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Abstract

Background: Life’s Essential 8 (LE8) is a comprehensive construct of cardiovascular health. 

Yet, little is known about the LE8 score, its metabolic correlates, and their predictive implications 

among Black Americans and low-income individuals.

Methods: In a nested case-control study of coronary heart disease (CHD) among 299 pairs 

of Black and 298 pairs of White low-income Americans from the Southern Community Cohort 

Study, we estimated LE8 score and applied untargeted plasma metabolomics and elastic net with 

leave-one-out cross-validation to identify metabolite signature (MetaSig) of LE8. Associations of 

LE8 score and MetaSig with incident CHD were examined using conditional logistic regression. 

Mediation effect of MetaSig on the LE8-CHD association was also examined. The external 

validity of MetaSig was evaluated in another nested CHD case-control study among 299 pairs of 

Chinese adults.

Results: Higher LE8 score was associated with lower CHD risk [standardized OR=0.61 (95% 

CI: 0.53–0.69)]. The MetaSig, consisting of 133 metabolites, showed significant correlation 

with LE8 score (r=0.61) and inverse association with CHD [OR=0.57 (0.49–0.65)], robust to 

adjustment for LE8 score and across participants with different sociodemographic and health 
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status (ORs: 0.42–0.69; all P<0.05). MetaSig mediated a large portion of the LE8-CHD 

association: 53% (32%−80%). Significant associations of MetaSig with LE8 score and CHD risk 

were found in validation cohort [r=0.49; OR=0.57 (0.46–0.69)].

Conclusions: Higher LE8 score and its MetaSig were associated with lower CHD risk among 

low-income Black and White Americans. Metabolomics may offer an objective measure of LE8 

and its metabolic phenotype relevant to CHD prevention among diverse populations.
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Introduction

Coronary heart disease (CHD) is a leading cause of morbidity and mortality in the United 

States (US) and worldwide, with significant and persistent sociodemographic disparities1,2. 

To reduce the burden and life lost due to CHD and other cardiovascular diseases (CVD), 

the American Heart Association (AHA) has recently proposed Life’s Essential 8 (LE8) 

to assess and promote cardiovascular health (CVH) in individuals and populations3. LE8 

includes 4 health behaviors (healthy diet, participation in physical activity, avoidance of 

nicotine, and healthy sleep [a new component]) and 4 health factors (weight, blood lipids, 

glucose, and blood pressure), and has a new scoring system with continuous scale to better 

reflect inter-individual differences. While a higher LE8 score has been recently associated 

with lower CVD incidence and mortality4–7, few studies have evaluated the LE8 score and 

its association with incident CHD or CVD among Black and White Americans who have 

low socioeconomic status (SES) and face disproportionate disease burdens. In addition, 

although some potential mechanisms have been identified (eg, reduced inflammation 

and atherosclerosis)8,9, beyond those known CVD risk pathways, mechanisms and inter-

individual differences underlying the cardioprotective effects of LE8 and its included health 

behaviors and health factors are not fully understood.

Metabolite profiling (“metabolomics”) comprehensively measures small-molecule 

metabolites in biological samples and represents a powerful tool for mechanistic 

investigation, novel biomarker discovery, and precision medicine10,11. Metabolite profiling 

of blood samples may improve assessments of individuals’ alignment with LE8, particularly 

for behavioral factors that are prone to survey and recall biases. In addition, circulating 

metabolites related to LE8 may capture varied individual metabolic responses to LE8, 

providing novel mechanistic insights into its cardioprotective effects and informing precision 

medicine. While previous studies have identified metabolites related to the components 

of LE8, including diet12–16, physical activity17–19, tobacco exposure20–22, sleep23–26, and 

body mass index (BMI)27,28, to our knowledge, no study has applied untargeted plasma 

metabolomics to identify a comprehensive metabolite signature (MetaSig) for LE8 to enable 

studies with incident CHD. Given that those health behaviors and factors often correlate and 

interact with each other, investigating whether plasma metabolomics could provide a good 

objective assessment of individuals’ alignment with and metabolic responses to overall LE8 

and uncovering potential pathways linking LE8 to incident CHD is highly warranted.
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Here, leveraging a case-control study of CHD nested within the Southern Community 

Cohort Study (SCCS) involving 598 Black Americans (299 case-control pairs) and 596 

White Americans (298 pairs), we assessed LE8 score and its MetaSig and examined their 

relations with incident CHD. The results were further replicated in another nested CHD 

case-control study of racially and geographically different populations: 598 Chinese adults 

(299 pairs) from the Shanghai Women’s Health Study and Shanghai Men’s Health Studies 

(SWMHS). In addition, we identified MetaSigs for the health behaviors and health factors 

recommended in the LE8 and evaluated their associations with incident CHD.

