

Clinical efficacy of subthreshold micropulse laser combined with anti-VEGF drugs in the treatment of diabetic macular edema A meta-analysis

Dahua Xu, MD^a, Ting Zhu, MD^a, Lin Huang, MD^a, Xiaolin Wang, MD^a, Mei Chen, PhD^{b,*}

Abstract

Background: To systematically evaluate the efficacy and safety of subthreshold micropulse laser (SML) combined with antivascular endothelial growth factor (VEGF) drugs for the treatment of diabetic macular edema (DME).

Methods: The randomized controlled trials on SML combined with anti-VEGF drugs for DME were retrieved from China National Knowledge Infrastructure, Wan Fang Data, VIP Data, Sino Med (China Biomedical Literature Database), PubMed, Web of Science, The Cochrane Library, and Embase by computer from inception to April 19, 2022. The observation group was treated with SML combined with anti-VEGF drugs, while the control group was treated with anti-VEGF agents alone or SML. And the references of the included literature were manually searched. The Meta-analysis was performed using Revman 5.4 and STATA SE 15.

Results: This study finally included 15 randomized controlled trials involving 891 eyes for Meta-analysis. The results showed that there was no statistically significant difference between the 2 groups in best-corrected visual acuity at 1, 3, 6, 9, and 12 months after treatment. There was no statistical difference between the 2 groups in central macular thickness (CMT) at 1, 3, and 6 months after treatment (P > .05). CMT in the observation group was lower than that in the control group at 9 and 12 months (P < .05). There was no statistical difference between the 2 groups in total macular volume at 3, 6, 9, and 12 months in CMT (P > .05). The number of anti-VEGF drugs injections in the observation was lower than that in the control group (P < .05). The occurrence of complications between the 2 groups was not statistically significant difference (P > .05).

Conclusion: SML in combination with anti-VEGF drugs in patients with DME are comparable in reducing the number of anti-VEGF drugs injections and CMT, thereby reducing the financial burden on patients. It does not differ in best-corrected visual acuity and total macular volume.

Abbreviations: BCVA = best-corrected visual acuity, CI = confidence interval, CMT = central macular thickness, DM = diabetes mellitus, DME = diabetic macular edema, DR = diabetic retinopathy, RCTs = randomized controlled trials, RPE = retinal pigment epithelium, SML = subthreshold micropulse laser, TMV = total macular volume, VEGF = vascular endothelial growth factor.

Keywords: anti-VEGF drugs, diabetic macular edema, meta-analysis, subthreshold micropulse laser

1. Introduction

The latest epidemiological results show that the prevalence of diabetes mellitus (DM) was as high as 11.2% in people over 18 years of age in China, exceeding the global level. And the incidence of diabetic complications in China remain the highest among the world.^[1] It has been reported that 1 out of fifteen diabetic patients has diabetic macular edema (DME), which will have profound clinical and public health implications.^[2] Diabetes mellitus can cause a variety of complications, including diabetic cataracts, neovascular glaucoma, diabetic optic neuropathy, diabetic retinopathy (DR), and so on. Among them, DR is the most common ocular microvascular complication and the leading cause of vision loss in working-age people.^[2] DR includes 3 forms: non-proliferative diabetic retinopathy, proliferative diabetic retinopathy, and

Copyright © 2024 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Xu D, Zhu T, Huang L, Wang X, Chen M. Clinical efficacy of subthreshold micropulse laser combined with anti-VEGF drugs in the treatment of diabetic macular edema: A meta-analysis. Medicine 2024;103:5(e34583).

Received: 26 April 2023 / Received in final form: 12 July 2023 / Accepted: 13 July 2023

http://dx.doi.org/10.1097/MD.00000000034583

DX and TZ contributed equally to this work.

This study has been supported by the Chongqing Science and Health Technology Innovation and Application Development Project of Traditional Chinese Medicine (NO.2020ZY024098).

The authors have no conflicts of interest to disclose.

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

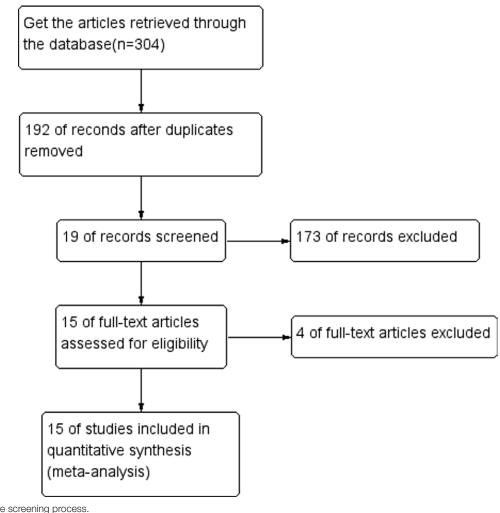
This study is a meta-analysis, so no ethics committee approval is required for this study.

^a Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China, ^b Chongqing Aier Eye Hospital, Chongqing, China.

^{*} Correspondence: Mei Chen, Chongqing Aier Eye Hospital, Chongqing 400020, China (e-mail: cm-8988@163.com).

DME.^[2] DME is also the most common cause of vision loss in patients with DM.^[3] There are various clinical treatments for DME,^[4] among which anti-vascular endothelial growth factor (VEGF) drugs remain the first-line treatment for DME.^[5] Previous studies have shown that anti-VEGF drugs can improve clinical symptoms and signs in patients with DME. However, anti-VEGF drugs require frequent injections to maintain the therapeutic effect. That increases the financial burden on patients and the occurrence of complications, such as subconjunctival hemorrhage, infection, and cerebrovascular accidents.^[6,7]

Although the conventional laser can reduce macular edema, it destroys the target tissue by thermal damage, resulting in dark vision loss, visual field defects, laser spot enlargement, and secondary choroidal neovascularization in some patients. With continuous technological advances, there has been an evolution from conventional laser to subthreshold micropulse laser (SML). Unlike conventional continuous lasers, SML is a new laser that consists of large repetitive pulse lasers. SML selectively acts on retinal pigment epithelium (RPE) cells to exert modulatory effects and reduce inflammatory responses and macular edema.^[8,9] The subthreshold micropulse laser includes 4 types according to wavelength: 810 nm, 532 nm, 577 nm, and 670 nm.^[8]


Recently, many scholars have used SML in combination with anti-VEGF drugs in the treatment of DME, but the results remain controversial.^[10-13] Most of the results showed that the combination therapy can significantly improve patients visual acuity and reduce the number of drug injections, but some scholars came to the opposite conclusion.^[10,14-24] And there is no relevant evidence-based medical literature to confirm effect of the combination therapy. Therefore, in this study, we conducted a meta-analysis by searching randomized controlled trials (RCTs) of SML combined with anti-VEGF drugs in the treatment of DME published in China and English. This study will offer more evidence to support the clinical efficacy of SML combined with anti-VEGF drugs for the treatment of DME.

2. Materials and methods

2.1. Search strategy

This research was registered at PROSPERO (https://www.crd. york.ac.uk/prospero/, registration number CRD42022359632). This systematic review and meta-analysis were conducted according to the PRISMA guidelines (http://prisma-statement. org/?AspxAutoDetectCookieSupport=1).

The source of China National Knowledge Infrastructure, Wan Fang Database, VIP Database, China Biomedical Literature Database, PubMed, Web of Science, The Cochrane Library, and Embase, was conducted by computer. The search period was from the establishment of the database to April 19,2022. The search language was limited to Chinese and English. Search terms include: "diabetic macular edema," "randomized," "subthreshold micropulse laser," "bevacizumab," "ranibizumab ", "conbercept," "aflibercept," "anti-VEGF drug."

2.2. Inclusion criteria

Study type: only RCTs were included; Study subjects: age > 18 years, diagnosed with diabetes, regardless of gender, race, and nationality; Interventions: the observation group was treated with SML combined with anti-VEGF drugs, and the control group was treated with anti-VEGF drugs or SML alone; The reported outcome indicators included at least one of the following: best-corrected visual acuity (BCVA), central macular thickness (CMT), total macular volume (TMV), the number of anti-VEGF drug injections, and complications.

2.3. Exclusion criteria

Table 1

Non-RCTs; Studies with nondiabetic macular edema; Interventions that do not meet the requirements, such as traditional laser combined with anti-VEGF drugs; Animal experiments, case reports, conference papers, reviews; Duplicate publications; Literature for which the full text is not available or for which the original data cannot be extracted.

2.4. Literature screening and data extraction

All retrieved literature was imported into Endnote X9, and 2 evaluators independently completed literature screening, data extraction, and literature quality assessment according to inclusion and exclusion criteria. If any disagreement existed, then 2 evaluators would negotiate to solve the problem. If there were still disagreements after negotiation, the third evaluator would solve the problem. The basic information included: year of publication, first author, number of cases, age, duration of diabetes, interventions (including observation and control groups), and outcome indicators.

2.5. Quality evaluation of the literature

A quality evaluation of all included RCTs was completed independently by 2 researchers with reference to the Cochrane Handbook Risk of Bias Assessment Tool,^[25] which including the generation of random sequences, allocation concealment, blinding of investigators and subjects, blinding of study outcome assessment, completeness of outcome data, selective reporting of outcome bias, and other biases. The results of the bias evaluation for each article were divided into 3 grades: "high risk of bias," "low risk of bias," and "unclear risk of bias."

