
Associations between executive functions assessed in different 
contexts in a genetically informative sample

Samantha M. Freis1,2, Jordan D. Alexander3, Jacob E. Anderson3, Robin P. Corley1,2, 
Alejandro I. De La Vega4, Daniel E. Gustavson1, Scott I. Vrieze1,3, Naomi P. Friedman1,2,
University of Colorado Boulder
1Institute for Behavioral Genetics, University of Colorado Boulder

2Department of Psychology and Neuroscience, University of Colorado Boulder

3Department of Psychology, University of Minnesota

4Department of Psychology, The University of Texas at Austin

Abstract

Executive functions (EFs) are cognitive functions that help direct goal-related behavior. EFs are 

usually measured via behavioral tasks assessed in highly controlled laboratory settings under 

the supervision of a research assistant. Online versions of EF tasks are an increasingly popular 

alternative to in-lab testing. However, researchers do not have the same control over the testing 

environment during online EF assessments. To assess the extent to which EFs assessed in-lab 

and online are related, we used data from the Colorado Online Twin Study (CoTwins; 887 

individual twins aged 13.98–19.05) and constructed an Lab Common EF factor and an Online 

Common EF factor from four EF tasks assessed in-lab and online. The In-lab Common and 

Online Common EF factors were genetically identical (rA = 1.00) but phenotypically separable 

(r = .77, 95% CI [.59, .94]) indicating that these EF factors have the same genetic underpinnings 

but may be differentially influenced by environmental factors. We examined phenotypic, genetic, 

and environmental correlations between the EF factors and a general cognitive ability factor (g) 

assessed in the lab and found similar relationships between In-lab Common EF and g and Online 

Common EF and g. Overall, these results suggest that Common EF factors assessed in different 

contexts are highly related to each other and similarly related to other cognitive outcomes. These 

findings indicate that online task-based EF assessments could be a viable strategy for increasing 

sample sizes in large-scale studies, particularly genetically informed studies.
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Executive functions (EFs) are cognitive functions that help individuals control their thoughts 

and actions during goal-directed behavior (Friedman & Miyake, 2017). EFs relate to 

numerous important psychological and behavioral outcomes across the lifespan, including 

other cognitive functions, academic performance, and mental health (Diamond, 2013; Freis, 

et al., 2022; Friedman et al., 2020; Malanchini et al., 2019). They are typically assessed with 

behavioral tasks administered in carefully controlled laboratory settings, which are relatively 

time-consuming to collect, limiting sample sizes. Not surprisingly, online EF tasks have 

become increasingly popular (e.g., Enkavi et al., 2019, Bycroft et al., 2018), dramatically 

expanding the availability of EF task data. However, in-lab and online EF tasks can differ 

substantially, most notably because participants may complete online tasks in a wide range 

of contexts over which the experimenter has little control. Thus, it is unclear how closely 

they are related, although researchers using online EF tasks may often assume they tap the 

same variance as in-lab tasks. Although correlations between in-lab and online EF tasks 

have been reported in small clinical samples (Moore et al., 2020; Shvetz et al., 2021), 

such correlations can be attenuated by unreliability and task impurity, meaning that they 

do not permit clear tests of whether online tasks may assess different variance. Using data 

from a large twin sample (N = 887), we examined relationships between in-lab and online 

tasks at the level of latent variables (“Common EF” factors), which reduce the influence of 

measurement error and task impurity (Friedman & Miyake, 2017). Moreover, because the 

sample is genetically informative, we have the unique ability to evaluate the hypothesis that 

in-lab and online EF tap similar genetic variance but differ in environmental influences.

Technological Advances in EF Assessments

EFs are complex cognitive functions that are related to numerous psychological and 

behavioral outcomes, ranging from other cognitive functions and academic achievement to 

behavioral problems and psychopathology across the lifespan (Friedman & Miyake, 2017). 

Therefore, studying EFs is of interest to multiple areas of psychology, and making EF 

assessments more accessible and easier to administer could advance our understanding of 

numerous psychological outcomes. Assessing EFs remotely with online tasks continues to 

grow in popularity, as technological advances can increase speed, efficiency, and sample 

sizes in data collection (Ahmed et al., 2022; Miller & Barr, 2017). For example, EF tasks 

are frequently used as part of neuropsychological testing in clinical settings, and some 

researchers have emphasized the promise of remote EF and cognitive assessments (Bilder 

& Reise, 2019; Lavigne et al., 2022; Miller & Barr, 2017). Additionally, the COVID-19 

pandemic has emphasized the importance of remote psychological assessments and tasks. 

Remote EF tasks could be useful not only in clinical settings but also in large cohort studies 

or psychological studies more broadly. Finally, the speed and ease of assessment of online 

testing could provide researchers with the opportunity to collect multiple EF assesments 

instead of relying on individual tasks.

Though some traditional EF tasks adapted to be administered online replicate expected 

effects (like the Stroop effect) and display similar reliability to their in-lab counterparts 

(Crump et al., 2013), it remains unclear if EFs assessed remotely via online tasks and EFs 

assessed in-lab are strongly correlated. Though research has shown that performance on 

online general cognitive ability tasks are related to performance on in-lab tasks (Malanchini 
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et al., 2021), research specific to relationships between EF tasks assessed in different 

contexts is limited. There are several methods of collecting EF task data remotely. Some 

researchers have argued that remote assessment of EFs using traditional tasks administered 

by a research assistant via video conferencing are useful and valid (Ahmed et al., 2022). 

This supervised method may be particularly useful for younger samples (Ahmed et al., 

2022). However, computerized unsupervised remote EF assessments are less labor intensive 

to collect. In two small samples, researchers reported moderate correlations between 

traditional in-lab EF tasks and EF tasks administered online and unsupervised at home 

in their clinical and control groups (Moore et al., 2020; Shvetz et al., 2021). However, due to 

their unreliability and task impurity, relying exclusively on relationships between individual 

EF tasks does not allow clear tests of whether tasks assessed in different contexts may 

measure different abilities.

Latent Variable Models of EFs

Many studies of EFs have exclusively used single EF tasks, which can be problematic for 

the interpretation of individual differences (Miyake et al., 2000). Theory-driven methods 

like confirmatory factor analysis extract commonalities across different EF tasks, such as 

latent variables of response inhibition, updating working memory, and shifting between 

task sets (Miyake et al., 2000). One well replicated framework of EFs that uses latent 

variable modeling is the unity/diversity framework (Friedman & Miyake, 2017). This 

framework decomposes variance in EF tasks into a Common EF factor that influences 

performance on all tasks, and orthogonal specific factors (Updating-Specific and Shifting-

Specific) that additionally influence performance on updating and shifting tasks. We use 

this framework in the current study to focus on the similarity of the Common EF factor 

across assessment contexts. This factor, which is proposed to capture individual differences 

in goal construction and maintenance and the use of those goals to bias ongoing processing 

(Friedman & Miyake, 2017), is the EF factor that is generally most closely related to 

self-regulation and behavior problems (Friedman & Miyake, 2017).