Methods

An overview of our study design is presented in Fig. I in the Data Supplement. Detailed 

methods are available in the Data Supplement. The SCCS was approved by the Institutional 

Review Boards of the Vanderbilt University Medical Center and Meharry Medical College; 

the SWMHS was approved by the Vanderbilt University Medical Center and Shanghai 

Cancer Institute. Informed consent was obtained from all enrolled participants. The data 

and code that support the findings of the present study are available upon request and 

approval by the Data Use Committees of the Southern Community Cohort Study (https://

www.southerncommunitystudy.org/) and Shanghai Women’s Health Study & Shanghai 

Men’s Health Study (https://swhs-smhs.app.vumc.org/index.php).

Results

Baseline characteristics of study participants

The mean age at baseline (blood collection) was 55 years in our study participants (Table 

1). The mean (SD) of LE8 score was 48.1 (12.3) in Black women, 50.0 (13.6) in Black 

men, 48.1 (13.4) in White women, and 48.5 (14.4) in White men. The median follow-up 

time for incident CHD cases was 5 (interquartile range: 3–8) years in SCCS. Incident CHD 

cases had significantly lower total LE8 score, health behaviors score, and health factors 

score than controls among subpopulations by race or sex (Fig. 1, Table 1, and Table II in 

the Data Supplement; all P<0.05 except for health behaviors score among male participants). 

The characteristics of participants in SWMHS (mean age: 61 years; mean LE8 score: 57.2 

in women and 50.7 in men) are shown in Table III in the Data Supplement. There were 

moderate correlations between total LE8 score and individual component scores (r ranged 

from 0.22 with smoking to 0.47 with BMI and blood pressure scores in SCCS; Fig. II in the 

Data Supplement).

Metabolite signature of LE8

We identified 133 metabolites related to LE8 in elastic net regression model (top 30 are 

shown in Fig. 2A; the full list can be found in Table IV in the Data Supplement). We then 

constructed the MetaSig through a leave-one-out cross-validation approach. The MetaSig 

was significantly correlated with LE8 score (r = 0.61, P<0.001; Fig. 2B); meanwhile, 

variations in MetaSig were observed among individuals with the same LE8 score, 

demonstrating interindividual differences in metabolic phenotype of LE8. The MetaSig was 

then externally validated in SWMHS using the elastic net regression coefficients obtained 
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from the SCCS dataset. MetaSig was also correlated with LE8 score in SWMHS (r = 

0.49, P<0.001; Fig. 2C). Stratified analyses showed that correlations between LE8 score 

and MetaSig were consistent regardless of age, sex, race, fasting status, diabetes status, 

hypertension status, dyslipidemia status, and incident CHD status (r ranged from 0.54 to 

0.64; Table V in the Data Supplement), suggesting the robustness of our identified LE8 

metabolite signature across participants with different sociodemographic backgrounds and 

metabolic disease status.

Associations with incident CHD

Higher LE8 score and its MetaSig were significantly associated with lower risk of CHD 

in conditional logistic regression models, adjusting for age, education, income, alcohol 

intake, and family history of CHD: standardized multivariable-adjusted odds ratio (OR) 

= 0.61 (95% CI: 0.53–0.69) for LE8 score and 0.57 (0.49–0.65) for MetaSig; both 

P<0.001 (Table 2). Sensitivity analysis showed that the MetaSig-CHD associations did 

not change after excluding any individual metabolites from the signature (Table VI in the 

Data Supplement). The MetaSig-CHD association did not change after excluding two drug 

metabolites (hydrochlorothiazide and metformin) from the MetaSig [OR (95% CI) = 0.55 

(0.48–0.64); P<0.001]. Moreover, excluding 29 unknown metabolites (X-) from the MetaSig 

also did not change the MetaSig-CHD association [OR (95% CI) = 0.58 (0.50–0.66); 

P<0.001]. The scaled relative levels (Z-scores) of all 133 metabolites included in MetSig and 

their associations with incident CHD were shown in Table IV in the Data Supplement.