2.6. Statistical methods

Revman 5.4 (https://training.cochrane.org/online-learning/ core-software/revman) and Stata SE15 software (https:// bbs.pinggu.org/thread-7307635-1-1.html) provided by the Cochrane Collaboration Network were used to complete the Meta-analysis. The weighted mean difference and its 95% confidence interval (CI) were used as the effect analysis statistic for measurement data, while the relative risk ratio or the ratio of ratios and its 95% CI were used for count data. I^2 test was used for the heterogeneity test, and $I^2 \ge 50\%$ indicated large homogeneity between studies, and Meta-analysis was performed using the random-effects mode. $I^2 < 50\%$ suggests low homogeneity, and Meta-analysis was performed using the fixed-effect model. Differences were considered statistically

Author	Year	Number of cases T/C (eyes)	Age	Duration of diabetes	Interventions (T/C)	The course of treatment (mo)	Outcome
Sun GL ^[15]	2017	15/15	58.27±6.85	NA	SML + ranibizumab/	12–17	1245
			57.69 ± 6.39		Ranibizumab	13–20	
Li WQ ^[16]	2019	36/32	57.2 ± 10.1	NA	SML + conbercept/	12	1234
			60.6 ± 12.3		Conbercept		
Huang KQ ^[13]	2022	26/26	62.31 ± 5.48	$62.81 \pm 20.01/$	SML + ranibizumab/	9	124
			63.77 ± 5.37	64.04 ± 20.44 (mo)	Ranibizumab		
Mao YJ ^[18]	2022	34/34	50.35 ± 10.14	$6.74 \pm 2.03/$	SML + aflibercept/	12	12458
			51.47 ± 11.23	6.80 ± 2.11 (yr)	Aflibercept		
Zhang Q ^[14]	2021	35/35	$56.0 \pm 7.7/$	$13.5 \pm 4.2/$	SML + aflibercept/	12	124
			53.3 ± 9.1	12.9 ± 4.1 (yr)	Aflibercept		
Chen SN ^[25]	2020	30/28	56.17±5.44/	NA	SML + ranibizumab/	12	12347
			58.68 ± 5.92		Ranibizumab		
Yan LJ ^[21]	2019	40/38	$59.7 \pm 4.5/$	$12.7 \pm 3.3/$	SML + ranibizumab/	NA	124
			56.9 ± 4.4	13.4 ± 3.7 (yr)	Ranibizumab		
Wu Q ^[20]	2021	36/36	56.8 ± 10.2	NA	SML + ranibizumab/	9	12346
			56.3 ± 9.5		Ranibizumab		
Liu HX ^[26]	2021	44/44	69.57 ± 5.31	$6.72 \pm 1.31/$	SML + ranibizumab/	1	1258
			68.16 ± 3.28	6.72±1.31 (yr)	SML		
Akhlaghi ^[10]	2019	42/42	60.86 ± 8.57	NA	SML + bevacizumab/	4	12
			60.86 ± 8.57		Bevacizumab		
Tatsumi ^[9]	2020	22/21	NA	NA	SML + aflibercept/	24	1245
					Aflibercept		
Abouhussein ^[17]	2020	20/20	$60.4 \pm 4.2/$	NA	SML + aflibercept/	12	1245
			59.5 ± 4.3		Aflibercept		
Khattab ^[11]	2019	27/27	$59.4 \pm 4.3/$	$17.8 \pm 3.4/$	SML + aflibercept/	18	125
			55.7 ± 3.4	17.4 ± 4.2 (yr)	Aflibercept		
Kanar ^[19]	2019	28/28	63.43 ± 10.14	$18.76 \pm 2.08/$	SML + aflibercept/	12	12346
			62.64 ± 9.03	18.28 ± 2.24 (yr)	Aflibercept		
Koushan ^[22]	2022	15/15	$59.8 \pm 9.47/$	NA	SML + aflibercept/	12	1234
			58.8 ± 9.28		Aflibercept + sham SML		

()BCVA; ()CMT; ()TMV; ()The number of anti-VEGF drugs; ()Complications.

RCTs = randomized controlled trials, SML = subthreshold micropulse laser.

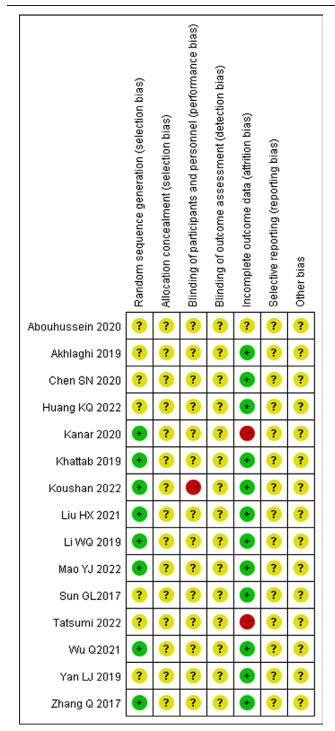


Figure 2. The assessment of risk of bias for include RCTs. RCTs = randomized controlled trials.

significant at P < .05. Sensitivity analysis was performed using 1-by-1 exclusion. Publication bias analysis was performed by Egger test using STATA 15, and P < .05 showed the presence of publication bias.

3. Results

3.1. Literature screening process and results

Based on the above search strategy, a total of 304 papers were collected. After eliminating duplicates, 192 papers were obtained. One hundred seventy-three papers were removed after reading the titles and abstracts of the papers. The remaining 19 papers were left after reading carefully for the full text. A total of 15 RCTs were finally included in this Meta-analysis, and all RCTs were single-center studies. (Fig. 1)

3.2. Basic information for inclusion in the literature (Table 1)

3.3. Evaluation of the quality of the literature on RCTs included in the literature (Fig. 2)

3.4. Results of efficacy analysis

3.4.1. BCVA. LogMAR visual acuity and ETDRS visual acuity were included and analyzed separately.

3.4.1.1. LogMAR visual acuity Nine studies reported BCVA (LogMAR) after treatment, and subgroup analyses of BCVA were performed according to different follow-up times (1, 3, 6, 9, and 12 months). The results existed large heterogeneity (P < 1 $.001, I^2 = 88\%$), using a random-effects model combined with effect size analysis. There was no statistical difference in BCVA at 1 month between the 2 groups (MD = 0.04, 95% CI: -0.04to 0.12, P = .30). Four studies reported BCVA at 3 months after treatment and there was no statistically significant difference in BCVA between the 2 groups (MD = -0.11,95% CI: -0.41 to 0.18, P = .46). Five papers reported BCVA at 6 months after treatment and there was no statistically significant difference in BCVA between the 2 groups (MD = -0.03, 95% CI: -0.07 to 0.00, P = .08). Two papers reported BCVA at 9 months after treatment and there was no statistically significant difference in BCVA between the 2 groups (MD = -0.03, 95% CI: -0.07 to 0.00, P = .08). Two papers reported BCVA at 9 months after treatment and there was no statistically significant difference in BCVA between the 2 groups (MD = -0.03, 95% CI: -0.11 to 0.05, P = .44). Eight studies reported BCVA at 12 months after treatment and there was no statistically significant difference in BCVA between the 2 groups (MD = 0.03, 95% CI: -0.05 to 0.10, P = .50).(Fig. 3)

3.4.1.2. ETDRS visual acuity Four of the included analyses reported BCVA (ETDRS) after treatment, and subgroup analyses of BCVA were performed according to different follow-up times (3, 6, 9, and 12 months), and the combined results showed low heterogeneity ($P = .70, I^2 = 0\%$), using a fixed-effects model combined with effect size analysis. Four studies reported BCVA at 3 months after treatment and there was no statistically significant difference in BCVA between the 2 groups (MD = 0.03, 95% CI: -1.16 to 1.22, P = .96). Four studies reported BCVA at 6 months after treatment and there was no statistical difference in BCVA between the 2 groups (MD = 0.51, 95% CI: -0.42 to 1.79, P = .23). Three studies reported BCVA at 9 months after treatment and there was no statistical difference between the 2 groups (MD = 0.68, 95% CI: -0.42 to 1.79, P = .23). Two papers reported BCVA at 12 months after treatment and there was no statistically significant difference between the 2 groups (MD = 2.55, 95% CI: -1.73 to 6.82, P = .24). (Fig. 4)

3.4.2. CMT. Fourteen papers reported CMT after treatment, and CMT was analyzed in subgroups according to different follow-up times (1, 3, 6, 9, and 12 months), and the results showed large heterogeneity (P < .001, $I^2 = .78\%$), using a random-effects model combined with effect size analysis. Five papers reported CMT at 1 month after treatment and there was no statistically significant difference in CMT between the 2 groups (MD = -18.12, 95% CI: -49.21 to 12.97, P = .25). Eight papers reported CMT at 3 months after treatment and there was no statistical difference in CMT between the 2 groups (MD = -6.03,95% CI: -24.55 to 12.50, P = .52). Nine papers reported CMT at 6 months after treatment and there