Latent variables are unmeasured variables that are estimated by extracting shared variance 

between measured variables that are theoretically influenced by an underlying construct 

(Kline, 2016). Latent variable modeling is advantageous when studying EFs due to the 

task impurity problem: EFs involve controlling other cognitive processes, so EF tasks 

must include non-executive processes that may influence individual differences in task 

performance (Friedman & Miyake, 2017; Miyake et al., 2000). For example, the classic 

color/word Stroop task requires controlling prepotent responses (word reading) but also 

requires visually processing colors and vocally or manually responding, so individual 

differences in these other processes may contribute to variance in performance in addition 

to the control processes of interest. The task impurity problem, along with low reliability, 

contributes to low correlations between individual EF tasks (Miyake et al., 2000). Since 

latent variable modeling extracts shared variance across measures, when those measures 

vary in non-executive processes, the shared variance excludes these measure-specific factors 

as well as random measurement error (Miyake et al., 2000). Thus, if latent variables for 

in-lab and online EF factors assess the same ability, like Common EF, we would expect 

them to correlate highly (i.e., not significantly lower than 1.0), even if correlations between 
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individual EF tasks assessed in different contexts are lower than unity. To our knowledge, no 

study has examined latent variable models of EFs assessed both in-lab and online to examine 

how related they are after eliminating measure-specific factors and random measurement 

error.

Using Twin Data to Inform Etiological Differences between EFs Assessed in 

Different Contexts

As reviewed in previous sections, it is unclear the extent to which EFs assessed in different 

contexts are related, and there are several possible reasons why EFs assessed in different 

contexts may not be perfectly correlated. Twin and family studies provide the unique 

opportunity to examine genetic and environmental influences on an outcome of interest 

and to examine why two outcomes are related: i.e, through genetic and environmental 

correlations (Rijsdijk & Sham, 2002). Twin studies decompose the phenotypic variance 

in an outcome into variation attributable to additive genetic (also known as heritability), 

shared environmental (environmental factors that make siblings more alike), and nonshared 

environmental (environmental factors unique to each sibling) influences. Notably, estimates 

of genetic and environmental influences from twin models represent proportions of variance 
accounted for by genetic and environmental differences in a population rather than specific 

genes or environmental factors. Therefore, these estimates are specific to the population 

being studied at a particular age, at a particular time, and under particular environmental 

circumstances.

Heritability estimates can change over time. For example, the heritability of height increased 

across Finnish birth cohorts born in the first half of the 20th century (Silventoinen et al., 

2000). It would be improbable that the specific genes influencing height changed in this 

short period of time, so the increased proportion of variance in height explained by genes 

is likely due to environmental changes like improvements in nutrition and the standard of 

living. While that example covers a range of generations, similar changes can be seen within 

one generation across time: The same trait measured in the same sample at different points 

in development can display different patterns of genetic and environmental influence. For 

example, Common EF is developmentally stable, and in one twin study, that stability was 

due almost entirely to high genetic correlations across late adolescence and early adulthood 

(Friedman et al., 2016). However, Common EF factors at ages 17 and 23 were not perfectly 

phenotypically correlated, and this change in Common EF was explained by small but 

significant nonshared environmental influences that were unique to age 23. Finally, two 

traits, like depression and anxiety, can be perfectly genetically correlated but be influenced 

by different environmental factors (Kendler, 1996). Overall, these examples demonstrate 

the utility of using twin studies to examine relationships between the same or different 

traits at multiple levels of analysis. However, no genetically informed study has examined 

latent variables of EFs assessed both in-lab and online. Here we review several possible 

explanations for correlations less than unity between EFs assessed in different contexts and 

how the twin method would inform the etiology of those differences.
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First, EF tasks assessed in different contexts could show low to moderate correlations 

due to minor measurement differences and random noise. If that is the case, latent 

variables of those EF factors should be perfectly correlated for both genetic and nonshared 

environmental influences, as latent variables eliminate random measurement error.

Second, EF factors derived from tasks assessed in different contexts could be separable 

because of differential influence from environmental factors. For example, lab-based EF 

tasks are typically administered in highly controlled settings under the supervision of 

research staff. Therefore, EF tasks assessed in the lab may assess performance under 

optimal conditions with minimal environmental variation (Friedman & Gustavson, 2022; 

Toplak et al., 2013; Wennerhold & Friese, 2020). Somewhat consistent with the low 

environmental variation hypothesis, genetic models of latent variables of EFs (measured in 

the lab) typically show low estimates of environmental influence at multiple developmental 

stages (Engelhardt et al., 2015; Friedman et al., 2016; Friedman & Miyake, 2017). This 

feature may limit the generalizability of in-lab EF performance to settings in the real 

world, where control is required in the face of distraction (for example, remembering 

to stop at the grocery store on the way home from work). Meanwhile, online EF tasks 

could measure performance in more distracting and diverse settings, as researchers do not 

control the environment in which the participants complete them. If EF tasks administered 

online are substantially influenced by home environmental differences, one would expect 

to observe higher estimates of environmental variance and lower estimates of genetic 

variance for EF assessed online, nonshared environmental influences to be uncorrelated, and 

phenotypic correlations between EFs assessed in different contexts less than unity. However, 

if environmental influences primarily explain the lack of unity, we would still expect the 

genetic variance for online EF tasks to correlate with the genetic variance for in-lab EF 

tasks. That is, the same genetic influences might affect in-lab and online EFs, but they do not 

correlate perfectly phenotypically because online EF has environmental influences that are 

uncorrelated with the environmental influences for in-lab EF.

Finally, there may be fundamental differences beyond environmental variation between 

EF assessed in the lab and EF in action in a more real-world setting. This possibility, 

along with other issues like ratings being influenced by social desirability bias and poor 

insight into one’s own control abilities, has been raised as one potential explanation for the 

low correlations observed between task-based and ratings-based EF, cognitive control, and 

self-regulation assessments (see Friedman & Gustavson, 2022, for more discussion). Though 

we are focusing only on task-based measures here, this hypothesis is still relevant. If there is 

something fundamentally different about how people execute EF in the lab versus real-world 

settings, and these tasks are picking up on those differences, one would expect to observe 

divergent genetic correlations, nonshared environmental influences to be uncorrelated, and 

phenotypic correlations between EFs assessed in different contexts to be less than unity.

If online and in-lab EF factors are separable, a natural question is whether one is more valid 

than the other. One way to address this question is with a measure that can indicate criterion 

validity. Latent variables of EFs assessed in-lab demonstrate a range of relationships with 

other cognitive functions, like general cognitive ability (g) or intelligence (IQ). In adulthood, 

EFs are phenotypically correlated with, but distinct from, g or IQ, and these correlations 
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vary between EF factors (Blair, 2006; Friedman et al., 2006; Gustavson et al., 2022; Kane 

& Engle, 2002). Genetically informed studies have identified different patterns of genetic 

and environmental influence on EFs and g or IQ (Engelhardt et al., 2015; Freis et al., 

2022; Friedman et al., 2016; Gustavson et al., 2022; Haworth et al., 2010; Tucker-Drob 

et al., 2013). This consistent pattern of commonality but separability between EFs and g 
makes g a useful criterion variable in methodological studies of EFs. Therefore, to the extent 

that online and in-lab EF factors differ, it will be important to compare both factors with 

measures of g or IQ, as this may shed light on the (potentially) different sets of individual 

differences captured by both sets of measures.