After further adjusting for LE8 score, the MetaSig-CHD association was only slightly 

attenuated [OR (95% CI) = 0.66 (0.55–0.78); P<0.001; Table 2], suggesting circulating 

metabolites may complement LE8 assessment and contribute to CHD risk beyond LE8 

score. On the other hand, the LE8-CHD association was moderately attenuated after 

adjusting for MetaSig [OR (95% CI) = 0.78 (0.66–0.92), P=0.003]. Mediation analysis 

showed that MetaSig mediated a large portion of the LE8-CHD association [53% (32%

−80%); Pmediation<0.001; Fig. 2D].

Both LE8 and its MetaSig were inversely associated with CHD risk in subpopulations by 

race, age group, education, income, diabetes status, hypertension status, and dyslipidemia 

status (Pinteraction>0.05; Fig. 3), with stronger associations observed in women than in 

men [for LE8, OR (95% CI) = 0.53 (0.42–0.66) in women and 0.66 (0.55–0.80) in men, 

Pinteraction=0.017; for MetaSig, 0.48 (0.38–0.6) in women and 0.65 (0.54–0.78) in men, 

Pinteraction=0.016].

The association of MetaSig with incident CHD was replicated in SWMHS (Table 2), with 

OR (95% CI) = 0.57 (0.46–0.69) and 0.69 (0.55–0.86) after further adjusting for LE8 

score (both P<0.001). The MetaSig also mediated a considerable portion of the LE8-CHD 

association in SWMHS [27.4% (10%−47%); Pmediation<0.001; Fig. 2E].

Metabolite signatures of health behaviors and health factors and associations with CHD

We further identified MetaSigs for health behaviors (Fig. IIIA in the Data Supplement) 

and health factors in SCCS (Fig. IVA in the Data Supplement; full lists of metabolites 

and their relative levels and associations with incident CHD are shown in Table IV in 
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the Data Supplement), which showed significant correlations with health behaviors score 

(r = 0.59, P<0.001; Fig. IIIB in the Data Supplement) and with health factors score (r = 

0.76, P<0.001; Fig. IVB in the Data Supplement). Significant correlations were also found 

among participant subgroups (Table V in the Data Supplement), suggesting the robustness 

of identified metabolite signatures for health behaviors and health factors. In addition, there 

were significant inverse associations of health behaviors score, health factors score, and their 

related signatures with risk of CHD (all P<0.001; Table 2). Specifically, standardized OR 

(95% CI) was 0.73 (0.63–0.85) for health behaviors MetaSig and 0.57 (0.49–0.66) for health 

factors MetaSig. Similarly, metabolites mediated large portions of the health behaviors-CHD 

association [43.9% (13.9%−101%), P=0.004; Fig. IIID in the Data Supplement] and health 

factors-CHD association [53.2% (24.8%−89%), Pmediation<0.001; Fig. IVD in the Data 

Supplement]. Further, all results on health behaviors MetaSig and health factors MetaSig 

were replicated in SWMHS (Table 2, Fig. III and Fig. IV in the Data Supplement).

Discussion

Leveraging untargeted plasma metabolites data in a nested case-control study among 

low-income Black and White Americans, we identified a metabolite signature that could 

reflect LE8 score and was associated with incident CHD, even after adjusting for LE8 and 

among participants with varied sociodemographic and metabolic health status, suggesting 

that circulating metabolite profiling may be used to help assess LE8 alignment across 

diverse populations and offer additional information on CVH (eg, inter-individual metabolic 

phenotypes related to LE8). We also identified MetaSigs for health behaviors and health 

factors and found consistent results showing that circulating metabolites could reflect 

the alignment with those recommendations and underlying metabolic phenotypes, which 

were further linked to incident CHD across diverse populations. All the results were 

further replicated in another nested case-control study of CHD among Chinese adults. 

Our findings demonstrate the potential utility of blood metabolomics to improve the 

assessment of LE8 and its underlying metabolic variations that are linked to incident CHD 

among sociodemographically diverse populations, towards advancing precision medicine 

and addressing disparities in CVH.