Church and Carls are a sum		vation gr	•		rol grou	•	Mainht	Mean Difference	Mean Difference
<u>Study or Subgroup</u> 1.1.1 1mon BCVA	Mean	SD	Total	Mean	50	Total	weight	IV, Random, 95% CI	IV, Random, 95% Cl
	0.05		20	0.00	0.45	20	4.000	0 4 0 10 00 0 041	
Abouhussein 2020	0.35	0.14	20	0.23	0.15	20	4.8%	0.12 [0.03, 0.21]	
Akhlaghi 2019	0.74	0.28	42	0.75	0.33	42	3.9%	-0.01 [-0.14, 0.12]	1
Kanar 2020 Subtatal (05%, CI)	0.33	0.08	28 90	0.32	0.08	28 90	5.6%	0.01 [-0.03, 0.05]	
Subtotal (95% CI)							14.3%	0.04 [-0.04, 0.12]	
Heterogeneity: Tau² = Test for overall effect:	•			(P = 0.0	8); 1* = 6	0%			
1.1.2 3mon BCVA									
Abouhussein 2020	0.37	0.14	20	0.26	0.16	20	4.7%	0.11 [0.02, 0.20]	
Akhlaghi 2019	0.2	0.26	42	0.79	0.33	42	4.0%	-0.59 [-0.72, -0.46]	←
Chen SN 2020	0.62	0.26	30	0.64	0.22	28	4.1%	-0.02 [-0.14, 0.10]	
Zhang Q 2017	0.7	0.24	35	0.66	0.25	35	4.3%	0.04 [-0.07, 0.15]	
Subtotal (95% CI)			127			125	17.0%	-0.11 [-0.41, 0.18]	
Heterogeneity: Tau ² =	0.09: Ch	i ² = 82.8) (P < 0.	00001):			,	
Test for overall effect:			•						
1.1.3 6mon BCVA									
Abouhussein 2020	0.26	0.18	20	0.26	0.09	20	4.8%	0.00 [-0.09, 0.09]	
Chen SN 2020	0.54	0.23	30	0.56	0.16	28	4.5%	-0.02 [-0.12, 0.08]	
Kanar 2020	0.23	0.1	28	0.26	0.09	28	5.5%	-0.03 [-0.08, 0.02]	
Koushan 2022	0.21	0.13	15	0.32	0.19	15	4.2%	-0.11 [-0.23, 0.01]	
Zhang Q 2017	0.55	0.27	35	0.59	0.27	35	4.0%	-0.04 [-0.17, 0.09]	
Subtotal (95% CI)			128			126	23.0%	-0.03 [-0.07, 0.00]	◆
Heterogeneity: Tau ² =	0.00; Ch	.i ² = 2.30	. df = 4	(P = 0.6	8); l ² = 0 ⁴	%			
Test for overall effect:			•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
1.1.4 9mon BCVA									
Abouhussein 2020	0.29	0.12	20	0.31	0.25	20	4.1%	-0.02 [-0.14, 0.10]	
Chen SN 2020	0.49	0.23	30	0.53	0.18	28	4.4%	-0.04 [-0.15, 0.07]	
Subtotal (95% CI)			50			48	8.6%	-0.03 [-0.11, 0.05]	-
Heterogeneity: Tau² = Test for overall effect:			•	(P = 0.8	1); I² = 0'	%			
	2-0.11	() = 0.4-	*/						
1.1.5 12mon BCVA		0.04	~~			~~	0.00		
Abouhussein 2020	0.2	0.21	20	0.24	0.22	20	3.9%	-0.04 [-0.17, 0.09]	
Chen SN 2020	0.46	0.19	30	0.5	0.14	28	4.8%	-0.04 [-0.13, 0.05]	
Kanar 2020	0.17	0.06	28	0.2	0.1	28	5.6%	-0.03 [-0.07, 0.01]	
Koushan 2022	0.22	0.13	15	0.32	0.22	15	4.0%	-0.10 [-0.23, 0.03]	
Mao YJ 2022	1.23	0.18	34	0.84	0.21	34	4.7%	0.39 [0.30, 0.48]	
	0.31	0.03	15	0.32	0.02	15	5.8%	-0.01 [-0.03, 0.01]	-
Sun GL2017	0.070	0.222	26	0.219		25	4.4%	0.06 [-0.05, 0.17]	
Sun GL2017 Tatsumi 2022	0.279		35	0.53	0.27	35	4.1%	-0.03 [-0.15, 0.09]	
Sun GL2017 Tatsumi 2022 Zhang Q 2017	0.279 0.5	0.26				200	37.2%	0.03 [-0.05, 0.10]	
Sun GL2017 Tatsumi 2022 Zhang Q 2017 Subtotal (95% CI)	0.5		203				9 <u>6</u>		
Sun GL2017 Tatsumi 2022 Zhang Q 2017 Subtotal (95% CI) Heterogeneity: Tau ² =	0.5 0.01; Chi	i² = 75.3	5, df = 7	'(P < 0.	00001);	I* = 91'	70		
Sun GL2017 Tatsumi 2022 Zhang Q 2017 Subtotal (95% CI)	0.5 0.01; Chi	i² = 75.3	5, df = 7	'(P < 0.	00001);	I* = 91'			
Sun GL2017 Tatsumi 2022 Zhang Q 2017 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	0.5 0.01; Chi Z = 0.68 (ii² = 75.3 (P = 0.50	5, df = 7 D) 598			589	100.0%	-0.01 [-0.06, 0.03]	
Sun GL2017 Tatsumi 2022 Zhang Q 2017 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Heterogeneity: Tau ² =	0.5 0.01; Chi Z = 0.68 0.01; Chi	ii² = 75.3 (P = 0.50 ii² = 176.	5, df = 7 D) 598 12, df =			589	100.0%	-0.01 [-0.06, 0.03]	-0.5 -0.25 0 0.25 0.5
Sun GL2017 Tatsumi 2022 Zhang Q 2017 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	0.5 : 0.01; Chi Z = 0.68 : 0.01; Chi Z = 0.57	i ² = 75.3 (P = 0.50 i ² = 176. (P = 0.57	5, df = 7 D) 598 12, df = 7)	21 (P <	0.00001	589 l); l² = :	100.0 % 88%	-0.01 [-0.06, 0.03]	-0.5 -0.25 0 0.25 0.5 obersvation group control group

Figure 3. Forest plots comparing BCVA subgroups at different times after treatment in the observation and control groups. BCVA = best-corrected visual acuity.

was no statistically significant difference in CMT between the 2 groups (MD = -20.55, 95% CI: -39.12 to -1.98, P = .18). Four studies reported CMT at 9 months after treatment and there was a statistically significant difference between the 2 groups (MD = -6.03, 95% CI: -24.55 to 12.50, P = .03). Ten papers reported CMT at 12 months after treatment and result showed that CMT at 12 months after treatment was lower than that of the control group (MD = -17.50, 95% CI: -30.50 to -4.51, P = .008). (Fig. 5)

3.4.3. *TMV.* Four studies reported TMV after treatment, and subgroup analyses of TMV after treatment were performed according to different follow-up times (3, 6, 9, and 12 months), and the results existed large heterogeneity between studies (P = .005, $I^2 = 61\%$), using a random-effects model. Three studies reported TMV at 3 months after treatment and there was no statistically significant difference between the 2 groups (MD = -0.23,95% CI: -0.80 to 0.33, P = .42).

Three studies reported TMV at 6 months after treatment and there was no statistical difference between the 2 groups (MD = -0.27,95% CI: -0.72 to 0.19, P = .25). Three studies reported TMV at 9 months after treatment and there was no statistical difference between the 2 groups (MD = -0.01,95%CI: -0.39 to 0.37, P = .96). Two studies reported TMV at 12 months after treatment and there was no statistical difference between the 2 groups (MD = -0.48,95% CI: -1.64 to 0.69, P = .42). (Fig. 6)

3.4.4. Number of anti-VEGF drug injections. Eleven studies compared the complications of SML combined with anti-VEGF drugs for DME, and there was large heterogeneity ($I^2 = 93\%$, P < .001) and were analyzed using a random-effects model. Meta-analysis showed that the number of vitreous cavity injections of anti-VEGF drugs was lower in the observation group than in the control group (MD = -1.85, 95% CI: -2.61 to -1.08, P < .001). (Fig. 7)

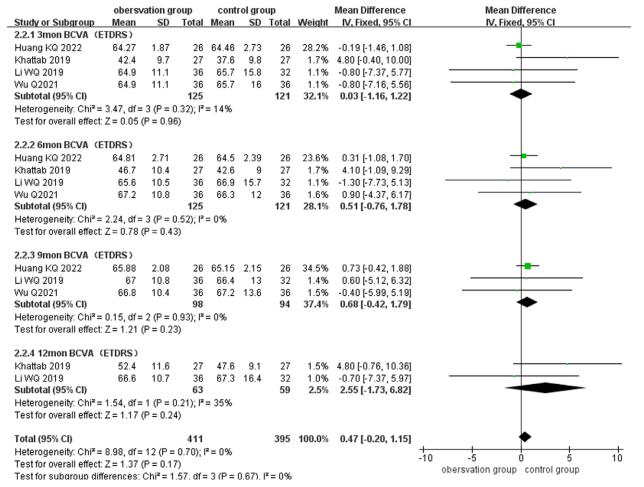


Figure 4. Forest plots comparing BCVA subgroups at different times after treatment in the observation and control groups. BCVA = best-corrected visual acuity.