Present Study

Here, we analyze data (N = 887 individual twins) from the Colorado Online Twin Study 

(CoTwins) to address these issues. CoTwins is an adolescent twin study primarily focused on 

answering research questions related to substance use, mental-health, cognition, personality, 

and behavior by using traditional in-lab assessments followed by remote psychological 

assessments in an intensive longitudinal design. The CoTwins study protocol began with 

participants coming into the lab for a baseline appointment to complete several tasks and 

surveys. During the appointment, participants also provided their emails and signed up 

for the CoTwins App so we could deploy follow up remote online tasks and surveys 

longitudinally.

The present study took advantage of our unique adolescent twin sample with both in-lab and 

online remote EF assessments to examine three main questions: 1) How correlated are latent 

variables derived from in-lab and online EF tasks? 2) If latent variables derived from in-lab 

and online EF tasks are not perfectly correlated, is their separability due to different genetic 

and/or environmental influences? and 3) If we find that EFs assessed in different contexts 

are separable, are they also differentially related to a criterion variable, g?

Method

Sample

Data were obtained as part of the CoTwins study, which is a joint project led by investigators 

at the University of Colorado Boulder and the University of Minnesota. Participants were 

identified from birth records provided by the Colorado Department of Health and Human 

Services as part of the Colorado Twin Registry (Rhea et al., 2012). CoTwins included 

887 adolescent twins recruited while they were in high school in the state of Colorado 

(ages 13.98–19.05, M age 16.28, SD = 1.22, 478 female, 409 male, and 0 other, as 

indicated by the multiple-choice self-report question “I identify my sex as...”). 63.02% had 

at least one parent with a bachelor’s degree or higher and 48.82% had an annual household 

income of $100,000 or more. Participants self-reported race and ethnicity (Hispanic/Latino, 

Non-Hispanic/Latino, White, American Indian/Alaskan Native, Black or African American, 

Asian, and Native Hawaiian or other Pacific Islander) and were able to select multiple 

identities. 15.56% of the sample identified as Hispanic/Latino. 80.61% of the sample 

identified as White, 1.13% of the sample identified as American Indian/Alaskan Native, 

1.13% of the sample identified as Black or African American, 0.45% of the sample 
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identified as Asian, 0.23% of the sample identified as Native Hawaiian or other Pacific 

Islander, 10.15% of the sample identified as more than one race, and 6.31% of the sample 

declined to report race.

CoTwins recruited participants for the in-lab baseline protocol in 2 waves. Wave 1 (n = 670 

adolescents; M age at lab visit = 16.03, SD = 1.13) ran from 2015–2016 (see Alexander 

et al., 2022). Wave 2 ran from 2018–2022 and included 217 new participants. The second 

wave of data collection focused on recruiting older adolescents (M age at lab visit = 17.57, 

SD = .65). Additionally, wave 2 included 510 participants re-enrolled from wave 1 for the 

online data collection protocol, but these participants did not come back into the lab for 

re-assessment. Figure 1 displays the in-lab and online data collection protocols and the 

age-by-wave distributions in the CoTwins sample.

Twin pairs were categorized as either monozygotic (MZ, identical) or dizygotic (DZ, 

fraternal). Zygosity classification was determined by two independent testers who assessed 

the twins on using a five-point similarity scale across six physical traits, including 

characteristics like hair color and texture, eye color, and complexion. Testers discussed any 

major discrepancies in similarity ratings and reached a consensus on zygosity classification. 

The sample contained 167 MZ pairs and 277 DZ pairs (189 same-sex DZ and 88 opposite 

sex DZ). There were 444 total pairs; however, one MZ co-twin did not participate, leading to 

887 total participants.

All research protocols were reviewed and approved by the University of Minnesota 

and Colorado’s Institutional Review Board. Parental permission and informed consent or 

adolescent assent were obtained from each participant or parent.

Measures

The CoTwins EF task battery included three in-lab tasks (antisaccade, keep track, and 

category-switch) and three online tasks (Stroop, keep track, and category-switch), the latter 

two of which were administered multiple times. All tasks were computerized. Task stimuli 

were counterbalanced and randomized, and the stimuli order within each task was identical 

for all participants. All tasks contained practice trials to confirm that the participants 

understood the task instructions, as well as warm-up trials (not analyzed) at the beginning of 

blocks.

Antisaccade (adapted from Roberts et al., 1994) was only administered in the lab. This 

response inhibition task requires participants to restrain a prepotent eye movement to a 

visual cue and instead look in the opposite direction to see a quickly presented target 

stimulus. The timing of the task was speeded so that it would be impossible for the 

participant to see the target if they first looked at the cue. Participants were seated 18 inches 

from the computer monitor. Each trial started with a centered fixation cross that appeared for 

one of nine durations from 1,500 to 3,500 millisecond (ms) in 250-ms increments. When the 

fixation cross disappeared from the screen a cue (a black 1/8 in. square, inner edge 3.375 

in. from the center), appeared on the right or left side of the screen with equal probability 

for 250 ms. Once the cue disappeared, a numeric target (a digit 1–9, 26-point Helvetica font, 

presented in a 7/16-in. square with its inner edge 3.25 in. from the fixation) appeared for 
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150 ms before being masked, on the same side as the cue for the prosaccade practice block 

and the opposite side for the antisaccade blocks. The mask remained on the screen until 

the participant verbalized the target number (or guessed). The experimenter then entered the 

response, which initiated the subsequent trial. The participants practiced on 12 prosaccade 

trials to familiarize them with the procedure, followed by 12 practice antisaccade trials. They 

then received the target 36 antisaccade trials (preceded by 2 warm-up antisaccade trials that 

were not analyzed). The dependent measure was the proportion of correct responses out of 

36 antisaccade trials.

Stroop (based on Stroop, 1935) was only administered online. This interference control/

response inhibition task requires participants to avoid the prepotent tendency to read color 

words (RED, GREEN, or BLUE) and instead indicate the color the word is printed in (red, 

green, or blue). The task was presented on a white background. Each trial began with a 

black fixation cross that appeared in the center of the screen for 500 ms, followed by a 

500 ms blank screen, followed by the colored stimulus, which remained on the screen until 

the participant indicated its color by pressing the r, g, or b key on the keyboard, or until 

1,500 ms. If the participant did not respond within 1,500 ms, the stimulus disappeared and 

“Respond Faster!” (black font) appeared in its place for 250 ms before the next trial started. 