LE8 is the American Heart Association’s updated and enhanced guideline to measure and 

promote CVH for individuals and populations3. The beneficial associations of following the 

LE8 with lower risks of CHD, CVD, and related mortality have been demonstrated in recent 

studies4–7. However, multi-racial/ethnic populations with low SES remain underrepresented 

in research studies, even though they have persistently experienced worse CVH and CVD 

outcomes, as well as systemic disadvantages to improve CVH, than White and middle-

class Americans2,29–31. Leveraging resources from SCCS, a large cohort of predominantly 

low-income Black and White Americans (in the present study: ~65% with household 

income <$15,000/y and ~95% with household income <$25,000/y), our study assessed 

CVH based on LE8 and evaluated the association of LE8 score with incident CHD. 

We found that a higher LE8 score (per SD increase) was associated with ~40–50% 

lower risk of CHD among Black Americans and individuals with low SES. While LE8 

provides a comprehensive approach to quantify CVH, its assessment involves a series 

of procedures such as questionnaires, anthropometric and blood pressure measures, and 
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blood draw. Particularly, health behaviors (diet, physical activity, smoking, and sleep) are 

usually assessed by questionnaires, which are time-consuming and prone to measurement 

errors and low compliance (particularly in the clinical setting). Also, the LE8 score cannot 

capture varied individual metabolic responses to lifestyle exposures. Hence, we incorporated 

untargeted plasma metabolomics data and for the first time, identified a robust metabolite 

signature of LE8 and then examined its association with incident CHD.

Metabolomics has been demonstrated as a powerful tool for improving exposure assessment 

and identifying potential novel biomarkers and mechanistic pathways in population studies, 

given its high-throughput characterization of thousands of metabolites in a small amount 

of biological samples32. Our study provides new evidence that plasma metabolite profiling 

may provide objective and comprehensive measures of LE8 and CVH among racially and 

geographically diverse populations. The identified metabolite signature may complement 

LE8 scores, improve the precision to stratify individuals with different future CHD risks, 

and potentially facilitate personalized CHD prevention strategies.

Our identified MetaSig consists of metabolites reflecting participants’ alignment with LE8 

health behaviors and metabolic health status, majority of which are lipids and amino acids, 

and many of them have been linked to diet12–16, physical activity17–19, smoking20–22, 

sleep23–26, obesity27,28,33, or composite lifestyles scores34–37 in previous studies. For 

example, (2,4 or 2,5)-dimethylphenol sulfate, tartronate, and ethyl beta-glucopyranoside 

are derived from plant-based foods; cotinine is the major metabolite of nicotine from 

tobacco smoking; cholesterol, sphingomyelin, cortisol, and 1-palmitoleoylglycerolare are 

related to blood lipids; mannose, metformin, and fructosyllysine are related to prevalent 

diabetes and blood glucose. Particularly, drug metabolites, including hydrochlorothiazide 

and metformin, reflect antihypertensive and antidiabetic medications defined in LE8. 

Nevertheless, the associations of MetaSig with LE8 score and incident CHD were 

consistent among participants with or without history of hypertension or diabetes or 

after excluding those drug metabolites from the MetaSig. Notably, the MetaSig also 

contains microbial metabolites, eg, maltotetraose, anthranilate, indolebutyrate, and bile 

acids (taurohyocholate, glycodeoxycholate 3-sulfate, 3b-hydroxy-5-cholenoic acid, and 

glycohyocholate), suggesting the role of gut microbiome in host’s CVH, which cannot 

be captured by questionnaires or measurements of glucose, cholesterol, or blood pressure. 

Moreover, several metabolic pathways related to CVH and CVD development were 

highlighted. For example, anthranilate, indolebutyrate, picolinate, and serotonin are 

members of tryptophan metabolism pathway38–40; taurohyocholate, glycodeoxycholate 3-

sulfate, 3b-hydroxy-5-cholenoic acid, and glycohyocholate belong to secondary bile acid 

metabolism pathway41,42; alpha-tocopherol, delta-tocopherol, and gamma-tocopherol/beta-

tocopherol are vitamin E derivatives through tocopherol metabolism pathway43,44.

Importantly, the MetaSig was related to future CHD risk regardless of participants’ 

age, sex, race, SES, metabolic disease history, and even after adjustment for LE8. 

Further analyses indicated that circulating metabolites could play a substantial mediating 

role linking LE8 and reduced CHD risk. Moreover, our findings were replicated in a 

racially and geographically different population, suggesting external validity and potential 

generalizability of our findings. Taken together, our findings demonstrated that circulating 
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metabolites could complement LE8 to improve the precision of CVH assessment and predict 

CHD risk among sociodemographically and geographically diverse populations.