3.4.5. Complications. Three studies compared the complications of SML combined with anti-VEGF drugs for DME, and results existed low heterogeneity ($I^2 = 0\%$, P = .57), indicating no heterogeneity between studies, and were analyzed using a fixed-effects model. There was no statistically significant difference in occurrence of adverse events between 2 groups (ratio of ratios = 1.28. 95% CI: 0.61–2.66, P = .51). (Fig. 8)

3.5. Sensitivity analysis

Sensitivity analysis was performed for each of the 5 outcome indicators of BCVA, CMT, TMV, the number of anti-VEGF drugs, and complications. The result showed that changing the model had no significant effect on the combined results. By removing every literature, there was no statistically significantly reduced ieterogeneity, suggesting stable and reliable results.

3.6. Analysis of publication bias

Publication bias was detected for the combined results when the included literature over 3 papers. Egger test was performed by STATA 15. The results showed that there was a publication bias in BCVA (ETDRS) and CMT 9 months after treatment (P =.039, P = .013, respectively). The remaining outcome indicators had no publication bias. (Table 2)

4. Discussion

DME is the leading cause of vision loss in patients with DM.^[2,3] The pathogenesis of diabetic macular edema is complex and

not fully understood, mainly due to a series of inflammatory responses secondary to ischemia and hypoxia, in which multiple inflammatory factors are involved. VEGF is one of them.^[28]VEGF has been shown to be one of the most important inflammatory factors in the pathogenesis of DME, and the expression of VEGF in the vitreous of DM patients is 10-fold higher than that of non-DM patients. The upregulation of VEGF leads to the breakdown of the blood-retinal barrier, disrupts vascular permeability, promotes neovascularization, and ultimately leads to the formation of DME. The current treatment modalities for DME are diverse and include vitreous cavity injections of anti-VEGF drugs, glucocorticoids (Triamcinolone acetonide, dexamethasone implant, and fluorescence implant), photocoagulation (conventional retinal laser, subthreshold micropulse laser), surgical treatment, herbal medicine, and combination therapy, among which anti-VEGF drugs are currently the first choice.[29,30]

Common anti-VEGF drugs include the following: nucleic acid aptamers (Pegaptanib), VEGF antibodies (Bevacizumab), VEGF antibody fragments (Ranibizumab), and fusion proteins (Aflibercept, Conbercept).^[31] Anti-VEGF drugs alleviate DME by reducing the inflammatory response and inhibiting neovascularization.^[32] Although anti-VEGF is effective in treating DME, it requires repeated multiple injections, which not only increases the financial burden but also the potential risks such as infection.^[6] In recent years, many scholars have used SML combined with anti-VEGF drugs for the treatment of DME. Subthreshold micropulse laser is a conventional laser split into multiple short, repetitive pulsed lasers, with a single pulsed laser time including ON and OFF period. During the ON period, the laser energy is