The task began with a block of 42 neutral trials (colored strings of 3-to-5 dollar signs), 

followed by 3 blocks of 54 mixed trials (18 neutral trials and color words printed in the 

congruent [18 trials] or incongruent [18 trials] colors). Each target block incorporated 2 

additional warm-up trials. At least 10 neutral practice trials preceded the first neutral block, 

and at least 12 mixed practice trials preceded the first mixed block (participants completed 

as many practice blocks as necessary to reach 80% accuracy in the practice trials before 

moving on to the target trials). In the practice blocks only, participants received feedback 

on each trial: “Correct!” or “Incorrect!” appeared below the stimulus for 250ms after each 

response. The dependent measure was the difference in mean RTs for correct responses on 

incongruent trials versus neutral trials in the mixed blocks.

Before the Stroop task, participants completed an online colorblind screening, using 10 

plates from the Ishihara test (Ishihara, 1917). Each plate consisted of a number formed from 

colored dots that was embedded within a circular background of contrasting colored dots 

(e.g., red number and green background). On each trial, one plate appeared on the screen 

and participants had to type the number in an answer box. There were 7 red/green plates and 

3 red/gray (control) plates. If participants responded incorrectly on more than 2 red/green 

plates, they were flagged as color-blind, and the Stroop task was not collected.

Keep track (based on Yntema, 1963) was administered both in the lab and online. This 

working memory updating task requires participants to keep track of a series of words in 

2–5 relevant categories from a stream of words in 6 categories (animals, colors, countries, 

distances, metals, and relatives). In each trial of the lab version, participants first saw a 

screen instructing them “Recall the last item from the following sets:” in the center of the 

screen and “Press the space bar to continue” at the bottom of the screen. They pressed 

the space bar when ready to view the categories, at which point the central instruction 

disappeared and the relevant category names appeared horizontally arranged on a single line 

about 2/3 down on the screen, in the same location they remained throughout the trial. They 
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pressed the space bar when they were ready to start the trial, after which they saw “GET 

READY” in 30pt pink font in the center of the screen for 2,000 ms, then saw a list of 15 

words that appeared in 45pt font in the center of the screen for 2,000 ms each. At the end 

of the trial, the category list disappeared from the bottom of the screen and a pink “???” 

appeared in the center of the screen, signaling the participants to tell the experimenter the 

last word in each of the target categories. The words were drawn from a list of 6 from each 

category, and the complete list of 36 possible words and which categories they belonged to 

were included in the initial task instructions. The in-lab keep track contained 2 practice trials 

with 3 categories each, then 10 target trials: 4 trials with 3 categories and 6 trials with 4 

categories.

Keep track was administered twice online. Slight changes were made between the online 

keep track assessments to improve the task. The first online keep track (administered during 

wave 1) was shortened considerably compared to the in-lab version to minimize participant 

burden. It contained 1 practice trial with 2 categories, followed by 5 target trials: 1 trial with 

3 categories followed by interleaved 2 trials with 4 categories, and 2 trials with 5 categories. 

Participants indicated their answers by selecting them with the mouse from the list of 36 

possible words on the screen. The dependent measure was the proportion of 21 total words 

recalled across all trials. The second online keep track (administered during wave 2) was 

lengthened and adjusted to require recall instead of recognition of the answers, bringing 

it more in line with the lab version. It contained 2 practice trials with 3 categories and 9 

target trials: 3 3-word trials, 3 4-word trials, and 3 5-word trials. Participants indicated their 

responses by typing them in a blank entry box at the end (answers were screened for spelling 

errors and typos before scoring). The dependent measure for the in-lab and online keep track 

tasks was the proportion of total words remembered across all trials (out of 36 for the in-lab 

and second online versions, and out of 21 for the first online version).

Category-switch (Mayr & Kliegl, 2000) was administered both in the lab and online. This 

mental set shifting task requires participants to switch between two word categorization 

rules based on a random cue. In each trial in the lab version, participants first saw a cue 

symbol (heart or crossed arrows), which indicated the categorization rule (living/nonliving 

vs. smaller/larger than a soccer ball, respectively). After 350 ms a word printed in 36pt 

courier font appeared under the cue. The word remained on the screen until the participant 

categorized it with one of two button box buttons, and an error buzz sounded after 

incorrect responses. There was a 350 ms inter-trial interval. The complete list of words 

(alligator, snowflake, bicycle, mushroom, cloud, goldfish, lizard, table, marble, shark, knob, 

lion, pebble, sparrow, coat, or oak) and their correct categorizations were provided in the 

instructions. The task started with 2 practice 12-trial single-task blocks (living/nonliving 

then size), a practice 24-trial mixed block, then 2 mixed blocks comprised of 64 trials (plus 

4 warm-up trials) each, in which the two rules were mixed and half the trials required 

switching rules.

As with the keep track task, category switch was administered twice online (once in wave 

1 and once in wave 2), and between the online category-switch assessments, slight changes 

were made to improve the task. In the first online category-switch task, the word remained 

on the screen until the participant categorized it with one of two keys (f or j) on the 
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keyboard, and errors were indicated with a red circle. In the second online category switch 

task, there was no error feedback, but if participants did not make a response within 2,500 

ms, the task proceeded to the next trial. Additionally, for the second version of the online 

task, participants re-did the practice blocks until they got 80% correct before completing 

the target blocks. Both online category switch versions started with a practice 12-trial single-

task living/nonliving block, then a 32-trial (plus 2 warm-up trials) living/nonliving block. 

Participants then completed a practice 12-trial size block and a 32-trial (plus 2 warm-up 

trials) size block. (The additional single-task blocks were included in the online versions to 

give participants additional practice with the response mappings, given that no experimenter 

was present to monitor whether they had mastered them.) Finally, participants completed a 

practice 24-trial mixed block, then 2 mixed blocks comprised of 54 trials (plus 2 warm-up 

trials) each in the first online version, or 64 trials (plus 4 warm-up trials) each in the second 

online version. The dependent measure for all the in-lab and online category switch tasks 

was the difference between average RTs for switch trials and repeat trials in the mixed 

blocks (the local switch-cost).

General Cognitive Ability was measured during the in-person lab visit with a block design 

task and a vocabulary task from the Wechsler Abbreviated Scale of Intelligence – Second 

Edition (WASI-II) (Wechsler, 1999). Block design requires participants to recreate a pattern 

displayed in front of them with a set of blocks at quickly as possible. Block design consisted 

of a maximum of 13 trials and participants discontinued after 2 consecutive responses that 

were either incorrect or over the time limit. Vocabulary requires participants to define a 

series of increasingly difficult words in a verbal free response format. Vocabulary consisted 

of a maximum of 31 trials and participants discontinued after 3 consecutive incorrect 

responses.

Procedure

In-Lab.—When they were recruited into the study, participants first came into the lab to 

complete the in-lab EF and general cognitive ability tasks and a larger battery of individual 

differences measures including interviews, questionnaires, and the Peabody Individual 

Achievement Test (PIAT; Markwardt, 1997) to check reading ability and ensure they could 

understand the written task instructions. A small number (n = 55) of participants came into 

the lab after completing some online assessments because their in-lab session was delayed 

by the COVID-19 pandemic.