To our knowledge, this is the first study that assessed the LE8 score, constructed its 

metabolite signature, and associated LE8 score and its MetaSig with incident CHD in 

Black and White Americans with low SES. Besides its novelty and inclusion of populations 

facing socioeconomic challenges and health disparities, other strengths of our study include 

its prospective design, comprehensive profiling of >1500 blood metabolites for a broad 

coverage and improved ability to construct metabolite signature for LE8, and robustness of 

results across populations with different sociodemographic and health status. Meanwhile, 

several limitations of our current study need to be acknowledged. First, as MetaSig of 

LE8 was identified using cross-sectional data from baseline blood samples, we cannot be 

certain as to the directionality of LE8-MetaSig association, and mediation analysis assumed 

that LE8 score preceded MetaSig. Although several population- or animal-based studies 

have shown the causal effects of LE8 components on blood metabolites21,26,45–48, given 

that blood metabolites might precede some LE8 components, the longitudinal association 

between LE8 adherence and circulating metabolites should be investigated. Second, given 

the observational nature of our study, the causality is unable to be confirmed. However, 

the prospective design reduces the concern of reverse causation for the LE8/MetaSig-CHD 

association. Third, we cannot rule out the influence of residual confounding on the LE8/

MetaSig-CHD association, although we have adjusted for and stratified by major CHD risk 

factors. Fourth, the concentrations of fasting glucose and HbA1c and SBP and DBP were 

not measured in SSCS; thus, glucose score and blood pressure score were defined based 

on history of diabetes or hypertension, use of medications, and relative levels of glucose 

measured in metabolites profiling, which may influence the accuracy of LE8 score. Also, 

Fig. 2B–C and residual plot suggested some bias of MetaSig at the extreme levels of LE8, 

i.e., potential overestimation at low LE8 while underestimation at high LE8, which seems to 

be a common problem of metabolite/biomarker signatures. Finally, the nested case-control 

design may overestimate the predictive ability of the LE8 score and its MetaSig. Therefore, 

our results should be further validated in other prospective cohort studies.

In summary, our study assessed the LE8 score and identified MetaSig of LE8 among 

low-income Black and White Americans. We found that both LE8 score and its MetaSig 

were inversely associated with risk of CHD, consistently among participants with varied 

sociodemographic and metabolic health status. Our identified metabolite signature may 

provide an objective and comprehensive measure of LE8 and its metabolic underpinning, 

which may help improve the precision of CVH assessment and facilitate more effective 

and personalized CHD prevention strategies in diverse populations. Further examination of 

our identified metabolites may improve understanding of biological mechanisms as to how 

following LE8 benefits CHD prevention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Deng et al. Page 7

Circ Genom Precis Med. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments:

The authors thank the study participants of the SCCS and the SWMHS.

Sources of Funding:

The Southern Community Cohort Study is funded by U01 CA202979, the Shanghai Women’s Health Study is 
funded by UM1 CA182910, and the Shanghai Men’s Health Study is funded by UM1 CA173640 from the National 
Cancer Institute (NCI) at the National Institutes of Health (NIH). Biospecimens of these three cohort studies are 
managed by the Survey and Biospecimen Shared Resource, which is supported in part by the Vanderbilt-Ingram 
Cancer Center (P30 CA68485). This study is supported by R01 HL149779 from the National Heart, Lung, and 
Blood Institute (NHLBI) at the NIH. The content is solely the responsibility of the authors and does not necessarily 
represent the official views of the National Institutes of Health.

Nonstandard Abbreviations and Acronyms

BMI body mass index

CHD coronary heart disease

CI confidence interval

CMS Centers for Medicare & Medicaid Services

CVD cardiovascular disease

CVH cardiovascular health

DASH Dietary Approaches to Stop Hypertension

FFQ food frequency questionnaire

LE8 Life’s Essential 8

MetaSig metabolite signature

MS mass spectrometry

NMR nuclear magnetic resonance

OR odds ratio

QC quality control

SCCS Southern Community Cohort Study

SD standard deviation

SES socioeconomic status

SWMHS Shanghai Women’s and Men’s Health Studies

VIF variance inflation factor
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Figure 1. 
The Life’s Essential 8 score among incident coronary heart disease cases and matched 

controls by race and sex in the Southern Community Cohort Study. (A) The LE8 score 

among CHD cases and controls in Black participants. (B) The LE8 score among CHD cases 

and controls in White participants. (C) The LE8 score among CHD cases and controls in 

male participants. (D) The LE8 score among CHD cases and controls in female participants. 

