compared to both control diet and choline supplemented wildtype

mice (Control WT (24.95 ± 2.8s), Supplemented WT (29.45 ± 3.0s), Supplemented AppNL-G-F

Fig 1. AppNL-G-F mice are impaired in spatial learning and perinatal choline supplementation can prevent these

deficits at early ages. (A) AppNL-G-F mice at 3-, 6-, and 12-months of age take a longer time to reach the target hole

than wildtype mice (3-Months- F(1, 64) = 9.99, p = 0.002; 6-Months- F(1, 67) = 5.75, p = 0.019; 12-Months- F(1, 62) =

14.40, p = 0.0003; repeated measures ANOVA). Perinatal choline supplementation prevented these learning deficits in

AppNL-G-F mice at 3- and 6-months of age but not at 12-months. (B) No significant spatial memory recall deficits were

found in 3-, 6-, or 9-month-old AppNL-G-F mice but there was a spatial memory recall deficit in AppNL-G-F mice at

12-months-old revealed during the 1-day probe test (F(1, 66) = 7.43, p = 0.008, ANOVA). 12-month-old AppNL-G-F

mice that received the control diet were significantly slower at reaching the target hole during the 1-day probe test than

12-month-old wildtype mice that received the supplemented diet (Supplemented WT (14.32 ± 2.4s) vs Control

AppNL-G-F (24.79 ± 2.7s) p = 0.025, Tukey). (C) Linear regression models adjusting for sex, perinatal diet, and genotype

of latency to target hole measures during the trial days of the Barnes Maze revealed that 3- and 6-month-old mice are

significantly faster at reaching the target hole than both 9- and 12-month-old mice (3-Months (31.96 ± 1.4s) vs

9-Months (39.10 ± 1.4s) p = 0.003; 3-Months (31.96 ± 1.4s) vs 12-Months (41.41 ± 1.5s) p<0.0001; 6-Months

(30.94 ± 1.4s) vs 9-Months (39.10 ± 1.4s) p = 0.0004; 6-Months (30.94 ± 1.4s) vs 12-Months (41.41 ± 1.5s) p<0.0001;

Tukey). Wildtype and AppNL-G-F were combined for these analyses. (D) Linear regression models adjusting for trial

day, sex, and perinatal diet of latency to target hole during the trial days of the Barnes Maze show that young (3- and

6-month) AppNL-G-F mice perform more like older (9- and 12-month) wildtype mice than their age-matched

counterparts. Significance bars shown indicate differences between 12-month-old AppNL-G-F mice and all other groups

(p<0.03 for all, Tukey), as well as the differences between 3- and 6-month-old wildtype mice and all other groups

(p<0.05 for all, Tukey). (E) In the 1-day probe test, 3- and 6-month-old mice perform significantly better than

12-month-old mice (3-Months (13.92 ± 1.1s) vs 12-Months (19.06 ± 1.1s) p = 0.007; 6-Months (14.44 ± 1.1s) vs

12-Months (19.06 ± 1.1s) p = 0.019; Tukey).

https://doi.org/10.1371/journal.pone.0297289.g001
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(34.79 ± 2.9s); Control WT vs Supplemented AppNL-G-F p = 0.0820; Supplemented WT vs Sup-

plemented AppNL-G-F p = 0.585, Tukey, Fig 1A). This suggests that perinatal choline supple-

mentation prevented the spatial learning deficits in 3-month-old AppNL-G-F mice (Fig 1A).

This learning deficit during the trial days of the Barnes Maze in 3-month-old AppNL-G-F mice

did not translate to a large enough effect in recall during the 1-day probe test as, although

AppNL-G-F mice took longer to reach the target hole than wildtype mice, there was not a signifi-

cant effect of genotype (F(1, 64) = 2.26, p = 0.137; ANOVA, Fig 1B) nor a significant effect of

genotype by perinatal diet (F(3, 62) = 1.11, p = 0.352; ANOVA, Fig 1B). There was no signifi-

cant overall effect of sex or perinatal diet on latency to the target hole in the 1-day probe test of

3-month-old mice (Fig 1 and S5B Fig).

Similarly, both wildtype and AppNL-G-F 6-month-old mice learned the target hole location

during the trial day phase (WT- F(2, 74) = 25.90, p<0.0001; AppNL-G-F- F(2, 68) = 8.07,

p = 0.0007; repeated measures ANOVA, Fig 1A). There was a significant overall effect of geno-

type as 6-month-old AppNL-G-F mice took a significantly longer time to find the target hole

during the trial days than 6-month-old wildtype mice (F(1, 67) = 5.75, p = 0.019; repeated mea-

sures ANOVA, Fig 1A). Again, there was a significant effect of genotype by perinatal diet (F(3,

71) = 3.36, p = 0.024, repeated measures ANOVA). Just like in 3-month-old mice, the genotype

by perinatal diet effect was driven by the deficit in latency to the target hole during the trial

days in control diet 6-month-old AppNL-G-F mice compared to control diet 6-month-old wild-

type mice (Control WT (23.86 ± 2.6s) vs Control AppNL-G-F (35.69 ± 3.0s) (p = 0.022, Tukey).

Remarkably, 6-month-old AppNL-G-F mice that had received the choline supplemented diet

did not show this spatial learning deficit during the trial days compared to both control and

supplemented wildtype mice (Control WT (23.86 ± 2.6s) vs Supplemented AppNL-G-F

(32.79 ± 2.7s) p = 0.093; Supplemented WT (31.11 ± 2.8s) vs Supplemented AppNL-G-F

(32.79 ± 2.7s) p = 0.974; Tukey, Fig 1A). Further matching the 3-month-old results, although

there was a trend for 6-month-old AppNL-G-F mice to take a longer time to reach the target

hole than wildtype mice in the 1-day probe test, there was not a statistically significant effect of

genotype (F(1, 73) = 1.20, p = 0.278; ANOVA) nor was there a significant genotype by perina-

tal diet effect (F(3, 71) = 0.87, p = 0.459; ANOVA, Fig 1B). There was also no effect of perinatal

choline supplementation on latency to the target hole during the 1-day probe test in 6-month-

old mice (Fig 1B). There was a significant sex difference in latency to the target hole in the

1-day probe test as 6-month-old female mice found the target hole faster than 6-month-old

male mice (F(1, 73) = 7.92, p = 0.006; ANOVA, S5B Fig).

In both 9-month-old wildtype and AppNL-G-F mice, latency to reach the target hole

decreased across the three-day trial phase (WT- F(2, 69) = 29.47, p<0.0001; AppNL-G-F- F(2,

72) = 9.34, p = 0.0002, repeated measures ANOVA). Surprisingly, there was no overall effect of

genotype in 9-month-old mice on latency to the target hole during the three-day trial phase

like there was in 3- and 6-month-old mice as AppNL-G-F mice did not find the target hole at a

rate that differed from wildtype mice (F(1, 64) = 0.009, p = 0.923, repeated measures ANOVA,

Fig 1A). There was however, a sex difference as 9-month-old female mice were significantly

faster at reaching the target hole compared to male mice across the three-day trial phase (F(1,

64) = 14.81, p = 0.0003, repeated measures ANOVA, S5A Fig). These trial day results were

matched in the 1-day probe test as there was no significant effect of genotype in 9-month-old

mice on latency to reach the target hole (F(1, 64) = 0.0005, p = 0.983, ANOVA, Fig 1B) but

there was a sex difference as female mice made it to the target hole drastically faster than their

male counterparts in the 1-day probe test (F(1, 64) = 15.89, p = 0.0002, ANOVA, S5B Fig).