Each twin was tested individually. The appointment began with the completion of parental 

consent and adolescent assent. Participants then provided their email addresses, registered 

their smart phones with the CoTwins App, and provided salivary samples for later 

genotyping efforts. Participants then completed surveys and interviews to assess substance 

use and psychopathology. During the first half of the appointment, participants completed 

the category-switch, antisaccade, and keep track tasks in that order. The in-lab tasks 

were presented via PsyScope X B51 (Cohen et al., 1993) on a Macintosh laptop with a 

15-inch screen size and 1680×1050 screen resolution, and participants responded verbally 

(antisaccade and keep track), or via a ms-accurate button box (category-switch). In addition 

to written instructions presented during the tasks, the experimenter verbally explained the 
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tasks and instructions, checked that subjects understood the instructions, and monitored 

participants to ensure that they were completing the tasks correctly.

Online.—Participants provided their email addresses to complete follow-up online surveys 

and EF tasks. The CoTwins App was used for longitudinal surveys, which are not included 

in the present study. Participants were later sent a link to complete the online EF tasks at 

home. The participants were instructed to complete the online tasks on a computer with 

a physical keyboard in their home in a quiet room. The online tasks were programmed 

to not administer if the user attempted to complete them on an AndroidOS or iOS phone 

device. The experimental design was to assess EFs every 9–12 months; however, the second 

online assessment we use here was collected during Wave 2 and took some time to be 

implemented, so the average interval between the online assessments was longer than 1 year. 

The mean time between the in-lab assessments and the first online assessment was 1.12 

years for keep track, 1.17 years for category-switch, and 2.8 years for Stroop. The mean 

time between the repeated online assessments was 3.08 years for keep track and 3.02 years 

for category-switch. The first versions of the online tasks were programmed in JavaScript, 

and the second versions of the online tasks were programmed with the jsPsych framework 

(de Leeuw, 2015), which is a JavaScript library for creating and administering behavioral 

experiments via web browsers.

Here, we analyze the in-lab data for all participants and include the online EF data from 

the wave 1 versions of category-switch and keep track, as well as the wave 2 versions of 

category-switch and keep track plus the Stroop task which was implemented in wave 2. 

Therefore, some participants only received the first or second version of the online tasks, but 

the wave 2 re-recruits received both versions of the online tasks. For both waves, there were 

no changes to the in-lab EF tasks or the general cognitive ability tasks.

Statistical Procedures

Data trimming and transformation.—Results from the CoTwins EF data have not 

previously been published; however, data trimming and transformation procedures were 

matched to those used in Friedman et al. (2016). We screened completed task data for 

chance-level accuracy. Chance performance for each task was calculated with an accuracy 

cut-off based on the binomial probability (p < .01) that the participant would have achieved 

that score by chance. We removed 13 lab antisaccade scores, 4 lab category-switch scores, 

0 lab keep track scores, 24 scores from the first version of the online keep track task, 

7 scores from the second version of the online keep track task, 0 scores from the first 

version of the online category-switch, 8 scores from the second version of the online 

category-switch, and 0 scores from the online Stroop for falling below their respective task 

chance-level accuracy cut-offs. In addition, for the online category-switch tasks, 3 scores 

were removed for not understanding or following the task instructions (as indicated by 

accuracy patterns suggesting that the participants did not switch task sets). For the online 

Stroop task, colorblind participants were disqualified from completing the task (n = 15, 40% 

male).
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For the RT-based tasks, we applied a within-subject trimming procedure (Wilcox & 

Keselman, 2003) within conditions prior to averaging RTs; this procedure yields measures 

of central tendency that are robust to non-normality of the RT distributions. For all EF 

tasks, we also implemented between-subjects trimming to reduce the influence of extreme 

scores while maintaining them in the distribution: We replaced scores more than 3 standard 

deviations above or below the mean with a value exactly 3 standard deviations above or 

below the mean (36 scores replaced across all tasks; n trimmed for each task: lab antisaccade 

= 0; lab category-switch = 9, lab keep track = 12, first version of online category-switch 

= 8, second version of online category-switch = 4, first version of online keep track = 0, 

second version of online keep track = 2, online Stroop = 1). Finally, for the keep track and 

antisaccade task accuracy scores, we used the arcsine of the proportion correct because the 

overall accuracy showed evidence of ceiling effects (Friedman et al., 2016).

Model estimation.—The CoTwins EF battery was designed to examine the unity and 

diversity of EFs (Friedman & Miyake, 2017), a framework that decomposes variance in EF 

tasks into specific factors (typically Updating-Specific and Shifting-Specific) that influence 

ability on updating and shifting tasks, as well as a Common EF factor that influences 

ability on all tasks. In these models, because we use different versions of the same task in 

the lab and online, we refer to these specific factors as Keep track-specific and Category 

switch-specific.

All models were estimated in Mplus version 8 (Muthén & Muthén, 1998–2017). Age 

and sex were regressed out of all cognitive tasks, and we used the standardized residuals 

in all models. To account for non-independence of twin pairs we used Mplus’ TYPE = 

COMPLEX for phenotypic analyses; this option provides model chi-squares and standard 

errors adjusted for nonindependence with a sandwich estimator.

Chi-square tests of model fit are sensitive to sample size, so we also assessed model fit 

with root mean square error of approximation (RMSEA) < .06 and confirmatory fit index 

(CFI) > .95 (Hu & Bentler, 1998). The statistical significance of parameter estimates for 

the phenotypic models was assessed with the Wald tests in the model output. For twin 

models, these tests are not invariant to model parameterization (Neale et al., 1989), so the 

significance of variance components and their covariances in the twin models was assessed 

using chi-square difference tests, where a significant p-value (p < .05) indicates a significant 

reduction in model fit (i.e., that a significant parameter was dropped).

Twin analyses.—The classical twin design (Rijsdijk & Sham, 2002) uses information 

from MZ and DZ twin pairs to partition the phenotypic variance of an outcome into additive 

genetic (A), shared environmental (C), and nonshared environmental (E) influences. C 

includes factors that lead siblings to correlate (e.g., neighborhood factors and socioeconomic 

status). In contrast, E includes factors that lead siblings not to correlate (e.g., differential 

responses to parental treatment, different peer groups, different extracurricular activities). 

MZ and DZ twins share their familial environments, but MZ twins share 100% of their 

segregating genes, while DZ twins, like non-twin siblings, share on average 50% of their 

segregating genes. The structural equation twin model formalizes these biometrical genetic 

principles to partition the variance of a phenotype into latent A, C, and E components. In 
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this model, the A components correlate at 1.0 in MZ twins, and they correlate at 0.5 in DZ 

twins (consistent with the average proportion of shared segregating genes for MZ and DZ 

twin pairs). The C components correlate at 1.0 in MZ and DZ twins (because both types 

of twin pairs are reared together). Finally, the E components do not correlate (because they 

represent environmental influences unique to each twin).