LE8, Life’s Essential 8; CHD, coronary heart disease. P value was calculated by the 

Wilcoxon signed-rank test.

Deng et al. Page 14

Circ Genom Precis Med. Author manuscript; available in PMC 2024 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The metabolite signature of Life’s Essential 8 and its association with risk of coronary heart 

disease. (A) Top 30 metabolites selected by elastic net regression in SCCS. Metabolites were 

ranked by the absolute value of regression coefficients. (B) Spearman correlation between 

MetaSig and LE8 score in the SCCS. The dashed line denotes median LE8 score. (C) 
Spearman correlation between MetaSig and LE8 score in the SWMHS. (D) The mediation 

effect of MetaSig on the association between LE8 score and risk of CHD in the SCCS. (E) 
The mediation effect of MetaSig on the association between LE8 score and risk of CHD 

in the SWMHS. SCCS, Southern Community Cohort Study; SWMHS, Shanghai Women’s 
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and Men’s Health Studies; LE8, Life’s Essential 8; MetaSig, metabolite signature; ACME, 

average causal mediation effects; ADE, average direct effects; CHD, coronary heart disease.
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Figure 3. 
Subgroup analyses for the associations of LE8 score and its metabolite signature with risk 

of coronary heart disease in the Southern Community Cohort Study. (A) Subgroup analysis 

for the association between LE8 score and risk of CHD. (B) Subgroup analysis for the 

association between MetaSig and risk of CHD. Conditional logistic regression models were 

used, adjusted for potential confounders. For income, lower income denotes low income, 

and higher income denotes middle and high income. MetaSig, metabolite signature; CHD, 

coronary heart disease; LE8, Life’s Essential 8; OR, odds ratio; CI, confidence interval.
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Table 1.

Characteristics of study participants in the Southern Community Cohort Study

Black participants (N=598) White participants (N=596)

CHD (N=299) Control (N=299) CHD (N=298) Control (N=298)

Age, years 54.9 (8.8) 54.7 (8.7) 55.2 (8.7) 55.1 (8.6)

Male, n (%) 149 (49.8) 149 (49.8) 148 (49.7) 148 (49.7)

Education, n (%)

 Less than high school 120 (40.1) 109 (36.5) 108 (36.2) 84 (28.2)

 Completed high school 107 (35.8) 108 (36.1) 118 (39.6) 118 (39.6)

 Vocational school or some college 57 (19.1) 60 (20.1) 52 (17.4) 54 (18.1)

 College or graduate school 15 (5.0) 22 (7.4) 20 (6.7) 42 (14.1)

Income, n (%)*

 Low 194 (64.9) 185 (61.9) 196 (65.8) 167 (56.0)

 Middle 100 (33.4) 104 (34.8) 92 (30.9) 111 (37.2)

 High 5 (1.7) 10 (3.3) 10 (3.4) 20 (6.7)

Alcohol intake, n (%)†

 None 154 (51.5) 140 (46.8) 175 (58.7) 140 (47.0)

 Moderate 94 (31.4) 107 (35.8) 98 (32.9) 129 (43.3)

 Heavy 51 (17.1) 52 (17.4) 25 (8.4) 29 (9.7)

Family history of CHD, n (%) 107 (35.8) 89 (29.8) 168 (56.4) 142 (47.7)

History of diabetes, n (%) 116 (38.8) 56 (18.7) 96 (32.2) 40 (13.4)

History of dyslipidemia, n (%) 102 (34.1) 91 (30.4) 155 (52.0) 108 (36.2)

History of hypertension, n (%) 210 (70.2) 179 (59.9) 177 (59.4) 133 (44.6)

Life’s Essential 8 score 45.9 (11.9) 52.2 (13.2) 45.0 (13.5) 51.5 (13.5)

Life’s Essential 8 score category, n (%)‡

 High (80–100) 0 (0) 7 (2.3) 3 (1.0) 10 (3.4)

 Moderate (50–79) 114 (38.1) 174 (58.2) 100 (33.6) 148 (49.7)