Study or Subgroup	Mean	vation gro SD	oup Total	cont Mean	rol group SD		Weight	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl
3.1.1 1mon CMT	mean	30	Total	mean	30	rotal	weight	1V, Nandolli, 95% Cl	
Abouhussein 2020	309	28.6	20	313.9	30.5	20	3.6%	4 00 1 22 22 42 421	
						20		-4.90 [-23.22, 13.42]	
Akhlaghi 2019	454.62	94.76		492.14		42	1.9%	-37.52 [-86.24, 11.20]	
Kanar 2020	408.34	20.56	28	411.21	24.46	28	3.9%	-2.87 [-14.71, 8.97]	
Liu HX 2021	243.68	20.64	44	298.05	17.33	44	4.1%	-54.37 [-62.33, -46.41]	
/Vu Q2021	331.1	97.8	36	318	94.7	36	2.1%	13.10 [-31.37, 57.57]	
Subtotal (95% CI)			170			170	15.7%	-18.12 [-49.21, 12.97]	
Heterogeneity: Tau ² =	1050.60;	Chi² = 65	.71, df:	= 4 (P < 0	.00001);	l² = 94		. / .	
Test for overall effect:	Z=1.14 ((P = 0.25)							
3.1.2 3mon CMT									
Abouhussein 2020	309.2	31	20	287.2	31.8	20	3.5%	22.00 [2.54, 41.46]	
Akhlaghi 2019	408.1	95.28		502.38		42		-94.28 [-146.97, -41.59]	←
Chen SN 2020		101.91				28	1.8%	-32.06 [-84.83, 20.71]	
								• • •	
Huang KQ 2022	350.31	30.52		346.38	33.34	26	3.7%	3.93 [-13.44, 21.30]	
Khattab 2019	306.2	31.3	27	309.9	32.5	27	3.7%	-3.70 [-20.72, 13.32]	
Li WQ 2019	323.9	92.8	36	352.2	105.9	32	2.0%	-28.30 [-75.89, 19.29]	
Nu Q2021	336.8	98	36	324.1	96.8	36	2.1%	12.70 [-32.30, 57.70]	
Zhang Q 2017	336.8	98	35	323.97	75.25	35	2.3%	12.83 [-28.10, 53.76]	
Subtotal (95% CI)			252			246	20.8%	-6.03 [-24.55, 12.50]	
Heterogeneity: Tau ² =	404.05; (Chi² = 20.9		7 (P = 0.0	004); I² =				-
Test for overall effect:	Z=0.64 ((P = 0.52)							
3.1.3 6mon CMT									
Abouhussein 2020	288.1	29.6	20	292.3	25.3	20	3.7%	-4.20 [-21.27, 12.87]	<u> </u>
Chen SN 2020	391.67	75.48	30	411.86	86.4	28	2.3%	-20.19 [-62.07, 21.69]	
Huang KQ 2022	362.19	30.54	26	365.88	35.87	26	3.6%	-3.69 [-21.80, 14.42]	
Kanar 2020	377.3	45.61	28	387.92	47.71	28	3.2%	-10.62 [-35.07, 13.83]	
Khattab 2019	295.1	29.6	27	295.7	51.3	27	3.4%	-0.60 [-22.94, 21.74]	
Koushan 2022	302	61.5	15	309.3	52	15	2.3%	-7.30 [-48.06, 33.46]	
Li WQ 2019	325.5	90.2	36	352.6	106.6	32	2.0%	-27.10 [-74.35, 20.15]	
/Vu Q2021	354.8	98	36	324.1	96.8	36	2.1%	30.70 [-14.30, 75.70]	
		~~	~~						
7hang () 2017	270 01	86 51	36	308 04	75.42		75.96	-741366706 800	
Zhang Q 2017 Subtotal (95% CI)	279.91	86.51	35 253	308.94	75.42	35	2.5% 25.1%	-29.03 [-67.05, 8.99] -5 99 [-14 77, 2 80]	•
Subtotal (95% CI)			253			35 247	2.5% 25.1%	-5.99 [-14.77, 2.80]	•
	: 0.00; Chi	²= 5.64, c	253						•
Subtotal (95% CI) Heterogeneity: Tau² = Test for overall effect:	: 0.00; Chi	²= 5.64, c	253						•
Subtotal (95% Cl) Heterogeneity: Tau² = Test for overall effect: 3.1.4 9mon CMT	: 0.00; Chi Z = 1.34 (r ² = 5.64, c (P = 0.18)	253 if = 8 (F	P = 0.69);	l ^z = 0%	247	25.1%	-5.99 [-14.77, 2.80]	•
Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020	: 0.00; Chi Z = 1.34 (278.3	r = 5.64, c (P = 0.18) 21.2	253	P = 0.69); 312.3	I² = 0% 49.9		25.1% 3.3%		
Subtotal (95% Cl) Heterogeneity: Tau² = Test for overall effect: 3.1.4 9mon CMT	: 0.00; Chi Z = 1.34 (r ² = 5.64, c (P = 0.18)	253 if = 8 (F	P = 0.69);	l ^z = 0%	247	25.1%	-5.99 [-14.77, 2.80]	
Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020	: 0.00; Chi Z = 1.34 (278.3	r = 5.64, c (P = 0.18) 21.2	253 #f = 8 (F 20	P = 0.69); 312.3	I² = 0% 49.9	247	25.1% 3.3%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24]	
Subtotal (95% CI) Heterogeneity: Tau [≈] = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6	P = 5.64, c P = 0.18) 21.2 57.77 108.2	253 ff = 8 (F 20 30 36	2 = 0.69); 312.3 378.11 336.2	l [#] = 0% 49.9 76.78 120.8	247 20 28	25.1% 3.3% 2.6% 1.7%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18]	
Subtotal (95% CI) Heterogeneity: Tau ^s = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Mu Q2021	0.00; Chi Z = 1.34 (278.3 361.37	P = 5.64, 0 P = 0.18) 21.2 57.77	253 if = 8 (F 20 30 36 36	9 = 0.69); 312.3 378.11	l² = 0% 49.9 76.78	247 20 28 32 36	3.3% 2.6% 1.7% 1.9%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97]	
Subtotal (95% CI) Heterogeneity: Tau [*] = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Au Q2021 Subtotal (95% CI)	278.3 361.37 327.6 336.8	² = 5.64, c (P = 0.18) 21.2 57.77 108.2 113.4	253 if = 8 (F 20 30 36 36 122	9 = 0.69); 312.3 378.11 336.2 323	I [≈] = 0% 49.9 76.78 120.8 103.6	247 20 28 32	25.1% 3.3% 2.6% 1.7%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18]	
Subtotal (95% CI) Heterogeneity: Tau ^s = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Mu Q2021	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl	² = 5.64, c (P = 0.18) 21.2 57.77 108.2 113.4 hi ² = 3.25,	253 if = 8 (F 20 30 36 36 122	9 = 0.69); 312.3 378.11 336.2 323	I [≈] = 0% 49.9 76.78 120.8 103.6	247 20 28 32 36	3.3% 2.6% 1.7% 1.9%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Chen SN 2020 Li WQ 2019 Wu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl	² = 5.64, c (P = 0.18) 21.2 57.77 108.2 113.4 hi ² = 3.25,	253 if = 8 (F 20 30 36 36 122	9 = 0.69); 312.3 378.11 336.2 323	I [≈] = 0% 49.9 76.78 120.8 103.6	247 20 28 32 36	3.3% 2.6% 1.7% 1.9%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Wu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (P = 5.64, 0 P = 0.18) 21.2 57.77 108.2 113.4 hi ^z = 3.25, P = 0.03)	253 af = 8 (F 20 30 36 36 122 df = 3 0	2 = 0.69); 312.3 378.11 336.2 323 (P = 0.35)	l² = 0% 49.9 76.78 120.8 103.6 ; l² = 8%	20 28 32 36 116	3.3% 2.6% 1.7% 9.5%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Chen SN 2020 Li WQ 2019 Mu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (288.5	² = 5.64, o P = 0.18) 21.2 57.77 108.2 113.4 hi ² = 3.25, P = 0.03) 46.4	253 If = 8 (F 20 30 36 36 122 df = 3 20	2 = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9	247 20 28 32 36 116 20	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -2.00 [-31.86, 27.86]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Mu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (288.5 340.3	² = 5.64, c P = 0.18) 21.2 57.77 108.2 113.4 hi ² = 3.25, P = 0.03) 46.4 50.5	253 if = 8 (F 20 30 36 36 122 df = 3 20 30	P = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85	247 20 28 32 36 116 20 28	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -2.00 [-31.86, 27.86] -23.81 [-46.24, -1.38]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Mu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Kanar 2020	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Ci Z = 2.17 (288.5 340.3 312	² = 5.64, c (P = 0.18) 21.2 57.77 108.2 113.4 hi ² = 3.25, (P = 0.03) 46.4 50.5 39.29	253 if = 8 (F 20 30 36 36 122 df = 3 20 30 28	P = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 328.8	* = 0% 49.9 76.78 120.8 103.6 ; * = 8% 49.9 35.85 49.69	247 20 28 32 36 116 20 28 28 28	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.3%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -2.00 [-31.86, 27.86] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Mu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (288.5 340.3	r = 5.64, c P = 0.18) 21.2 57.77 108.2 113.4 hir = 3.25, P = 0.03) 46.4 50.5 39.29 26.9	253 if = 8 (F 20 30 36 36 122 df = 3 20 30	P = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85	247 20 28 32 36 116 20 28	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -2.00 [-31.86, 27.86] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Mu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Kanar 2020	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Ci Z = 2.17 (288.5 340.3 312	² = 5.64, c (P = 0.18) 21.2 57.77 108.2 113.4 hi ² = 3.25, (P = 0.03) 46.4 50.5 39.29	253 if = 8 (F 20 30 36 36 122 df = 3 20 30 28	P = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 328.8	* = 0% 49.9 76.78 120.8 103.6 ; * = 8% 49.9 35.85 49.69	247 20 28 32 36 116 20 28 28 28	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.3%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -2.00 [-31.86, 27.86] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66]	
Subtortal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Wu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Kanar 2020 Koushan 2022	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (288.5 340.3 312 274 289.5	r = 5.64, c P = 0.18) 21.2 57.77 108.2 113.4 hir = 3.25, P = 0.03) 46.4 50.5 39.29 26.9 42.7	253 if = 8 (F 20 30 36 122 df = 3 df = 3 20 30 28 27	2 = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 328.8 279.3 288.3	[≠] = 0% 49.9 76.78 120.8 103.6 ; [≠] = 8% 49.9 35.85 49.69 52.7	20 28 32 36 116 20 28 28 28 27	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.4% 3.0%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -2.00 [-31.86, 27.86] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02] 1.20 [-27.79, 30.19]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Wu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Kanar 2020 Kanar 2020 Kanatab 2019 Koushan 2022 Li WQ 2019	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (288.5 340.3 312 274 289.5 312.2	r = 5.64, c P = 0.18) 21.2 57.77 108.2 113.4 hir = 3.25, P = 0.03) 46.4 50.5 39.29 26.9 42.7 106.8	253 if = 8 (F 20 30 36 36 122 df = 3 0 20 30 28 27 15 36	P = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 328.8 279.3 288.3 305.9	* = 0% 49.9 76.78 120.8 103.6 ; * = 8% 49.9 35.85 49.69 52.7 38.2 97	247 20 28 32 36 116 20 28 28 28 27 15 32	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.4% 3.4% 3.4% 3.0% 2.0%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -2.00 [-31.86, 27.86] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.79, 30.19] 6.30 [-42.14, 54.74]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Mu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Chen SN 2020 Kanar 2020 Kattab 2019 Koushan 2022 Li WQ 2019 Mao YJ 2022	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (288.5 340.3 312 274 289.5 312.2 276.35	F = 5.64, 0 P = 0.18) 21.2 57.77 108.2 113.4 hi ^z = 3.25, P = 0.03) 46.4 50.5 39.29 26.9 26.9 26.9 42.7 106.8 42.47	253 if = 8 (F 20 30 36 36 122 df = 3 20 30 28 27 5 36 34	P = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 328.8 279.3 288.3 305.9 328.72	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85 49.69 52.7 38.2 97 45.19	247 20 28 32 36 116 20 28 28 28 28 27 15 32 34	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.3% 3.4% 3.0% 3.5%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -20.55 [-39.12, -1.98] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02] 1.20 [-27.79, 30.19] 6.30 [-42.14, 54.74] -52.37 [-73.22, -31.52]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Wu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Chen SN 2020 Chen SN 2020 Kanata 2019 Koushan 2022 Li WQ 2019 Mao YJ 2022 Sun GL2017	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (288.5 340.3 312 274 289.5 312.2 276.35 281.56	² = 5.64, 0 (P = 0.18) 21.2 57.77 108.2 113.4 hi ² = 3.25, (P = 0.03) 46.4 50.5 39.29 26.9 42.7 106.8 42.47 69.42	253 if = 8 (F 20 30 36 36 122 20 30 20 30 20 30 20 30 20 30 20 36 36 122 20 30 36 36 122 20 30 36 36 122 20 30 30 36 36 122 20 30 30 30 36 36 122 20 30 30 30 30 36 36 122 20 30 30 30 30 30 36 36 20 30 30 30 30 30 30 30 30 30 3	P = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 328.8 279.3 288.3 305.9 328.72 293.87	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85 49.69 52.7 38.2 97 45.19 55.35	247 20 28 32 36 116 20 28 28 27 15 234 34 15	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.3% 3.4% 3.0% 2.0% 2.1%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -20.55 [-39.12, -1.98] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02] 1.20 [-27.79, 30.19] 6.30 [-42.14, 54.74] -52.37 [-7.322, -31.52] -12.31 [-57.24, 32.62]	