At 12 months of age, wildtype mice decreased their latency to the target hole across the trial

days (F(2, 74) = 17.64, p<0.0001; repeated measures ANOVA, Fig 1A); while, AppNL-G-F mice

did not (F(2, 62) = 2.46, p = 0.094; repeated measures ANOVA, Fig 1A). This learning deficit
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across the trial days of the Barnes Maze in AppNL-G-F mice was true in both AppNL-G-F mice

that received the control diet and those that received the choline supplemented diet perinatally

(Control AppNL-G-F- F(2, 26) = 2.14, p = 0.137; Supplemented AppNL-G-F- F(2, 34) = 0.71,

p = 0.498; repeated measures ANOVA, Fig 1A). This led to a significant effect of genotype as

12-month-old AppNL-G-F mice took a significantly longer time on average to reach the target

hole than 12-month-old wildtype mice during the three trial days (F(1, 62) = 14.40, p = 0.0003;

repeated measures ANOVA). There was a significant effect of genotype by perinatal diet in

12-month-old mice on latency to the target hole during the trial phase of the Barnes Maze (F

(3, 62) = 5.14, p = 0.003; repeated measures ANOVA, Fig 1A). Post-hoc analysis revealed that

the genotype by perinatal diet effect was driven by the learning deficit found in control diet

AppNL-G-F mice compared to control diet wildtype mice (Control WT (33.87 ± 2.9s) vs Control

AppNL-G-F (49.61 ± 3.5s) p = 0.005; Tukey, Fig 1A). However, unlike at 3 and 6 months of age,

perinatal choline supplementation in 12-month-old AppNL-G-F mice was unable to fully pre-

vent these spatial learning deficits as they performed significantly worse during the trial phase

of the Barnes Maze than control diet wildtype animals (Control WT (33.87 ± 2.9s) vs Supple-

mented AppNL-G-F (46.58 ± 3.1s) p = 0.0182; Tukey, Fig 1A). Unlike mice that were 3, 6, or 9

months of age, there was a significant effect of genotype in the 1-day probe test as 12-month-

old AppNL-G-F mice showed a significant impairment in spatial memory recall as they took sig-

nificantly longer to reach the target hole than wildtype mice (F(1, 66) = 7.43, p = 0.008;

ANOVA, Fig 1B). There was a significant effect of genotype by perinatal diet on latency to the

target hole in the 1-day probe test in 12-month-old mice (F(3, 66) = 3.18, p = 0.030; ANOVA,

Fig 1B). Post-hoc analysis revealed that the genotype by perinatal diet effect was driven by the

significant difference between supplemented wildtype and control AppNL-G-F mice (Supple-

mented WT (14.32 ± 2.4s) vs Control AppNL-G-F (24.79 ± 2.7s) p = 0.025; Tukey, Fig 1B).

There was also a significant sex difference in 12-month-old mice in the 1-day probe test as

female mice reached the target hole faster than male mice (F(1, 66) = 6.86, p = 0.011; ANOVA,

S5B Fig). These results show that AppNL-G-F mice are significantly impaired at hippocampal-

dependent spatial learning compared to wildtype mice and that choline supplementation can

prevent these deficits at early ages (3 and 6 months) but not at a later age (12 months).

We then used a linear regression model adjusting for trial day, sex, genotype, and perinatal

diet to evaluate the effects of age on latency to reach the target hole during the trial days and

found that age significantly affected this measure during the trial days of the Barnes Maze (F(3,

257.6) = 12.98, p<0.0001, MANOVA). Post-hoc analysis revealed that, when adjusting for trial

day, sex, diet, and genotype, 3-month-old mice were significantly faster at reaching the target

hole during the trial days than both 9- and 12-month-old mice (3-Months (31.96 ± 1.4s) vs

9-Months (39.10 ± 1.4s) p = 0.003; 3-Months (31.96 ± 1.4s) vs 12-Months (41.41 ± 1.5s)

p<0.0001; Tukey, Fig 1C). Six-month-old mice were also significantly faster than 9- and

12-month-old mice (6-Months (30.94 ± 1.4s) vs 9-Months (39.10 ± 1.4s) p = 0.0004; 6-Months

(30.94 ± 1.4s) vs 12-Months (41.41 ± 1.5s) p<0.0001; Tukey, Fig 1C) but no different than

3-month-old mice (3-Months (31.96 ± 1.4s) vs 6-Months (30.94 ± 1.4s) p = 0.957; Tukey, Fig

1C). Nine- and 12-month-old mice performed about equally as poorly as each other during

the trial days (9-Months (39.10 ± 1.4s) vs 12-Months (41.41 ± 1.5s) p = 0.671; Tukey, Fig 1C).

Additional post-hoc analyses using this linear regression model to investigate genotype by age

effects revealed that AppNL-G-F mice more closely resemble older wildtype mice than their age-

matched counterparts. For example, 12-month-old wildtype mice perform about equally as

well as 3-month-old AppNL-G-F mice during the trial days of the Barnes Maze (3-Month

AppNL-G-F (36.73 ± 2.1s) vs 12-Month WT (35.60 ± 2.0) p = 0.999, Tukey, Fig 1D). Further-

more, 12-month-old AppNL-G-F mice performed significantly worse than all other age by geno-

type groups (p<0.03 for all, Tukey, Fig 1D). During the trial phase of the Barnes Maze, 9- and
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12-month-old wildtype mice found the target hole at about the same speed as 3-, 6-, and

9-month-old AppNL-G-F mice (p>0.4464 for all comparisons, Tukey, Fig 1D). And 3- and

6-month-old wildtype mice found the target hole during the trial days significantly faster than

all other age by genotype groups (p<0.05 for all comparisons, Tukey, Fig 1D).

We then used a linear regression model adjusting for sex, genotype, and perinatal diet to

investigate the effects of age on latency to reach the target hole during the 1-day probe test and

found that age also greatly affects this measure (F(3, 272) = 12.53, p = 0.0005; ANOVA). When

adjusting for sex, perinatal diet, and genotype, both 3- and 6-month-old mice were signifi-

cantly faster at reaching the target hole during the 1-day probe test than 12-month-old mice

(3-Months (13.92 ± 1.1s) vs 12-Months (19.06 ± 1.1s) p = 0.007; 6-Months (14.44 ± 1.1s) vs

12-Months (19.06 ± 1.1s) p = 0.019; Tukey, Fig 1E). Although, the latency steadily increased

with age from 3 to 9 months, there was no statistical difference between 3-, 6-, and 9-month-

old mice in the 1-day probe test. Much like the trial day results, the 1-day probe test also

revealed that younger AppNL-G-F mice perform more similarly to older wildtype mice than

their age-matched counterparts (Fig 1E). For example, 12-month-old wildtype mice per-

formed about as equally well as 3-month-old AppNL-G-F mice in the 1-day probe test as there

was only about a quarter of a second difference in finding the target hole between the two

(3-Month AppNL-G-F (15.60 ± 1.6s) vs 12-Month WT (15.86 ± 1.5s) p = 0.999; Tukey, Fig 1E).