Genetic influences (A) are suggested when MZ twin pairs display a higher correlation for a 

phenotype compared to DZ twin pairs. Shared environmental (C) influences are suggested 

when the DZ correlation is greater than half the MZ correlation. Nonshared environmental 

influences (E) are those that lead twins to differ; so, they are suggested when the MZ 

correlation is less than 1. E also includes random measurement error for manifest variables, 

as error would lead twins to be uncorrelated; however, E for latent variables does not include 

error, because latent variables include only reliable (correlated across tasks) variance. The 

twin model can be extended to multiple traits to estimate genetic (rA) and environmental (rC 

and rE) correlations (e.g., between Common EF and g) by allowing the A, C, and E variables 

to correlate across phenotypes.

Transparency and Openness

Deidentified CoTwins data is in the process of being deposited on the Inter-University 

Consortium for Political and Social Research/ National Addiction and HIV Data Archive 

Program (ICPSR/NAHDAP) at the University of Michigan and will be available to qualified 

investigators. Stimulus materials are available upon request. Additionally, de-identified 

cognitive task data after trimming and transformation and Mplus analysis code for the 

phenotypic and genetic models presented in the results is available at the following OSF web 

page: https://osf.io/vsxb2/ (Freis, et al., 2023). This study was not pre-registered.

Results and Discussion

Preliminary Analyses

Descriptive statistics, internal reliability, and test-retest reliability, when applicable, for 

the lab and online tasks are reported in Tables 1 and 2. Zero-order correlations between 

the tasks can be found in Table 3, and univariate twin results can be found in Table 

4. The phenotypic correlations between the individual EF tasks were consistent with the 

typical pattern that individual EF tasks often weakly correlate due to task-specific variance 

(Friedman & Miyake, 2017), and the correlations observed were similar to existing research 

in this age group (Friedman et al., 2016).

Because we had variable amounts of time between the EF assessments, we examined 

whether the relationships between the different versions of the EF tasks were moderated 

by the amount of time between assessments. For each task pair (e.g., in-lab keep track and 

online keep track), we tested models where performance on the online task was predicted by 

performance on the in-lab task, the amount of time between assessments, and the interaction 

between performance on the in-lab task and the amount of time between assessments. None 

of these interactions were significant (all interaction betas < 0.30, p > .094), indicating that 
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differences in the intervals between assessments did not influence the associations between 

the lab and online tasks.

Are EFs Assessed in Different Contexts Separable?

To examine relationships between in-lab and online EF factors, we created a phenotypic 

model distinguishing Common EF assessed in the lab and Common EF assessed online. 

This model had five factors: Lab Common EF, Online Common EF, Keep track-specific, 

Category switch-specific, and g. In this study, we focus on relationships between the 

Common EF factors and g; however, all results are presented in Figure 2. This model fit 

the data well, χ2(25) = 51.10, p = .002, RMSEA = 0.034, CFI = .969. Lab and Online 

Common EF were strongly correlated (r = .77; p < 0.001; 95% CI [.59, .94]). We compared 

this full model with the four EF factors and g factor to a model with the correlation between 

the Common EF factors constrained to 1.0, and a model that collapsed the two Common 

EF factors into one Common EF factor. Both reduced models significantly hurt model fit 

(Δχ2(1) = 5.80 p = .016 and Δχ2(2) = 7.43 p = .024), indicating that these two EF factors 

are highly overlapping but separable.

Why are EFs Assessed in Different Contexts Separable?

We constructed a genetic model of our context-specific EF model with g and estimated A, 

C, and E variance components for Lab Common EF, Online Common EF, and Keep track-

specific, Category switch-specific, and g. We also calculated genetic and environmental 

correlations between the Lab and Online Common EF factors. When we first estimated the 

genetic correlation between Lab and Online Common EF, the estimate was greater than 1, 

so we implemented a boundary constraint of <1 in Mplus, which minimally changed model 

fit (Δχ2 = 0.05). This model (Figure 3) fit the data adequately according to the RMSEA, 

although the CFI was less than .95, the typical criterion for good fit1 (χ2(388) = 528.161, p 
< .001, RMSEA = 0.04, CFI = .902).

Results of the genetic model with and without g were highly similar, so here we present 

the variance component estimates and model comparisons from the model of EFs without 

g, which enables more focused chi-square difference tests. However, we still could only 

conduct 2-df tests for the A and E components; e.g., we could not set the A variance for 

Lab Common EF to zero without also setting its covariance with the A variance for the 

Online Common EF factor to zero, or else the resulting model would not be identified. 

We observed significant estimates of additive genetic variance for all latent EF variables. 

Additive genetic factors explained 89.5% of the variance in Lab Common EF (Δχ2(2) 

= 27.71, p < 0.001), but only 44.4% of the variance in Online Common EF (Δχ2(2) = 

20.69, p < 0.001). For shared environmental factors, we only observed a C estimate above 

1The genetic models estimate the A, C, and E parameters from the variance/covariance matrix for each twin group. Therefore, the 
genetic models require splitting the sample into twin 1 and twin 2 variables for MZ and DZ groups, reducing sample sizes that 
contribute to each element of the covariance matrix and increasing sampling error. The twin models assume strict model invariance 
across twins and zygosity groups, and examination of the model residuals suggested that the misfit was largely due to differences 
in variances/means of the online tasks across twins and zygosity groups. We attribute these differences to sampling error due to the 
smaller ns for some of the online tasks, as different random assignments led to different variables that showed this pattern of different 
variances across twins, with no systematic patterns. Given that the invariance assumption is necessary for the classic twin model and 
that the RMSEA indicated good fit, we proceeded with the models unaltered.
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0 for Online Common EF: Shared environmental factors explained 18.2% of the variance 

in Online Common EF although this variance component was not significant (Δχ2(1) = 

0.846, p = 0.358). Non-shared environmental factors explained 10.4% of the variance in Lab 

Common EF (Δχ2(2) = 2.22, p = 0.330) and 37.5% of the variance in Online Common 

EF (Δχ2(2) = 4.53, p = 0.104), although these variance components were not statistically 

significant.

Additive genetic factors explained 90.6% of the variance in Keep track-specific (Δχ2(1) = 

18.40, p < 0.001) and 87.2% of the variance in Category switch-specific (Δχ2(1) = 5.78, p = 

0.016). Non-shared environmental factors 9.3% of the variance in Keep track-specific ability 

(Δχ2(1) = 0.96, p = 0.328), and 12.8% of the variance in Category switch-specific ability 

(Δχ2(1) = 0.859, p = 0.354).