Subtotal (95% CI) Heterogeneity: Tau [#] = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Avu Q2021 Subtotal (95% CI) Heterogeneity: Tau [#] = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Kabouhussein 2020 Chen SN 2020 Kanar 2020 Kanar 2020 Koushan 2022 Li WQ 2019 Sous J2020 Kanar 2020 Suban 2022 Sub 2019 Soushan 2022 Li WQ 2019 Sun GL2017 Tatsumi 2022	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (288.5 340.3 312 274 289.5 312.2 276.35 281.56 344.7	*= 5.64, c P = 0.18) 21.2 57.77 108.2 113.4 hi*= 3.25, P = 0.03) 46.4 50.5 39.29 26.9 42.7 106.8 42.47 69.42 73.1	253 if = 8 (F 20 30 36 36 122 20 30 20 30 28 27 15 36 34 15 36 34 15 26	P = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 328.8 279.3 288.3 305.9 328.72 293.87 347.3	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85 49.69 52.7 38.2 97 45.19 55.35 58.9	247 20 28 32 36 116 20 28 28 27 15 32 34 15 25	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.3% 3.4% 3.0% 2.0% 3.5% 2.1% 2.6%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -2.00 [-31.86, 27.86] -2.381 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02] 1.20 [-27.79, 30.19] 6.30 [-42.14, 54.74] -52.37 [-73.22, -31.52] -12.31 [-57.24, 32.62] -2.60 [-38.97, 33.77]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Avu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Kanar 2020 Kanar 2020 Kattab 2019 Koushan 2022 Li WQ 2017 Tatsumi 2022 Zha GL2017 Tatsumi 2022 Zhang Q 2017	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (288.5 340.3 312 274 289.5 312.2 276.35 281.56	² = 5.64, 0 (P = 0.18) 21.2 57.77 108.2 113.4 hi ² = 3.25, (P = 0.03) 46.4 50.5 39.29 26.9 42.7 106.8 42.47 69.42	253 if = 8 (F 20 30 36 36 122 df = 3 4 20 30 30 20 30 30 20 30 30 30 30 30 30 30 30 30 30 30 30 30	P = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 328.8 279.3 288.3 305.9 328.72 293.87	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85 49.69 52.7 38.2 97 45.19 55.35	247 20 28 32 36 116 20 28 28 27 15 32 34 15 32 34 15 32 35	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.0% 2.0% 3.5% 2.1% 2.6% 2.8%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02] 1.20 [-27.79, 30.19] 6.30 [-42.14, 54.74] -52.37 [-7.22, -31.52] -12.31 [-57.24, 32.62] -2.60 [-38.97, 33.77] -40.42 [-71.07, -9.77]	
Subtotal (95% CI) Heterogeneity: Tau [#] = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Avu Q2021 Subtotal (95% CI) Heterogeneity: Tau [#] = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Kabouhussein 2020 Chen SN 2020 Kanar 2020 Kanar 2020 Koushan 2022 Li WQ 2019 Sous J2020 Kanar 2020 Suban 2022 Sub 2019 Soushan 2022 Li WQ 2019 Sun GL2017 Tatsumi 2022	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (288.5 340.3 312 274 289.5 312.2 276.35 281.56 344.7	*= 5.64, c P = 0.18) 21.2 57.77 108.2 113.4 hi*= 3.25, P = 0.03) 46.4 50.5 39.29 26.9 42.7 106.8 42.47 69.42 73.1	253 if = 8 (F 20 30 36 36 122 20 30 20 30 28 27 15 36 34 15 36 34 15 26	P = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 328.8 279.3 288.3 305.9 328.72 293.87 347.3	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85 49.69 52.7 38.2 97 45.19 55.35 58.9	247 20 28 32 36 116 20 28 28 27 15 32 34 15 25	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.3% 3.4% 3.0% 2.0% 3.5% 2.1% 2.6%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -2.00 [-31.86, 27.86] -2.381 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02] 1.20 [-27.79, 30.19] 6.30 [-42.14, 54.74] -52.37 [-73.22, -31.52] -12.31 [-57.24, 32.62] -2.60 [-38.97, 33.77]	
Subtortal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Wu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Kanar 2020 Kanar 2020 Kanar 2020 Kanar 2022 Li WQ 2019 Mao YJ 2022 Sun GL2017 Tatsumi 2022 Zhang Q 2017 Subtotal (95% CI) Heterogeneity: Tau ² =	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 30.97; Cl Z = 2.17 (288.5 340.3 312 276.4 289.5 312.2 276.35 281.56 344.7 258.48 : 211.62; (r = 5.64, c P = 0.18) 21.2 57.77 108.2 113.4 hir = 3.25, P = 0.03) 46.4 50.5 39.29 26.9 42.7 106.8 42.47 69.42 73.1 53.88 Chir = 18.3 Chir = 18.3	253 if = 8 (F 20 30 36 36 122 df = 3 4 20 30 28 20 30 28 27 15 36 34 15 26 38, df = 266	2 = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 3288.3 305.9 328.72 293.87 347.3 298.9	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85 49.69 52.7 38.2 97 45.19 55.35 58.9 75.22	247 20 28 32 36 116 20 28 28 27 15 32 34 15 525 9	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.0% 2.0% 3.5% 2.1% 2.6% 2.8%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02] 1.20 [-27.79, 30.19] 6.30 [-42.14, 54.74] -52.37 [-7.22, -31.52] -12.31 [-57.24, 32.62] -2.60 [-38.97, 33.77] -40.42 [-71.07, -9.77]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Wu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chants N 2020 Kanar 2020 Kanar 2020 Kanar 2020 Kanar 2020 Substal (95% CI) Buouhussein 2020 Subard 2020 Chantab 2019 Koushan 2022 Li WQ 2019 Mao YJ 2022 Sun GL2017 Tatsumi 2022 Zhang Q 2017 Subtotal (95% CI)	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 30.97; Cl Z = 2.17 (288.5 340.3 312 276.4 289.5 312.2 276.35 281.56 344.7 258.48 : 211.62; (r = 5.64, c P = 0.18) 21.2 57.77 108.2 113.4 hir = 3.25, P = 0.03) 46.4 50.5 39.29 26.9 42.7 106.8 42.47 69.42 73.1 53.88 Chir = 18.3 Chir = 18.3	253 if = 8 (F 20 30 36 36 122 df = 3 4 20 30 28 20 30 28 27 15 36 34 15 26 38, df = 266	2 = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 3288.3 305.9 328.72 293.87 347.3 298.9	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85 49.69 52.7 38.2 97 45.19 55.35 58.9 75.22	247 20 28 32 36 116 20 28 28 27 15 32 34 15 525 9	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.0% 2.0% 3.5% 2.1% 2.6% 2.8%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02] 1.20 [-27.79, 30.19] 6.30 [-42.14, 54.74] -52.37 [-7.22, -31.52] -12.31 [-57.24, 32.62] -2.60 [-38.97, 33.77] -40.42 [-71.07, -9.77]	
Subtortal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Wu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Kanar 2020 Kanar 2020 Kanar 2020 Kanar 2022 Li WQ 2019 Mao YJ 2022 Sun GL2017 Tatsumi 2022 Zhang Q 2017 Subtotal (95% CI) Heterogeneity: Tau ² =	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 30.97; Cl Z = 2.17 (288.5 340.3 312 276.4 289.5 312.2 276.35 281.56 344.7 258.48 : 211.62; (r = 5.64, c P = 0.18) 21.2 57.77 108.2 113.4 hir = 3.25, P = 0.03) 46.4 50.5 39.29 26.9 42.7 106.8 42.47 69.42 73.1 53.88 Chir = 18.3 Chir = 18.3	253 if = 8 (F 20 30 36 36 122 df = 3 4 20 30 28 20 30 28 27 15 36 34 15 26 38, df = 266	2 = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 3288.3 305.9 328.72 293.87 347.3 298.9	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85 49.69 52.7 38.2 97 45.19 55.35 58.9 75.22	247 20 28 32 36 116 20 28 28 27 15 22 34 15 25 35 259 1%	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.0% 2.0% 3.5% 2.1% 2.6% 2.8%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02] 1.20 [-27.79, 30.19] 6.30 [-42.14, 54.74] -52.37 [-7.22, -31.52] -12.31 [-57.24, 32.62] -2.60 [-38.97, 33.77] -40.42 [-71.07, -9.77]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Mu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Kanar 2020 Kanar 2020 Kanar 2020 Kanar 2020 Kattab 2019 Koushan 2022 Ju W 2019 Sun GL_2017 Tatsumi 2022 Zhang Q 2017 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect:	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 : 30.97; Cl Z = 2.17 (288.5 340.3 312 274 289.5 312.2 276.35 281.56 344.7 258.48 : 211.62; (Z = 2.63 (F = 5.64, c P = 0.18) 21.2 57.77 108.2 113.4 hi ^F = 3.25, P = 0.03) 46.4 50.5 39.29 26.9 42.7 106.8 42.47 69.42 73.1 53.88 Chi ^F = 18.3 P = 0.009	253 if = 8 (F 20 30 36 36 122 df = 3 4 20 30 30 32 20 336 122 20 336 345 15 36 345 26 35 266 38, df =) 10 10 10 10 10 10 10 10 10 10	2 = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 328.8 279.3 288.3 305.9 328.72 293.87 347.3 298.9 9 (P = 0.0	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85 49.69 52.7 38.2 97 45.19 55.35 58.9 75.22 03); ² = 5	247 20 28 32 36 116 20 28 28 27 15 32 34 5 25 259 1% 1038	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.0% 2.0% 3.5% 2.1% 2.6% 2.9% 28.9% 28.9%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -20.55 [-39.12, -1.98] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02] 1.20 [-27.79, 30.19] 6.30 [-42.14, 54.74] -52.37 [-73.22, -31.52] -12.31 [-57.24, 32.62] -2.60 [-38.97, 33.77] -40.42 [-71.07, -9.77] -17.38 [-30.33, -4.42]	
Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.4 9mon CMT Abouhussein 2020 Chen SN 2020 Li WQ 2019 Wu Q2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 3.1.5 12mon CMT Abouhussein 2020 Chen SN 2020 Chen SN 2020 Chen SN 2020 Chen SN 2020 Chan 2020 Khattab 2019 Koushan 2022 Li WQ 2019 Mao YJ 2022 Sun GL2017 Tatsumi 2022 Zhang Q 2017 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	: 0.00; Chi Z = 1.34 (278.3 361.37 327.6 336.8 30.97; Cl Z = 2.17 (288.5 340.3 312 274 289.5 312.2 276.35 281.56 344.7 258.48 : 211.62; (Z = 2.63 (F = 5.64, c P = 0.18) 21.2 57.77 108.2 113.4 hi ^F = 3.25, P = 0.03) 46.4 50.5 39.29 26.9 42.7 106.8 42.47 69.42 73.1 53.88 Chi ^F = 18.3 P = 0.009 Chi ^F = 162	253 if = 8 (F 20 30 36 36 122 df = 3 4 15 36 34 15 36 34 15 36 34 35 266 38, df =)) 1063 38, df = 38, df = 38	2 = 0.69); 312.3 378.11 336.2 323 (P = 0.35) 290.5 364.11 328.8 279.3 288.3 305.9 328.72 293.87 347.3 298.9 9 (P = 0.0	² = 0% 49.9 76.78 120.8 103.6 ; ² = 8% 49.9 35.85 49.69 52.7 38.2 97 45.19 55.35 58.9 75.22 03); ² = 5	247 20 28 32 36 116 20 28 28 27 15 32 34 5 25 259 1% 1038	25.1% 3.3% 2.6% 1.7% 1.9% 9.5% 2.9% 3.4% 3.0% 2.0% 3.5% 2.1% 2.6% 2.9% 28.9% 28.9%	-5.99 [-14.77, 2.80] -34.00 [-57.76, -10.24] -16.74 [-51.90, 18.42] -8.60 [-63.38, 46.18] 13.80 [-36.37, 63.97] -20.55 [-39.12, -1.98] -20.55 [-39.12, -1.98] -23.81 [-46.24, -1.38] -16.80 [-40.26, 6.66] -5.30 [-27.62, 17.02] 1.20 [-27.79, 30.19] 6.30 [-42.14, 54.74] -52.37 [-73.22, -31.52] -12.31 [-57.24, 32.62] -2.60 [-38.97, 33.77] -40.42 [-71.07, -9.77] -17.38 [-30.33, -4.42]	