Together, these results support the notion that AppNL-G-F mice have significant hippocampal-

dependent spatial learning and memory deficits and, even at a young age, are more closely per-

forming at the level of much older wildtype mice.

Contextual fear conditioning

Contextual fear conditioning is a commonly used Pavlovian conditioning paradigm. Here, we

used a three-day design that involved a training session on the first day where the mice were

exposed to a loud tone followed by a foot shock that was repeated five times. On the second

day, the tone test was completed in which the mice were placed into the conditioning chamber

with a different floor and colored walls than the first day and the tone was played five times.

On the third and final day, the context test was completed where the mice were placed into the

conditioning chamber with the exact same floor and walls as the first day of the paradigm.

Freezing—a total lack of movement for 3 seconds—was measured each day as a proxy to evalu-

ate fearful learning and memory of both the tone and context of the fearful event. All mice

associated the tone and the context with the shock as demonstrated by freezing behavior dur-

ing a significant proportion of the time in the apparatus (Fig 2A and 2B).

In 3-month-old mice there was no significant effect of genotype as there was no difference

between wildtype and AppNL-G-F mice on percent of time spent freezing during the tone test (F

(1, 64) = 0.50, p = 0.482; ANOVA, Fig 2A) nor was there a genotype by perinatal diet effect on

percent of time spent freezing during the tone test at this age (F(3, 64) = 0.52, p = 0.667;

ANOVA, Fig 2A). There was, however, a significant effect of sex as three-month-old male

mice spent a significantly larger percentage of time during the tone test freezing than

3-month-old female mice leading to a significant effect of sex on percent of time spent freezing

during the tone test (F(1, 64) = 4.87, p = 0.031; ANOVA, S6A Fig). In the context test, there

was also no significant effect of genotype (F(1, 64) = 0.04, p = 0.834; ANOVA, Fig 2B), geno-

type by perinatal diet (F(3, 64) = 0.37, p = 0.777; ANOVA, Fig 2B), or sex (F(1, 64) = 2.14,

p = 0.148; ANOVA, S6B Fig) on percent of time spent freezing in 3-month-old mice.

In 6-month-old mice, there was no significant effect of genotype in both the tone test and

the context test of contextual fear conditioning indicating that there is not an impairment of

fearful learning and memory in AppNL-G-F mice at early ages (Tone Test- F(1, 67) = 0.009,
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p = 0.923; Context Test- F(1, 67) = 0.022, p = 0.884; ANOVA, Fig 2A and 2B). There was also

no effect of genotype by perinatal diet in 6-month-old mice on both percent of time freezing

during the tone test and during the context test (Tone Test- F(3, 67) = 1.03, p = 0.385; Context

Test- F(3, 67) = 0.40, p = 0.753; ANOVA, Fig 2A and 2B).

There was a significant overall effect of genotype on percent of time freezing during the

tone test in 9-month-old mice as AppNL-G-F mice spent significantly less time freezing than

wildtype mice suggesting a deficit in fearful learning and memory at this age (F(1, 63) = 4.33,

p = 0.042; ANOVA, Fig 2A). There was also a significant effect of genotype by perinatal diet on

percent of time freezing during the tone test (F(3, 63) = 2.75, p = 0.0498; ANOVA, Fig 2A).

Post-hoc analysis revealed that this genotype by perinatal diet effect was due to the impaired

Fig 2. AppNL-G-F mice display impaired fearful learning and memory at 9- and 12-months-old that can be

somewhat prevented by perinatal choline supplementation. (A) Percent of time freezing during the tone test of

contextual fear conditioning revealed significant effect of genotype as AppNL-G-F mice froze significantly less than

wildtype mice at 9- and 12-months of age (9-Months- F(1, 63) = 4.33, p = 0.042; 12-Months- F(1, 62) = 12.06,

p = 0.0009; ANOVA). This deficit could be prevented by perinatal choline supplementation at 9- and 12-months of

age. (B) Percent of time freezing during the context test of contextual fear conditioning revealed that control diet

AppNL-G-F mice froze significantly less than control diet wildtype mice at 9- and 12-months of age and that perinatal

choline supplementation could prevent these deficits at both ages (9-Months- Control WT (52.99 ± 4.7%) vs Control

AppNL-G-F (39.69 ± 4.5%) p = 0.032; 12-Months- Control WT (46.84 ± 3.7%) vs Control AppNL-G-F (32.27 ± 4.6%)

p = 0.016; Tukey). There was a significant effect of genotype in 12-month-old mice in the context test as 12-month-old

AppNL-G-F mice spend significantly less time freezing during the context test than wildtype mice (F(1, 62) = 9.74,

p = 0.003; ANOVA).

https://doi.org/10.1371/journal.pone.0297289.g002
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ability of control diet AppNL-G-F mice to freeze during the tone test compared to control diet

wildtype mice (Control WT (85.09 ± 4.0%) vs Control AppNL-G-F (70.14 ± 3.9%) p = 0.045;

Tukey, Fig 2A). Importantly, 9-month-old AppNL-G-F mice that had received the choline sup-

plemented diet perinatally did not show any significant fearful learning and memory impair-

ments during the tone test as there was minimal difference in performance between

supplemented AppNL-G-F mice and both control wildtype and supplemented wildtype mice

(Control WT (85.09 ± 4.0%) vs Supplemented AppNL-G-F (80.79 ± 3.5%) p = 0.849; Supple-

mented WT (81.68 ± 3.9%) vs Supplemented AppNL-G-F (80.79 ± 3.5%) p = 0.998; Tukey, Fig

2A). This suggests that perinatal choline supplementation ameliorates the fearful learning and

memory deficits found in the tone test in 9-month-old AppNL-G-F mice on a control diet. These

results were matched in the context test as 9-month-old AppNL-G-F mice that received the con-

trol diet froze significantly less than wildtype mice who also received the control diet (Control

WT (52.99 ± 4.7%) vs Control AppNL-G-F (39.70 ± 4.5%) p = 0.032; Tukey, Fig 2B). Again,

AppNL-G-F mice that had received the choline supplemented diet did not show a significant

fearful learning and memory impairment as their performance in the context test was at about

the same level as both control wildtype and supplemented wildtype mice (Control WT

(52.99 ± 4.7%) vs Supplemented AppNL-G-F (49.76 ± 4.1%) p = 0.954; Supplemented WT

(52.45 ± 4.5%) vs Supplemented AppNL-G-F (49.76 ± 4.1%) p = 0.970; Tukey, Fig 2B).