 Low (0–49) 185 (61.9) 118 (39.5) 195 (65.4) 140 (47.0)

Health behaviors score 43.8 (18.4) 47.4 (20.5) 42.0 (19.2) 46.3 (21.0)

Health factors score 47.2 (20.4) 56.7 (21.3) 48.0 (20.7) 56.2 (20.1)

Diet score 39.8 (32.2) 41.6 (30.6) 36.9 (30.3) 40.8 (32.3)

Physical activity score 22.8 (39.8) 24.2 (40.5) 19.9 (38.8) 21.3 (39.1)

Smoking score 43.0 (42.2) 47.8 (42.5) 40.0 (40.3) 46.5 (42.0)

Sleep score 72.3 (29.2) 77.1 (26.6) 71.2 (29.7) 78.1 (26.6)

Body mass index score 50.0 (34.5) 56.9 (35.3) 50.4 (34.1) 57.7 (34.2)

Blood lipids score 36.8 (32.8) 44.6 (31.8) 25.8 (28.7) 27.9 (27.6)

Blood glucose score 54.3 (34.3) 69.6 (30.0) 60.9 (34.0) 73.3 (26.7)

Blood pressure score 47.7 (35.1) 55.8 (37.3) 54.9 (38.3) 65.9 (38.9)

Data were mean (standard deviation) or n (%) as indicated.

*
Annual household income <$15,000, $15,000 to <$25,000, and ≥$25,000 for low, middle, and high levels of income, respectively.

Circ Genom Precis Med. Author manuscript; available in PMC 2024 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Deng et al. Page 19

†
Alcohol intake was grouped as none, moderate (>0 to ≤2 drinks per day in men or >0 to ≤1 drink per day in women; 1 drink = 14 g ethanol), and 

heavy drinking (>2 drinks per day in men or >1 drink per day in women).

‡
The cutoffs were provided by the American Heart Association3.
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Table 2.

The associations of Life’s Essential 8 score, health behaviors score, health factors score, and their related 

metabolite signatures with risk of CHD*

OR (95% CI) P

SCCS

Life’s Essential 8 LE8 score 0.61 (0.53–0.69) < 0.001

LE8 MetaSig 0.57 (0.49–0.65) < 0.001

LE8 MetaSig (adjusting for LE8 score) 0.66 (0.55–0.78) < 0.001

Health behaviors Health behaviors score 0.77 (0.67–0.88) < 0.001

Health behaviors MetaSig 0.73 (0.63–0.85) < 0.001

Health behaviors MetaSig (adjusting for health behaviors score) 0.79 (0.67–0.94) 0.007

Health factors Health factors score 0.61 (0.53–0.7) < 0.001

Health factors MetaSig 0.57 (0.49–0.66) < 0.001

Health factors MetaSig (adjusting for health factors score) 0.68 (0.55–0.84) < 0.001

SWMHS

Life’s Essential 8 LE8 score 0.52 (0.42–0.65) < 0.001

LE8 MetaSig 0.57 (0.46–0.69) < 0.001

LE8 MetaSig (adjusting for LE8 score) 0.69 (0.55–0.86) < 0.001

Health behaviors Health behaviors score 0.73 (0.59–0.9) 0.003

Health behaviors MetaSig 0.69 (0.55–0.87) 0.001

Health behaviors MetaSig (adjusting for health behaviors score) 0.77 (0.59–0.99) 0.043

Health factors Health factors score 0.5 (0.4–0.62) < 0.001

Health factors MetaSig 0.57 (0.47–0.7) < 0.001

Health factors MetaSig (adjusting for health factors score) 0.80 (0.62–1.04) 0.093

*
For associations of LE8 score and its related metabolite signature with risk of CHD, we used the conditional logistic regression, adjusted for 

age, education, income, alcohol intake, family history of CHD. For associations of health behaviors score and health factors score and their related 
metabolite signatures with risk of CHD, we used the conditional logistic regression, adjusted for age, education, income, alcohol intake, family 
history of CHD, and mutual adjustments of health factors score/health behaviors score. SCCS, Southern Community Cohort Study; SWMHS, 
Shanghai Women’s and Men’s Health Studies; CHD, coronary heart disease; LE8, Life’s Essential 8; MetaSig, metabolite signature; OR, odds 
ratio; CI, confidence interval.
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