converted into heat energy in the RPE cells, but the RPE cells start to cool during OFF period to avoid thermal damage to the RPE cells and finally prevent the laser energy from spreading to the surrounding area. The mechanism of action of subthreshold micropulse laser is not fully well understood, and it is speculated that it may be related to the promotion of RPE cell proliferation, tight junctions between RPE cells, restoration of RPE cell function, promotion of subretinal and intraretinal fluid uptake.

What's more, SML could upregulate heat shock protein 70 and pigment epithelium-derived factor, downregulation of VEGF.^[33]

Recently, scholars have used SML combined with anti-VEGF drugs for the treatment of DME, but the results are controversial. Several studies have found that SML combined with anti-VEGF drugs can reduce the number of vitreous injections of anti-VEGF drugs.^[14-22] However, some scholars believe that combination therapy cannot reduce the number of anti-VEGF drug injections,

Study or Subgroup	obersv Mean	ration gr			rol gro SD		Mojaht	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl
4.1.1 3mon TMV	Mean	30	Total	wean	30	Tutai	weight	IV, Random, 95% CI	1V, Kandoni, 95% Ci
Chen SN 2020	11.92	1.87	30	12.99	1.78	28	6.1%	-1.07 [-2.01, -0.13]	
Li WQ 2019	9.2	1.08	36		1.21	32		0.01 [-0.54, 0.56]	
Wu Q2021	9.19	1.2	36	9.17	1.3	36	9.8%	0.02 [-0.56, 0.60]	
Subtotal (95% CI)			102			96		-0.23 [-0.80, 0.33]	
Heterogeneity: Tau ² =	0.13; Chi	i ² = 4.34	df = 2	(P = 0.1)	1); I ² =	54%		• • • •	
Test for overall effect:									
4.1.2 6mon TMV									
Chen SN 2020	10.9	1.3	30	11.76	1.8	28	7.2%	-0.86 [-1.67, -0.05]	
Liu HX 2021	9.29	1.2	36	9.36	1	36	10.6%	-0.07 [-0.58, 0.44]	
Wu Q2021	9.26	1.2	36	9.35	1.69	32	8.3%	-0.09 [-0.79, 0.61]	
Subtotal (95% CI)			102			96	26.0%	-0.27 [-0.72, 0.19]	
Heterogeneity: Tau ² =	0.05; Chi	i ^z = 2.83	df = 2	(P = 0.2)	4); l² =	29%			
Test for overall effect:	Z=1.16 ((P = 0.25	5)						
4.1.3 9mon TMV									
Chen SN 2020	10.18	1.12	30	10.62	1.62	28	8.1%	-0.44 [-1.16, 0.28]	
Li WQ 2019	9.2	1.63	36	9.09	1.2	32	8.6%	0.11 [-0.57, 0.79]	
Wu Q2021	9.23	1.4	36	9.05	1.1	36	9.7%	0.18 [-0.40, 0.76]	
Subtotal (95% CI)			102			96	26.4%	-0.01 [-0.39, 0.37]	•
Heterogeneity: Tau ² =	0.00; Chi	i² = 1.90	df = 2	(P = 0.3	9); l² =	0%			
Test for overall effect:	Z=0.05 ((P = 0.98	6)						
4.1.4 12mon TMV									
Chen SN 2020	9.47	0.86	30	10.53	0.88	28	11.4%	-1.06 [-1.51, -0.61]	_ -
Li WQ 2019	9.05	1.18	36	8.92	1.1	32	10.2%	0.13 [-0.41, 0.67]	
Subtotal (95% CI)			66			60	21.7%	-0.48 [-1.64, 0.69]	
Heterogeneity: Tau ² =	0.64; Chi	i² = 10.9	9, df = 1	(P = 0.	0009);	l² = 91	%		
Test for overall effect:	Z = 0.80 ((P = 0.42	2)						
Total (95% CI)			372			348	100.0%	-0.25 [-0.55, 0.04]	◆
Heterogeneity: Tau ² =	0.15; Chi	i ^z = 25.3	5, df = 1	0 (P = 0).005);	l² = 61	%		
Test for overall effect:									-2 -1 U I Z obersvation group control group
Test for subaroup diff	oroncos.	$Chi^2 = 1$	17. df=	3 (P =	0.76) 1	F = 0%			obersvation group control group

Figure 6. Forest plot comparing TMV subgroups at different times after treatment in the observation and control groups. TMV = total macular volume.

	obersvation group		control group				Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Abouhussein 2020	4.5	1.4	20	5.4	1.7	20	9.2%	-0.90 [-1.87, 0.07]	
Huang KQ 2022	5.88	1.24	26	7.12	1.24	26	10.0%	-1.24 [-1.91, -0.57]	
Kanar 2020	3.21	0.41	28	5.39	1.54	28	10.2%	-2.18 [-2.77, -1.59]	
Koushan 2022	7.9	3.6	15	8.5	3.3	15	5.0%	-0.60 [-3.07, 1.87]	
Li WQ 2019	5.8	1.9	36	8.5	2.4	32	9.0%	-2.70 [-3.74, -1.66]	
Mao YJ 2022	5.8	1.9	34	8.5	2.4	34	9.0%	-2.70 [-3.73, -1.67]	
Sun GL2017	3.67	1.11	15	9.12	2.63	15	7.8%	-5.45 [-6.89, -4.01]	
Tatsumi 2022	4.48	1.34	26	4.3	1.36	25	9.8%	0.18 [-0.56, 0.92]	+-
Wu Q2021	1.41	0.3	36	1.93	0.3	36	10.8%	-0.52 [-0.66, -0.38]	•
Yan LJ 2019	4.13	1.11	40	6.27	2.76	38	9.3%	-2.14 [-3.08, -1.20]	
Zhang Q 2017	4.9	1.6	35	7.3	1.5	35	9.9%	-2.40 [-3.13, -1.67]	
Total (95% CI)			311			304	100.0%	-1.84 [-2.60, -1.08]	◆
Heterogeneity: Tau ² =			•	10 (P <	0.000	01); l² =	= 93%		
Test for overall effect:	Z= 4.75 ((P < 0.00	0001)						obersvation group control group

Figure 7. Forest plot comparing the number of anti-VEGF drugs injected into the vitreous cavity in the observation and control groups. VEGF = vascular endothelial growth factor.

	obersvation	•••	control g	•		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Liu HX 2021	4	44	2	44	25.2%	2.10 [0.36, 12.11]	
Mao YJ 2022	13	30	14	30	74.8%	0.87 [0.32, 2.42]	
Tatsumi 2022	8	24	5	0		Not estimable	
Total (95% CI)		98		74	100.0%	1.09 [0.45, 2.63]	+
Total events	25		21				
Heterogeneity: Tau ² =	= 0.00; Chi ² = 0						

Figure 8. Forest plot comparing complications during treatment in the observation and control groups.

Table 2								
Analysis of publication bias.								

Research content	Inclusion of literature (article)	The <i>P</i> value of Egger test
BCVA (LogMAR)		
1 mo	3	P = .19
3 mo		
6 mo	5	P = .315
12 mo	8	P = .903
BCVA (ETDRS)		
3 mo	4	<i>P</i> = .488
6 mo	4	P = .327
9 mo	3	P = .039
CMT		
1 mo	5	P = .388
3 mo	8	P = .083
6 mo	9	P = .825
9 mo	4	P = .013
12 mo	10	P = .382
TMV		
3 mo	3	P = .138
6 mo	3	P = .150
9 mo	3	<i>P</i> = .071
Number of injections	11	P = .545
Adverse reactions	3	<i>P</i> = .207

 $\mathsf{BCVA} = \mathsf{best}\text{-corrected visual acuity}, \mathsf{CMT} = \mathsf{central macular thickness}, \mathsf{TMV} = \mathsf{total macular volume}.$

but increases the financial burden of patients.^[10,23] Therefore, in this paper, we conducted this meta-analysis, aiming to compare the clinical efficacy of SML combined with anti-VEGF drugs and provide more reliable evidence for the application of SML combined with anti-VEGF drugs in the treatment of DME.