At 12 months of age, there was a significant overall effect of genotype as AppNL-G-F mice

spent a smaller percent of their time freezing during the tone test of contextual fear condition-

ing than wildtype mice suggesting that the AppNL-G-F mice did not remember the tone as well

as wildtype mice (F(1, 62) = 12.06, p = 0.0009; ANOVA, Fig 2A). There was also a significant

effect of genotype by perinatal diet on percent freezing during the tone test in 12-month-old

mice (F(3, 62) = 4.06, p = 0.011; ANOVA). The genotype by perinatal diet effect was again

driven by the impairment in control AppNL-G-F mice compared to control wildtype mice (Con-

trol WT (77.74 ± 4.0%) vs Control AppNL-G-F (60.16 ± 5.0%) p = 0.040; Tukey, Fig 2A).

Although the percent of time freezing during the tone test was decreased in AppNL-G-F mice

that received the choline supplemented diet perinatally, the difference was not significant

enough to lead to significant difference between supplemented AppNL-G-F and both control

wildtype and supplemented wildtype mice (Control WT (77.74 ± 4.0%) vs Supplemented

AppNL-G-F (63.68 ± 4.2%) p = 0.087; Supplemented WT (76.70 ± 4.3%) vs Supplemented

AppNL-G-F (63.68 ± 4.2%) p = 0.145; Tukey, Fig 2A). In the context test, there was also a signifi-

cant overall effect of genotype as 12-month-old AppNL-G-F mice spent a significantly lower per-

cent of their time freezing than wildtype mice again suggesting that the AppNL-G-F mice are

impaired in fearful learning and memory (F(1, 62) = 9.74, p = 0.003; ANOVA, Fig 2B). Again

there was an effect of genotype by perinatal diet on percent of time spent freezing during the

context test (F3, 62) = 3.77, p = 0.015; ANOVA). Post-hoc analysis revealed that this genotype

by perinatal diet effect was due to the impairment in control AppNL-G-F mice as they froze sig-

nificantly less than both control wildtype and supplemented wildtype mice during the context

test (Control WT (46.84 ± 3.7%) vs Control AppNL-G-F (32.27 ± 4.6%) p = 0.016; Supplemented

WT (51.38 ± 3.9%) vs Control AppNL-G-F (32.27 ± 4.6%) p = 0.013; Tukey, Fig 2B). Perinatal

choline supplementation within 12-month-old AppNL-G-F mice prevented these deficits in the

context test as there was no difference in percent of time freezing between them and both con-

trol wildtype and supplemented wildtype mice (Control WT (46.84 ± 3.7%) vs Supplemented

AppNL-G-F (40.74 ± 3.9%) p = 0.668; Supplemented WT (51.38 ± 3.9%) vs Supplemented

AppNL-G-F (40.74 ± 3.9%) p = 0.227; Tukey, Fig 2B). There was also a significant overall effect

of sex in 12-month-old mice as male mice spent significantly more time freezing than female

mice during the context test (F(1, 62) = 7.15, p = 0.0096; ANOVA, S6B Fig). Together, these
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results demonstrate that AppNL-G-F have impaired fearful learning and memory starting by

9-months of age and that perinatal choline supplementation mitigates some of these deficits.

Amyloid-beta-42 immunohistochemistry

We and others have shown that both perinatal and lifelong choline supplementation can

reduce amyloid pathology in the APP-overexpressing APP.PS1 mouse model of AD [10, 16,

38]. Here, we analyzed if perinatal choline supplementation would reduce Aβ42 pathology in

the hippocampus, cortex, and amygdala across 3-, 6-, 9-, and 12-month ages in AppNL-G-F

mice where App is expressed under the endogenous mouse promoter for the gene. We ana-

lyzed Aβ42 plaques using immunohistochemical staining quantified as: Aβ42-positive percent

area, average Aβ42-positive plaque count, and average Aβ42-positive plaque size. As in previ-

ous studies, the AppNL-G-F mice were characterized by marked brain amyloidosis which

increased with age [22, 23]. At 3 months of age, there was no significant difference between

AppNL-G-F animals that received the control diet or the choline supplemented diet in

Aβ42-positive percent area, average Aβ42-positive plaque count, or average Aβ42-positive pla-

que size in the hippocampus, cortex, or amygdala (Amygdala [% Area- F(1, 21) = 0.08,

p = 0.781; Count- F(1, 21) = 0.34, p = 0.565; Size- F(1, 21) = 0.004, p = 0.949]; Cortex [% Area-

F(1, 23)- 0.40, p = 0.533; Count- F(1, 23) = 0.34, p = 0.565; Size- F(1, 23) = 0.004, p = 0.949];

Hippocampus [% Area- F(1, 22) = 0.46, p = 0.505; Count- F(1, 22) = 0.45, p = 0.509; Size- F(1,

22) = 0.05, p = 0.82], ANOVA, Fig 3A–3C).

In 6-month-old AppNL-G-F mice, perinatal choline supplementation significantly reduced

Aβ42-positive percent area and average Aβ42-positive plaque size in the amygdala compared

to 6-month-old control diet AppNL-G-F mice (% Area- F(1, 32) = 5.77, p = 0.022; Size- F(1, 32)

= 9.26, p = 0.005; ANOVA, Fig 3A and 3C). Although perinatal choline supplementation

reduced the Aβ42-positive percent area and average Aβ42-positive plaque size in the amygdala,

choline supplementation did not significantly reduce the Aβ42-positive plaque count in the

amygdala of 6-month-old AppNL-G-F mice (F(1, 32) = 1.19, p = 0.028; ANOVA, Fig 3A and

3C). In the cortex of 6-month-old AppNL-G-F mice, perinatal choline supplementation reduced

the average Aβ42-positive plaque count (F(1, 31) = 4.35, p = 0.046; ANOVA, Fig 3B and 3C).

However, unlike in the amygdala, perinatal choline supplementation failed to reduce

Aβ42-positive percent area and average Aβ42-positive plaque size in the cortex (% Area- F(1,

31) = 1.46, p = 0.236; Size- F(1, 31) = 3.13, p = 0.087; ANOVA, Fig 3B and 3C). Perinatal cho-

line supplementation reduced the average Aβ42-positive plaque size in the hippocampus of

6-month-old AppNL-G-F mice that received the supplemented diet compared to 6-month-old

AppNL-G-F mice raised on the control diet (F(1, 31) = 10.22, p = 0.003; ANOVA, Fig 3B and

3C). However, perinatal choline supplementation did not reduce the Aβ42-positive percent

area or average Aβ42-positive plaque count in the hippocampus of 6-month-old AppNL-G-F

mice (% Area- F(1, 31) = 3.45, p = 0.072; Count- F(1, 31) = 0.08, p = 0.77; ANOVA, Fig 3B and

3C). We then created linear regression models factoring in brain region, perinatal choline diet,

and sex to analyze Aβ42-positive percent area, average Aβ42-positive plaque count, and aver-

age Aβ42-positive plaque size across the brain in 6-month-old AppNL-G-F mice. From these

models, we found that there was a significant effect of perinatal choline supplementation on

Aβ42-positive percent area and Aβ42-positive plaque average size but not Aβ42-positive pla-

que count (% Area- F(1, 94) = 7.91, p = 0.006; Size- F(1, 94) = 19.25, p<0.0001; Count- F(1,