We then implemented a series of model constraints to examine if Lab and Online Common 

EF displayed the same patterns of additive genetic, shared environmental, and non-shared 

environmental influences. Though our estimate of A was higher for Lab Common EF, 

constraining the standardized A variance components for Lab and Online Common EF to be 

equal did not hurt model fit (Δχ2(1) = 1.34, p = 0.247), nor did constraining the standardized 

C and E variance components for Lab and Online Common EF to be equal (C constraint: 

Δχ2(1) = 0.44, p = 0.507; E constraint: Δχ2(1) = 1.658, p = 0.197). A 2-df test constraining 

the C and E variance components for Lab and Online Common EF to be equal also did 

not significantly hurt model fit (Δχ2(2) = 1.97, p = 0.373). Though the estimates of C and 

E were higher while the A estimate was lower for Online Common EF compared to Lab 

Common EF we did not observe statistically significant differences in the estimates of C and 

E for these two factors. Potentially due to the non-significant estimates of C and E, we could 

not distinguish if the C and E estimates were different for Lab and Online Common EF. The 

results of this model were consistent with a full genetic model of EFs and g (Figure 3).

Tests of whether the A, C, and E components could explain similar or different proportions 

of variance in the EF factors does not tell us if those variance components are tapping 

the same underlying influences. To examine the amount of genetic or environmental 

overlap between these factors, we estimated genetic and environmental correlations between 

variance components that were greater than 0. We observed a significant genetic correlation 

between Lab and Online Common EF (rA = 1.00, Δχ2(1) = 20.69, p < 0.001). This estimate 

suggests that the same genes are influencing the Lab and Online Common EF factors. 

Additionally, we observed a non-significant non-shared environmental correlation between 

Lab and Online Common EF (rE = .63, Δχ2(1) = 1.45, p = 0.229). The rA of 1 between Lab 

and Online EF combined with the lower estimate of rE and nominally larger estimates of C 

and E for Online Common suggests that these EF factors may differ at the environmental 

level. Although it is difficult to draw conclusions given the lack of statistically significant 

differences, given the estimated genetic correlation of 1.0, the phenotypic separability can 

only be attributed to environmental differences.

Are EFs Assessed in Different Contexts Differentially Related to g?

In the phenotypic full model with the four EF factors and g, Lab Common EF and Online 

Common EF were significantly correlated with g: r = .54 (p < 0.001; 95% CI [.31, .78]) and 
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r = .57 (p < 0.001; 95% CI [.38, .76]), respectively. Additionally, in the full genetic models, 

we found that Lab and Online Common EF were similarly genetically correlated with g (Lab 

EF with g rA = 0.68, Δχ2(1) = 52.32, p < 0.001; Online EF with g rA = 0.67, Δχ2(1) = 4.00, 

p = 0.045). Finally, we observed a non-significant shared environmental correlation between 

Online Common EF and g (rC = 0.67, Δχ2(1) = 0.81, p = 0.368). These results indicate 

that even though Common EF factors assessed in different contexts are separable, they are 

similarly related at the phenotypic and genetic levels to the criterion variable g (assessed in 

lab). These patterns indicate that the two Common EF factors both display criterion validity 

and one factor is not a demonstrably more valid measure of Common EF than the other.

General Discussion

We examined phenotypic, genetic, and environmental relationships between in-lab and 

online task-based latent variables of EFs and g in an adolescent twin sample to evaluate 

how strongly Common EF factors derived from tasks assessed in different contexts are 

related. First, we examined phenotypic relationships between EFs assessed in different 

contexts and found that although latent variables of Common EF assessed in-lab and 

online were moderately to strongly related, they were separable. Second, we examined 

genetic and environmental correlations between Lab and Online Common EF factors and 

found that they were genetically identical but phenotypically separable, suggesting that 

environmental factors explain differences in Common EF across task settings. Third, we 

examined phenotypic, genetic, and environmental correlations between the Common EF 

factors and g and observed similar relationships between the two Common EF factors and 

g, suggesting Common EF factors show similar criterion validity across task settings. This 

study is the first to examine latent variables of Common EF assessed in different contexts. 

It points to the validity and usefulness of Common EF assessed in different contexts, but 

also suggests that Common EF factors assessed in-lab and online display different patterns 

of genetic and environmental influences.

Some researchers have proposed dropping EF tasks altogether for particular research 

questions due to low test-retest reliability as compared to ratings-based measures of EFs 

(Enkavi et al., 2019). For example, Enkavi et al. (2019) examined the reliability of self-

regulation dependent tasks administered via an online platform and concluded that surveys 

might be more appropriate in self-regulation studies due to higher reliability. However, due 

to the use of individual online EF tasks, it is possible that correlations were attenuated due 

to task and testing-specific environmental variation (like a distracting testing environment). 

Importantly, latent variables of EFs derived from in-lab behavioral tasks are reliable and 

demonstrate developmental stability (Friedman et al., 2016). Furthermore, removing task-

specific nonexecutive influences and random measurement error frequently leads to stronger 

correlations of behavior with latent EF variables compared to correlations of behavior with 

individual EF tasks (Friedman & Miyake, 2017).

Similar improvements in reliability have been observed when using factors for the online 

tasks used in the Enkavi et al. (2019) study, although the resulting factors did not predict 

substance use behaviors, whereas rating-based measures did (Eisenberg et al., 2019). 

However, other studies have found that, when examined together, latent EF variables derived 
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from tasks and ratings-based measures of self-regulation are both independently predictive 

of real-world outcomes like psychopathology and academic achievement (Freis, et al., 2022; 

Friedman et al., 2020; Friedman & Gustavson, 2022; Malanchini et al., 2019; Shields et al., 

2022). Moreover, it is primarily the genetic influences on EF that are related to outcomes 

such as psychopathology (Freis, et al., 2022; Friedman et al., 2020; Malanchini et al., 2019; 

Shields et al., 2022). Thus, our finding that EFs assessed in-lab and online show identical 

genetic influences suggest that both in-lab and online EF measures may be equally useful 

predictors of these outcomes, just as we found that they were equally related to our in-lab 

measure of g in the current study.

When interpreting the genetic and environmental variance components observed in our 

model, it is important to caution against common misinterpretations of behavioral genetics 

results. One common misinterpretation is that high A estimates indicate that the outcome is 

immutable while higher C and E estimates indicate that the outcome is malleable or a good 

intervention target. For example, we found a high estimate of A for In-lab Common EF. This 

high estimate of A for Common EF is consistent with prior twin studies on EF assessed with 

in-lab task batteries in children, adolescents, and adults (Engelhardt et al., 2015; Freis, et 

al., 2022; Friedman et al., 2016, 2020). However, our current findings and the existing twin 

literature on Common EF does not indicate that Common EF is insensitive to environmental 

influences or genetically determined and immutable. Furthermore, our nominally higher 

estimates of environmental influences for Online Common EF do not indicate that Common 

EF assessed online is more malleable. These variance components (A, C, and E) do not 

characterize specific genes or environmental factors but denote the proportion of variance 

in a particular population at a particular time and in a particular context that can be 

attributed to additive genetic, shared environmental, or nonshared environmental influences 

(Harden, 2021). Because variance component estimates derived from the classical twin 

design are context-specific, a traditional cross-sectional twin design alone is uninformative 

for intervention research. These estimates can change across development and under 

different environmental conditions (Tucker-Drob et al., 2013). Therefore, an intervention 

that changes the specific environmental conditions in which the outcomes of interest in the 

twin model are measured could also lead to different variance component estimates. Indeed, 

our finding that the heritability estimate of Common EF nominally changes in different 

contexts empirically demonstrates that heritability depends on environmental context (see 

Friedman & Miyake, 2017, for more discussion).