15 RCTs were included for Meta-analysis. There was not statistically significant difference between 2 groups in BCVA after treatment at 1, 3, 6, 9, and 12 months. The CMT in the observation group was lower than that in the control group at 9 and 12 months after treatment (P < .05). There was no statistically significant difference between 2 groups in TMV at 3, 6, 9, and 12 months. The number of anti-VEGF injections was lower in the observation group than that in the control group, and the difference was statistically significant (P < .05). The occurrence of complications in the 2 groups was no statistical difference between the 2 groups.

This Meta-analysis has some limitations: First, only the literature published in the journal were included, which may lead to some bias; The number of included studies is small and follow-up periods are inconsistent. The duration of diabetes mellitus patients is inconsistent. The above differences may have led to variability in the study results; The time points for observation of outcome indicators were inconsistent. The wavelength and protocol of SML in different studies were inconsistent. The above difference may lead to some bias; The types of anti-VEGF drugs are inconsistent, which may lead to differences in the results. Hence, because of the above limitations of this study, more high-quality, multicenter, large-sample randomized controlled trials are needed in the future to provide more clinical evidence for the clinical use of SML in combination with anti-VEGF drugs in the treatment of DME.

5. Conclusion

In summary, this study shows that SML combined with anti-VEGF drugs does not improve BCVA and TMV well in patients with DME, but it improves macular edema and reduces the number of injections of anti-VEGF drugs, thereby reducing the financial burden on patients. And the combination never increases the risk of ocular or systemic complications.

Author contributions

Conceptualization: Dahua Xu, Mei Chen.

- Data curation: Dahua Xu.
- Formal analysis: Dahua Xu, Ting Zhu, Lin Huang, Xiaolin Wang.
- Investigation: Dahua Xu, Ting Zhu, Xiaolin Wang, Mei Chen.
- Methodology: Dahua Xu, Ting Zhu, Lin Huang, Xiaolin Wang, Mei Chen.

Resources: Dahua Xu.

- Software: Dahua Xu, Ting Zhu, Lin Huang, Xiaolin Wang.
- Writing original draft: Dahua Xu, Ting Zhu, Mei Chen.
- Writing review & editing: Dahua Xu, Ting Zhu, Mei Chen.

References

- Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American diabetes association: national cross sectional study. BMJ. 2020;369:m997.
- [2] Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology. 2021;128:1580–91.
- [3] Varma R, Bressler NM, Doan QV, et al. Prevalence of and risk factors for diabetic macular edema in the United States. JAMA Ophthalmol. 2014;132:1334–40.
- [4] Tomita Y, Lee D, Tsubota K, et al. Updates on the current treatments for diabetic retinopathy and possibility of future oral therapy. J Clin Med. 2021;10:4666.
- [5] Kodjikian L, Bellocq D, Bandello F, et al. First-line treatment algorithm and guidelines in center-involving diabetic macular edema. Eur J Ophthalmol. 2019;29:573–84.
- [6] Porta M, Striglia E. Intravitreal anti-VEGF agents and cardiovascular risk. Intern Emerg Med. 2020;15:199–210.
- [7] Zehden JA, Mortensen XM, Reddy A, et al. Systemic and ocular adverse events with intravitreal anti-VEGF therapy used in the treatment of diabetic retinopathy: a review. Curr Diab Rep. 2022;22:525–36.
- [8] Sabal B, Teper S, Wylęgała E. Subthreshold micropulse laser for diabetic macular edema: a review. J Clin Med. 2022;12:274.
- [9] Hirabayashi K, Kakihara S, Tanaka M, et al. Investigation of the therapeutic mechanism of subthreshold micropulse laser irradiation in retina. Graefes Arch Clin Exp Ophthalmol. 2020;258:1039–47.
- [10] Tatsumi T, Takatsuna Y, Oshitari T, et al. Randomized clinical trial comparing intravitreal aflibercept combined with subthreshold laser to intravitreal aflibercept monotherapy for diabetic macular edema. Sci Rep. 2022;12:10672.
- [11] Akhlaghi M, Dehghani A, Pourmohammadi R, et al. Effects of subthreshold diode micropulse laser photocoagulation on treating patients with refractory diabetic macular edema. J Curr Ophthalmol. 2019;31:157–60.
- [12] Khattab AM, Hagras SM, AbdElhamid A, et al. Aflibercept with adjuvant micropulsed yellow laser versus aflibercept monotherapy in diabetic macular edema. Graefes Arch Clin Exp Ophthalmol. 2019;257:1373–80.
- [13] Abouhussein MA, Gomaa AR. Aflibercept plus micropulse laser versus aflibercept monotherapy for diabetic macular edema: 1-year results of a randomized clinical trial. Int Ophthalmol. 2020;40:1147–54.
- [14] Huang KQ, Liu LH, Li M, et al. Clinical effect of ranibizumab combined with 577nm micropulse laser in the treatment of severe diabetic macular edema. Int Eye Sci. 2022;22:1377–380.
- [15] Zhang Q, Duan YP, JIN ZQ. Effect of aflibercept combined with sub-threshold micropulse laser in the treatment of 30 cases with diabetic macular edema. Her Med. 2021;40:631–34.
- [16] Sun GL, Jiang J, Wang CH, et al. High-density micropulse photocoagulation combined with intravitreal injection of ranibizumab for diabetic macular edema. Rec Adv Ophthalmol. 2017;37:279–81.
- [17] Li WQ, Song YP, Ding Q. The effect of conbercept combined with 577nm subthreshold micropulse laser photocoagulation on diabetic macular edema. Chin J Ocul Fundus Dis. 2019;35:129–34.
- [18] Abouhussein MA, Gomaa AR. Aflibercept plus micropulse laser versus aflibercept monotherapy for diabetic macular edema: 1-year results of a randomized clinical trial. Int Ophthalmol. 2020;40:1147–54.
- [19] Mao YJ, Yang YY, Yin Q, et al. Clinical effect of aflibercept vitreous injection combined with 577nm micropulse in the treatment of patients with diabetic macular edema. Med Innov China. 2022;19:108–12.
- [20] Kanar HS, Arsan A, Altun A, et al. Can subthreshold micropulse yellow laser treatment change the anti-vascular endothelial growth factor

algorithm in diabetic macular edema? A randomized clinical trial. Indian J Ophthalmol. 2020;68:145-51.

- [21] Wu Q, Wang Y, Jiao J. Effect of ranibizumab injection combined and 577nm micropulse laser photocoagulation on CMT and TMV of patients with diabetic macular edema. Chin J Laser Med Surg. 2021;30:155–60.
- [22] Yan LJ, Ji A. Observation on effect of micropulse laser combined with intravitreal injection of leizhumab in treatment of diabetic macular edema. Drugs Clin Pract. 2019;4:124–26.
- [23] Koushan K, Eshtiaghi A, Fung P, et al. Treatment of diabetic macular edema with aflibercept and micropulse laser (DAM study). Clin Ophthalmol. 2022;16:1109–15.
- [24] Altinel MG, Acikalin B, Alis MG, et al. Comparison of the efficacy and safety of anti-VEGF monotherapy versus anti-VEGF therapy combined with subthreshold micropulse laser therapy for diabetic macular edema. Lasers Med Sci. 2021;36:1545–53.
- [25] Higgins JP, Altman DG, Gøtzsche PC, et al. The Cochrane collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

- [26] Chen SN, Yang PF, Chen S, et al. Comparison of single subthreshold micropulse yellow laser and combined with ranibizumab intravitreal injection for diabetic macular edema. Int Eye Sci. 2020;20:607–12.
- [27] Lliu HX. Effects of ranibizumab combined with subthreshold micropulse laser photocoagulation on patients with diabetic retinopathy. Med J Chin People's Health. 2021;33:1–3.
- [28] Noma H, Yasuda K, Shimura M. Involvement of cytokines in the pathogenesis of diabetic macular edema. Int J Mol Sci. 2021;22:3427.
- [29] Chauhan MZ, Rather PA, Samarah SM, et al. Current and novel therapeutic approaches for treatment of diabetic macular edema. Cells. 2022;11:1950.
- [30] Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic retinopathy preferred practice pattern. Ophthalmology. 2020;127:P66–P145.
- [31] Furino C, Boscia F, Reibaldi M, et al. Intravitreal therapy for diabetic macular edema: an update. J Ophthalmol. 2021;2021:6654168.
- [32] Imazeki M, Noma H, Yasuda K, et al. Anti-VEGF therapy reduces inflammation in diabetic macular edema. Ophthalmic Res. 2021;64:43–9.
- [33] Frizziero L, Calciati A, Midena G, et al. Subthreshold micropulse laser modulates retinal neuroinflammatory biomarkers in diabetic macular edema. J Clin Med. 2021;10:3134.