94) = 0.38, p = 0.54; ANOVA, Fig 3D). This effect was that 6-month-old AppNL-G-F mice that

were fed the choline supplemented diet perinatally showed significantly less Aβ42-positive per-

cent area and had a significantly smaller average Aβ42-positive plaque size compared to

6-month-old AppNL-G-F mice that were raised on the control diet perinatally (Fig 3D).
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Fig 3. Perinatal choline supplementation reduces Aβ42 deposition in the amygdala, cortex, and hippocampus of

AppNL-G-F mice. Representative 2x magnification images of the basolateral and basomedial amygdalar nuclei (A),

hippocampus, and cortex (B) of Aβ42 immunohistochemistry in 3-, 6-, 9-, and 12-month-old mice show that Aβ42

deposits in an age-dependent manner and perinatal choline supplementation can reduce amyloidosis in these brain

regions of AppNL-G-F mice. Scale bar is 400 μm. (C) Perinatal choline supplementation decreased Aβ42-positive percent

area in the amygdala at 6- and 9-months of age, in the cortex at 9- and 12-months of age, and the hippocampus at

9-months of age (p = 0.022, 0.013, 0.0030, 0.042, 0.0099, respectively; ANOVA). Perinatal choline supplementation also

reduced average Aβ42 plaque count in the amygdala at 9-months of age, and in the cortex at 6- and 9-months of age

(p = 0.035, 0.046, 0.019, respectively; ANOVA) and reduced average Aβ42 plaque size in the amygdala at 6- and

9-months of age, in the cortex at 9-months of age, and in the hippocampus at 6-months of age (p = 0.005, 0.009, 0.004,

0.003, respectively; ANOVA). (D) Using linear regression modeling, perinatal choline supplementation was able to

significantly reduce Aβ42-positive percent area at 6-, 9-, and 12-months of age (p = 0.006, 0.00002, 0.009, respectively;

ANOVA, black bars), average Aβ42 plaque count at 9-months (p = 0.005; ANOVA, black bars), and average Aβ42

plaque size at 6-, 9, and 12-months of age (p = 0.00003, 0.0001, 0.018, respectively; ANOVA, black bars). 3-month-old

mice had a significantly lower Aβ42-positive percent area, lower average Aβ42 plaque count, and smaller average Aβ42

plaque size than 6-, 9-, and 12-month-old mice (blue bars). 6-month-old mice had a significantly lower Aβ42-positive

percent area and lower average Aβ42 plaque count than 9- and 12-month-old mice (blue bars). 9-month-old mice had

a significantly lower average Aβ42 plaque count than 12-month-old mice. See Results for statistics. (E) Using linear

regression models of Aβ42 immunohistochemistry across the amygdala, cortex, and hippocampus and all ages,

perinatal choline supplementation was able to significantly reduce Aβ42-positive percent area, average Aβ42 plaque

count, and average Aβ42 plaque size (p<0.0001, p = 0.047, p<0.0001, respectively; repeated measures ANOVA).

https://doi.org/10.1371/journal.pone.0297289.g003
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In the amygdala of 9-month-old AppNL-G-F mice, perinatal choline supplementation dra-

matically reduced Aβ42-positive percent area, average Aβ42-positive plaque count, and aver-

age Aβ42-positive plaque size compared to 9-month-old AppNL-G-F mice that received the

control diet (% Area- F(1, 33) = 6.94, p = 0.013; Count- F(1, 33) = 4.87, p = 0.035; Size- F(1,

33) = 7.75, p = 0.009; ANOVA, Fig 3A and 3C). Matching the amygdala, in the cortex of

9-month-old AppNL-G-F mice, perinatal choline supplementation also significantly reduced

Aβ42-positive percent area, average Aβ42-positive plaque count, and average Aβ42-positive

plaque size compared to control diet 9-month-old AppNL-G-F mice (% Area- F(1, 33) = 10.23,

p = 0.003; Count- F(1, 33) = 6.07, p = 0.019; Size- F(1, 33) = 9.77, p = 0.004; ANOVA, Fig 3B

and 3C). Perinatal choline supplementation significantly reduced Aβ42-positive percent area

but not average Aβ42-positive plaque count and average Aβ42-positive plaque size in the hip-

pocampus of 9-month-old AppNL-G-F mice (% Area- F(1, 33) = 7.49, p = 0.0099; Count- F(1,

33) = 1.61, p = 0.213; Size- F(1, 33) = 1.32, p = 0.259; ANOVA, Fig 3B and 3C). We again cre-

ated linear regression models factoring in brain region, perinatal choline diet, and sex to ana-

lyze Aβ42-positive percent area, average Aβ42-positive plaque count, and average

Aβ42-positive plaque size across the brain in 9-month-old AppNL-G-F mice. Using these linear

regression models, we found that perinatal choline supplementation significantly reduced

Aβ42-positive percent area, average Aβ42-positive plaque count, and average Aβ42-positive

plaque size across the brain in 9-month-old AppNL-G-F mice (% Area- F(1, 99) = 20.70,

p<0.0001; Count- F(1, 99) = 8.33, p = 0.005; Size- F(1, 99) = 16.37, p = 0.0001; ANOVA, Fig

3D).

In the amygdala of 12-month-old AppNL-G-F mice, perinatal choline supplementation did

not significantly reduce Aβ42-positive percent area, average Aβ42-positive plaque count, or

average Aβ42-positive plaque size (% Area- F(1, 28) = 1.58, p = 0.22; Count- F(1, 28) = 3.29;

p = 0.08; Size- F(1, 28) = 1.50, p = 0.23; ANOVA, Fig 3B and 3C). Perinatal choline supplemen-

tation reduced Aβ42-positive percent area but not average Aβ42-positive count or average

Aβ42-positive plaque size compared to those that received the control diet perinatally in the

cortex of 12-month-old AppNL-G-F mice (% Area- F(1, 27) = 4.54, p = 0.042; Count- F(1, 27) =

3.13, p = 0.09; Size- F(1, 27) = 2.39, p = 0.13; ANOVA, Fig 3B and 3C). In the hippocampus of

12-month-old AppNL-G-F mice, there was no effect of perinatal choline supplementation on

Aβ42-positive percent area, Aβ42-positive plaque count, or average Aβ42-positive plaque size

(% Area- F(1, 27) = 0.99, p = 0.33; Count- F(1, 27) = 0.10, p = 0.76; Size- F(1, 27) = 2.12,

p = 0.16; ANOVA, Fig 3B and 3C). When using linear regression models adjusting for brain

region, perinatal choline diet, and sex, for the three Aβ42 measures in 12-month-old AppNL-G-F

mice, we found that perinatal choline supplementation significantly reduced Aβ42-positive

percent area and Aβ42-positive plaque size but not average Aβ42-positive plaque size (% Area-

F(1, 82) = 7.14, p = 0.009; Size- F(1, 82) = 5.84, p = 0.018; Count- F(1, 82) = 0.59, p = 0.44;

ANOVA, Fig 3D).

We lastly created linear regression models accounting for brain region, perinatal choline

diet, sex, and age to analyze Aβ42-positive percent area, Aβ42-positive plaque count, and aver-

age Aβ42-positive plaque size in AppNL-G-F mice. We found an overall significant effect of age

on Aβ42-positive percent area, average Aβ42-positive plaque count, and average Aβ42-positive

plaque size (% Area- F(3, 114.5) = 84.91, p<0.0001; Count- F(3, 114.2) = 133.17, p<0.0001;

Size- F(3, 112.5) = 14.14, p<0.0001; repeated measures ANOVA, Fig 3D). Post-hoc analysis

revealed that 6-, 9-, and 12-month-old AppNL-G-F mice had a higher Aβ42-positive percent

area than 3-month-old AppNL-G-F mice (3-Months (3.15 ± 0.3%); 6-Months (7.13 ± 0.3%);

9-Months (9.68 ± 0.3%); 12-Months (11.25 ± 0.3%); p<0.0001 for all; Tukey, Fig 3D). Nine-

and 12-month-old AppNL-G-F mice had a significantly higher Aβ42-positive percent area than

6-month-old AppNL-G-F mice (6-Months (7.13 ± 0.3%) vs 9-Months (9.68 ± 0.3%) p<0.0001;
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6-Months (7.13 ± 0.3%) vs 12-Months (11.25 ± 0.3%) p<0.0001; Tukey, Fig 3D). Twelve-

month-old AppNL-G-F mice had a significantly higher Aβ42 percent area than 9-month-old

AppNL-G-F mice (9-Months (9.68 ± 0.3%) vs 12-Months (11.25 ± 0.3%) p = 0.0008; Tukey, Fig

3D). Six-, 9-, and 12-month-old AppNL-G-F mice had an increased average Aβ42-positive pla-

que count compared to 3-month-old AppNL-G-F mice (3-Months (31.34 ± 2.1); 6-Months

(66.16 ± 1.8); 9-Months (82.62 ± 1.8); 12-Months 98.41 ± 2.0); p<0.0001 for all; Tukey, Fig

3D). Nine- and 12-month-old AppNL-G-F mice had an increased Aβ42-positive plaque count

compared to 6-month-old AppNL-G-F mice (6-Months (66.16 ± 1.8); 9-Months (82.62 ± 1.8);

12-Months (98.41 ± 2.0); p<0.0001 for both; Tukey, Fig 3D). Twelve-month-old AppNL-G-F

mice had an increased average Aβ42-positive plaque count compared to 9-month-old

AppNL-G-F mice (9-Months (82.62 ± 1.8) vs 12-Months 98.41 ± 2.0) p<0.0001; Tukey, Fig 3D).

Six-, 9-, and 12-month-old AppNL-G-F mice had a significantly larger average Aβ42-positive

plaque size than 3-month-old AppNL-G-F mice (3-Months (40.71 ± 1.2); 6-Months

(50.29 ± 0.9); 9-Months (50.12 ± 1.0); 12-Months (52.17 ± 1.1); p<0.0001 for all comparisons,

Tukey, Fig 3D). Interestingly, 6-, 9-, and 12-month-old AppNL-G-F mice showed no difference

in their average Aβ42-positive plaque size, suggesting that average Aβ42-positive plaque size is

increased up until 6-months of age where it levels off (6-Months (50.29 ± 1.0) vs 9-Months

(50.12 ± 1.0) p = 0.999; 6-Months (50.29 ± 1.0) vs 12-Months (52.17 ± 1.1) p = 0.557; 9-Months

(50.12 ± 1.0) vs 12-Months (52.17 ± 1.1) p = 0.476; Tukey, Fig 3D). Importantly, we found that

perinatal choline supplementation reduced Aβ42-positive percent area by around 18%,

reduced average Aβ42-positive plaque count by more than 5%, and reduced average Aβ42-pos-

itive plaque size by more than 10% in AppNL-G-F mice across the brain across all ages (% Area-

Control (8.51 ± 0.3%) vs Supplemented (7.07 ± 0.2%) F(1, 114.6) = 15.75, p<0.0001; Count-

Control (71.50 ± 1.7) vs Supplemented (67.51 ± 1.6) F(1, 114.3) = 4.05, p = 0.047; Size- Control

(50.91 ± 0.9) vs Supplemented (45.64 ± 0.9) F(1, 112.7) = 17.08, p<0.0001; repeated measures

ANOVA, Fig 3E). These results provide further evidence that perinatal choline supplementa-

tion is able to alter the deposition of Aβ42 in the brains of AD model mice and that Aβ42 depo-

sition occurs in an age-dependent manner in AppNL-G-F mice.

Discussion

We investigated the effects of gestational and early postnatal choline supplementation on the

cognitive behavioral and brain amyloid deposition in the AppNL-G-F AD mouse model. Consis-

tent with previous choline supplementation studies in other AD mouse models, perinatal cho-

line supplementation in AppNL-G-F mice improved both spatial and fearful learning and

memory at various ages and significantly reduced amyloidosis in the amygdala, cortex, and

hippocampus.

We first tested our animals in the Open Field Test and Elevated Plus Maze to assess gross

locomotor function and anxiety-related behavior. Importantly, as previously reported, there

were no differences in locomotor activity between wildtype mice and AppNL-G-F mice [27, 29,

31, 32]. In line with previous studies, we observed subtle exploratory and anxiety-related dif-

ferences in the Open Field and Elevated Plus Maze at later ages (9- and 12-months-old)

between wildtype and AppNL-G-F mice, [27, 31, 32]. Overall, these differences are unlikely to

influence measures of learning and memory utilized in this study.

Most commonly, the first symptoms AD patients report are issues with learning and mem-

ory (Reviewed in [39]). In early stages of the disease, working memory as well as longer-term

declarative memory are impacted and drastically affect a patient’s quality of life and day-to-

day activities. Spatial learning and memory rapidly decline in AD patients much faster than in

normal aging (Reviewed in [40]). Spatial learning and memory are largely dependent on the
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hippocampus-entorhinal cortex circuit which is greatly affected by the pathology of AD. We

assessed hippocampal-dependent spatial learning and memory using the Barnes Maze [36]

and found a significant deficit of spatial learning in AppNL-G-F mice as compared to wildtype

mice during the trial phase of the maze at 3-, 6-, and 12-months of age. These deficits were

abolished by perinatal choline supplementation at early ages (3 and 6 months) but not at the

later age (12 months) suggesting that choline supplementation is able to prevent early spatial

learning deficits that are found in AppNL-G-F mice. Previous results of AppNL-G-F mice in the

Barnes Maze have varied [24, 29, 30]. One study that used male and female 6–9-month-old

mice, also found a significant increase in latency to reach the target hole in AppNL-G-F mice

compared to wildtype mice [29]. Another study that used 6-month-old mice with 9 training

days for their trial phase found no difference in latency to reach the target hole between wild-

type and AppNL-G-F mice [30] and another study found only deficits in AppNL-G-F mice as com-

pared to wildtype mice, in the trial phase of the Barnes Maze at 8 months of age but not at 4 or

6 months of age [24]. In these studies, only male mice were used while in our study both male

and female mice were used. Interestingly, we do see deficits in AppNL-G-F males, as compared

to wildtype males, at 3-, 6-, and 12-months of age. Additionally, Sakakibara and colleagues

were testing the animals in the Barnes Maze longitudinally at 4-, 6-, and 8-months-old [24]

while our study utilized a cross-sectional design where the animals were only tested at one age

enabling us to not have any interference from memories of previous testing. Furthermore, our

sample size for each timepoint was greater than previous studies as previous studies ranged

from having 6–10 animals [24] and 23–25 [30] per genotype per age while in our study each

genotype ranged from 32–39 animals per genotype at each age. Having more animals per

group, we have better statistical power to detect a change in behavior. Our study animals were

also housed in a reverse light cycle and tested during their more active light-off period, while

some other studies conducted their testing during the light-on period. This difference in tim-

ing of testing conditions could alter how the mice perform and be leading to some of the dis-

crepancies with previous studies. We also used purified diets for both the control and choline

supplemented mice while others have used normal mouse chow. Our control diet contains

about 53% less choline than the diet used in Hongo et al.’s study [30] and may also contribute

to the slight differences we see in Barnes Maze performance. Interestingly, when using the

Morris Water Maze, Mehla and colleagues [23] found that AppNL-G-F mice had impaired hip-

pocampal-dependent spatial learning as early as 6-months of age and continued up until

12-months of age. Together, our results further support the notion that AppNL-G-F mice have

impaired spatial learning. We report that this phenotype is modifiable as perinatal choline sup-

plementation prevents these hippocampal-dependent learning deficits at early ages in

AppNL-G-F mice. The reduced penetrance of the AppNL-G-F mutations on these behavioral phe-

notypes by high perinatal choline intake may also explain some of the above-described dis-

crepancies in the literature as the nutritional status of the mice used in these studies was not

controlled.

AD patients also suffer from non-declarative associative learning and memory deficits

(Reviewed in [41]). To study this, we utilized a contextual fear conditioning paradigm and

found that 3- and 6-month-old AppNL-G-F mice had no impairments in this test as compared

to wildtype mice. However, we found impairments in associating the tone with the footshock

in both 9- and 12-month-old AppNL-G-F mice. Remarkably, perinatal choline supplementation

prevented this fearful learning and memory deficit in 9-month-old and 12-month-old

AppNL-G-F mice. Additionally, both 9- and 12-month-old AppNL-G-F mice showed significant

impairment in remembering the context in which the fear-inducing footshocks occurred com-

pared to wildtype mice. Perinatal choline supplementation prevented these deficits in

AppNL-G-F mice at both 9- and 12-months of age. Our findings are consistent with the results
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of Kundu and colleagues [28] who reported a significant impairment in AppNL-G-F mice during

the tone test of 6-month-old mice. One other study using only male 6-9-month-old mice, also

found no difference in freezing behavior during the context test [24]. This same study found

no significant difference in freezing during the context test between AppNL-G-F and wildtype

mice that were 15-18-months-old, whereas we observed that 9- and 12-month-old AppNL-G-F

mice had significant fearful memory impairments. However, our contextual fear conditioning

paradigm significantly differed from the one of Sakakibara and colleagues [24] as no tone was

associated with the footshocks in their study. They were interested in the animal’s behavior to

associate the footshock with the environment/context it occurred in while our study was

designed to evaluate the association of both a tone and the context in which the fear-inducing

footshocks occurred. This can partially explain why these results differ. While no previous

studies have investigated the effects of choline supplementation in AD mouse models on con-

textual fear conditioning, previous studies investigating choline supplementation on develop-

mental alcohol and nicotine exposure have found that choline supplementation can prevent

fearful learning and memory deficits involved with these conditions [42–44]. Our results fur-

ther support the notion that choline supplementation is able to prevent fearful learning and

memory deficits.

Our data confirm previous reports that amyloid-beta deposition occurs in an age-depen-

dent manner in AppNL-G-F mice [22, 23]. We now report that perinatal choline supplementa-

tion can markedly reduce Aβ42 deposition in the cortex, amygdala, and hippocampus of

AppNL-G-F mice. This finding is consistent with previous studies which found that choline sup-

plementation—whether perinatally or lifelong—decrease amyloid deposition in other AD

mouse models [10, 16, 17, 38]. We have previously shown that in the APP.PS1 mouse model of

AD, perinatal choline supplementation significantly increases β-CTF protein levels in the hip-

pocampus of 12-month-old mice, reminiscent of what is seen in other AD models when

treated with a γ-secretase inhibitor [10]. Thus, the reason for reduced Aβ in choline supple-

mented animals may be through the inhibition or reduction of γ-secretase activity. Interest-

ingly, Velazquez and colleagues found that, in their lifelong choline supplemented APP.PS1

mice, there was a significant decrease in β-CTF protein levels [16]. They propose that this find-

ing, coupled with reduced brain levels of soluble and insoluble levels of Aβ40 and Aβ42, indi-

cate a reduction in the amyloidogenic processing of the APP protein and lead to the reduction

of Aβ burden in choline supplemented animals. They further suggest and show that Aβ burden

reduction via choline supplementation is accompanied by a reduction in the brain levels of the

neurotoxic amino acid homocysteine [38]. It is known that homocysteine binds and facilitates

aggregation and accumulation of Aβ and therefore it is plausible that life-long choline supple-

mentation is reducing Aβ through this mechanism [16, 45]. Furthermore, high levels of homo-

cysteine are a known risk factor for the development of AD in humans and targeting

homocysteine for the treatment of AD has been proposed [45–47]. There is evidence that high

choline intake is associated with low homocysteine levels in humans [48, 49]. However, this

mechanism is unlikely to be relevant for the current study which employed choline supple-

mentation in early life, as the homocysteine-level-lowering action of choline is mediated by

betaine—the product of enzymatic oxidation of choline—and thus requires contemporaneous

supply of choline.

We have previously reported that perinatal choline supplementation increases mRNA and

protein levels of insulin-like growth factor 2 (IGF2) [50, 51]. Additionally, infusion of IGF2 in

the APP.PS1 mouse model of AD ameliorated amyloidosis [52]. Another study by Xia et al.

found that IGF2 mRNA was markedly reduced in AD patients and when they treated Tg2576

AD model mice with IGF2 they improved memory consolidation, decreased Aβ deposition

and reduced oxidative stress through the activation of the PI3K/AKT pathway [53].
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There are numerous reports that show choline supplementation is capable of reducing oxi-

dative stress in a variety of animal models [54–58]. Oxidative stress and mitochondria dysfunc-

tion are characteristically found in AD patients and restoration of mitochondrial function is

currently being targeted as a strategy to delay or slow the progression of AD (Reviewed in

[59]). Oxidative stress is also accompanied with activation of the immune system (Reviewed in

[60]). The brains of AD patients are characterized by chronic neuroinflammation and chronic

neuroinflammation is associated with synapse damage, synapse loss, and functional brain net-

work dysfunction [61–63]. Furthermore, AppNL-G-F mice display neuronal and synaptic defi-

cits along with marked neuroinflammation [23, 64–66]. Perinatal choline supplementation

prevented astrogliosis in APP.PS1 mice [10] and life-long choline supplementation decreased

the expression of activated microglial markers [16]. Microglia are phagocytic immune cells of

the central nervous system and are critical for response to damage in the brain. Microglial acti-

vation state and phenotype is dependent on a complex environment in which they reside and

can lead to varying states of efficiency for handling Aβ and other damage. It is thought that

microglia in AD transition to a phenotype that is less efficient at phagocytosing Aβ plaques

and lead to further accumulation of Aβ and synaptic deficits [61, 67]. Targeting of neuroin-

flammation, and microglia specifically, is being investigated pre-clinically and in clincial trials

for AD and choline supplementation may be a viable way to modulate neuroinflammatory

states in AD. Together, this suggests that perinatal choline supplementation may be leading to

decreased Aβ42 deposition and improved cognitive performance through the reduction of

amyloidogenic APP processing, oxidative stress and mitochondrial dysfunction that then leads

to a dampened immune response and synaptic deficits in AppNL-G-F mice.

Choline may also modulate DNA methylation through its conversion into betaine, leading

to the production of S-adenosylmethionine that is eventually used to methylate DNA. Indeed,

maternal choline supplementation leads to an increase in overall S-adenosylmethionine levels,

a decrease in 5-methylcytosine content in genomic DNA, and a reduction in DNA methyl-

transferase Dnmt1 and Dnmt3a mRNA levels in the brain of fetal rats [68]. Gestational choline

supply also regulates methylation of histones [1, 69, 70]. Methylation of DNA and histones are

mechanisms used to regulate gene expression and since choline availability is capable of affect-

ing both of these processes, it may modulate the expression of genes that are important for

learning and memory, brain cell proliferation, migration, and apoptosis during development,

that lead to lifelong changes [4, 7, 71–74]. Indeed, we have previously shown that maternal

choline supply in rats increases the expression of genes whose protein products participate in

the processes of learning and memory, including calcium/calmodulin-dependent protein

kinase I (Camk1) and Igf2 in the cortex and of the transcription factor Zif268/Egr1 in the cor-

tex and hippocampus [10]. Future studies are needed to investigate the effects of perinatal cho-

line supplementation in wildtype and AppNL-G-F mice on DNA methylation and mRNA

expression and to assess if they correlate with the improved performance of the AppNL-G-F

mice in learning and memory tasks.

Although our study provides a comprehensive evaluation of the behavioral and Aβ patho-

logical characterization of the AppNL-G-F AD mouse model and the effects of perinatal choline

supplementation within the model on these measures across the lifespan, this study has limita-

tions as it did not examine mechanisms of these effects. Future work in areas such as brain net-

work connectivity, gene and/or protein expression, or DNA methylation that were outside the

scope of this study will be needed to address this problem. Another limitation is due to the

cross-sectional nature of our study that did not allow for the animals to complete behavioral

testing at various time points across the lifespan within the same animal. With that being said,

using a cross-sectional design did prevent repeated testing and confounding bias caused by

repeated testing in our animals.
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In conclusion, our study shows that the amyloidosis and AD-related cognitive deficits that

characterize the AppNL-G-F mice are markedly slowed or prevented, respectively, by a nutri-

tional strategy with high maternal choline intake during pregnancy and lactation. There are

implications of these observations to human health, namely that adequate choline intake by

pregnant and nursing women may similarly protect their children from age-related dementias

and AD. The current estimates of the consumption of choline indicate that only approximately

8% of pregnant women in the United States meet the recommended adequate intake (AI) val-

ues [75]. Similar results have been reported for pregnant women in Australia [76]. Our current

data, as well as previous studies cited above, support the notion that formulation and imple-

mentation of public health policies designed to ensure that choline intake be consistent with

the AI values would be a valuable tool for the prevention of many cases of dementia and AD.
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(B) AppNL-G-F spent significantly more time in the center of the Open Field Test than wildtype

mice at 9- and 12-months of age (F(1, 65) = 5.5014, p = 0.0221 & F(1, 62) = 5.5143, p = 0.0221,

respectively, ANOVA). Nine-month-old wildtype mice that received the control diet spent sig-

nificantly more time in the center than 9-month-old AppNL-G-F mice that also received the

control diet (Control WT (163.52 ± 13.4s) vs Control AppNL-G-F (124.65 ± 12.9s) p = 0.017;

Tukey). No differences were found between wildtype and AppNL-G-F mice at 3- or 6-months of

age.

(DOCX)

S4 Fig. AppNL-G-F mice display altered anxiety-related behaviors in the elevated plus maze.

(A) AppNL-G-F mice did not differ from wildtype mice in time spent in the open arms or middle

of the Elevated Plus Maze at 3- (F(1, 64) = 0.2344, p = 0.627), 6- (F(1, 67) = 2.9829, p = 0.089),

or 9-months of age (F(1, 65) = 0.5874, p = 0.446; ANOVA). AppNL-G-F mice spent significantly
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more time in the open arms or middle than wildtype mice at 12-months of age (F(1, 62) =

6.9130, p = 0.0108, ANOVA, black bars). Mice that received the choline supplemented diet

spent significantly more time in the open arms or middle at 3-months of age (F(1, 64) =

4.5354, p = 0.037; ANOVA) but less time at 12-months of age than those that received the con-

trol diet perinatally (F(1, 62) = 4.6142, p = 0.036; ANOVA, blue bars). (B) No differences

between wildtype and AppNL-G-F mice were found in percentage of open arm entries when

combining diet groups and when looking within both control and choline supplemented

groups. There was a significant overall effect of diet in 3-month-old mice as those that received

the choline supplemented diet made a significantly higher percentage of open arm entries than

mice the received the control diet (F(1, 64) = 5.45, p = 0.023; ANOVA, blue bars). No other

diet differences were detected.

(DOCX)

S5 Fig. Female mice performed significantly better than male mice in the Barnes maze. (A)

During the trial day period, there was a significant effect of sex as female mice found the tar-

get hole significantly faster than male mice at 3-, 6-, 9-, and 12-months of age (3-Months- F

(1, 64) = 6.07, p = 0.016; 6-Months- F(1, 67) = 5.00, p = 0.029; 9-Months- F(1, 64) = 15.45,

p = 0.0002; 12-Months- F(1, 62) = 7.78, p = 0.007; repeated measures ANOVA). (B) There

was also a significant effect of sex in the 1-day probe test as female mice found the target hole

significantly faster than male mice at 6-, 9-, and 12-months of age (6-Months- F(1, 67) =

7.92, p = 0.006; 9-Months- F(1, 65) = 15.89, p = 0.0002; 12-Months- F(1, 62) = 6.86,

p = 0.011; ANOVA).

(DOCX)

S6 Fig. Subtle sex differences in contextual fear conditioning performance. (A) Female

mice froze significantly less during the tone test than male mice at 3-months of age (F(1, 64) =

4.87, p = 0.0309; ANOVA). No sex differences were found at 6-, 9-, or 12-months of age in the

tone test. (B) There was a significant effect of sex in 12-month-old mice during the context test

as male mice froze significantly more than female mice (F(1, 62) = 7.15, p = 0.0096; ANOVA).

No other sex differences were found at any other age in the context test.

(DOCX)

S1 File. Supporting text for the open field test and elevated plus maze.

(DOCX)
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