Still, it is somewhat perplexing why twin studies of Common EF observe little to no 

influence of C, considering the extensive literature on the importance of family-level 

environmental factors like socioeconomic status and early childhood adversity on numerous 

aspects of cognitive functioning and development (Farah, 2017; Merz et al., 2019; Zelazo, 

2020). For example, existing research on Common EF indicates that even when C and E 

estimates are low, Common EF is still significantly phenotypically correlated with parental 

socioeconomic status (Friedman et al., 2011). One possible explanation for low estimates 

of C for Common EF in the twin literature is the presence of dominance (nonadditive) 

genetic influences (D). Traditional twin studies cannot estimate more than three variance 

components in the same model as that model would not be identified, and this limitation can 

bias variance component estimates (Friedman et al., 2021). For example, in a twin study, 
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if both D and C influence a trait, and only one of the variance components is estimated, 

the D and C influences can cancel each other out (Gustavson et al., 2022). This canceling 

out arises because C typically increases DZ twin correlations, while D typically decreases 

DZ twin correlations relative to MZ twin correlations (Gustavson et al., 2022). However, 

extended designs incorporating twins, siblings, and adopted siblings can minimize this bias 

by simultaneously estimating A, D, C, and E (Friedman et al., 2021; Gustavson et al., 2022). 

Indeed, in a combined twin and adoption study of EFs, Gustavson et al. found evidence 

suggesting that D masks the contribution of C on EFs in the traditional twin design (2022).

Our findings also suggest that environmental influences may contribute to the phenotypic 

separability of Common EF assessed in different contexts. These environmental influences 

may be specific to the testing environment. For example, the laboratory is likely a more 

controlled setting than participants’ homes, so in-lab EF tasks are potentially picking up 

on performance in an optimal setting that minimizes environmental variation. Due to this 

highly controlled laboratory environment, in-lab EF tasks have been proposed to have 

low ecological validity and may not always translate to real-world situations that require 

control (Friedman & Gustavson, 2022). However, this highly controlled laboratory setting 

is beneficial as it standardizes the testing experience for all participants and minimizes 

distractions that may make already complex tasks harder. As is typical with online cognitive 

assessments, we attempted to recreate some of the controlled aspects of the lab environment. 

For example, our online testing instructions prompted participants to complete their tasks 

at home in a quiet room, potentially minimizing environmental variation. However, we 

did not have control over the testing environment and the lab setting involved a research 

assistant present to read task instructions and note any potential issues with data collection. 

Additionally, technological differences, like using different keyboards (Schubert et al., 

2013), can introduce additionally testing variability in at home settings. These factors could 

contribute to the home testing environment differing from the lab environment. This lack 

of researcher control could increase environmental variation but also jeopardize the validity 

of these online EF assessments. However, we found that the Lab and Online Common EF 

factors correlated highly, supporting the viability of collecting EF data online. These results 

suggest that latent variables derived from online EF assessments are valid and could be used 

to increase sample sizes in psychological research or potentially reach participants who may 

otherwise not have been able to participate in a lab setting.

Moreover, environmental influences like socioeconomic status may be more influential 

during online testing because socioeconomic status will impact the environmental variability 

of the home environment, while the lab environment is designed to be consistent across 

participants. While standardized testing protocols minimize environmental variation in the 

lab, it is important to note that existing research in developmental and cognitive psychology 

points to relationships between socioeconomic status, brain development, and cognitive 

functions, including EFs (Farah, 2017; Friedman et al., 2011; Merz et al., 2019), which 

would influence performance on lab tasks.

Overall, there are benefits to both in-lab and online EF assessments. In-lab assessments 

may be more standardized and measure performance under optimal conditions for all 

participants. In contrast, online assessments may be more accessible and could increase 
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ecological validity and better represent “real-world” performance, as individuals must 

exercise control in diverse and variable environments.

Limitations and Future Directions

Because the online EF data collection was remote, not all research participants completed 

all the online EF tasks. So, the average n for the in-lab tasks was higher than the 

online tasks, potentially contributing to higher sampling error for the online measures. 

Additionally, the smaller sample sizes of the online tasks may have impacted our ability 

to detect the significance of the variance components in our genetically informed model. 

Moreover, we only had in-lab measures of general cognitive ability, so we could not examine 

method-specific relationships in our analyses of EFs assessed in different contexts and g. 

Additionally, as described in the method, we made minor alterations between the two data 

collection waves to improve the online category-switch and keep track tasks, so the online 

tasks were not identical. However, the correlations across these versions of the same tasks 

remained high.

We focus on Common EF assessed in different contexts due to its relevance to other 

behavioral outcomes (Friedman & Miyake, 2017) and our limited number of tasks. Due 

to the limited number of tasks, we could not construct context-specific Keep track-specific 

and Category switch-specific factors, so we cannot comment on if the patterns we observed 

of nominally different genetic and environmental influence hold for EF factors beyond 

Common EF. Additionally, in this study, because we used the same tasks in the lab and 

online, the Updating-Specific (Keep track-specific) and Shifting-Specific (Category switch-

specific) factors are confounded with task-specific variance. Finally, since we did not have 

identical task batteries for the in-lab and online protocols we cannot directly compare the 

means and variances for the in-lab and online factors.

Constraints on generality.

CoTwins participants were recruited from birth records from the entire state of Colorado 

to be representative of the state rather than a specific area. As a result, the CoTwins 

sample is reasonably representative of the state of Colorado. However, the CoTwins sample 

is over-represented for White and higher socioeconomic status participants compared to 

the adolescent population of the United States (United States Census Bureau, 2020). 

Additionally, though this study did not use the phone-based data, having a smart phone 

was a study requirement because of the CoTwins phone application. Though smart phones 

are quite common, this requirement could have inflated the number of high socioeconomic 

status participants in our sample. When research lacks socioeconomic, racial, and ethnic 

diversity, the findings are less generalizable and translatable, which can exacerbate existing 

disparities in many different psychological and behavioral outcomes (Holden et al., 2022). 

This lack of generalizability is often discussed as a significant concern in scientific research. 

Another equally important consideration, particularly in the behavioral genetics field, is that 

when samples lack diversity, we also miss out on the full range of environmental factors 

relevant to the outcomes of interest (Holden et al., 2022). In this study, for example, a more 
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diverse sample could have increased the environmental variability in the at-home testing 

environment. Therefore, these findings need to be replicated in a more diverse sample.

Future directions.

Our finding that Common EF factors assessed in different contexts are highly correlated, 

particularly at the genetic level, has implications for large-scale data collection efforts 

attempting to employ deep phenotyping like biobanks (Bycroft et al., 2018). For example, 

using at-home online EF tasks could allow large scale biobanks to gather more EF data with 

more diverse task batteries. The result that EFs assessed in different contexts are genetically 

identical indicates that online tasks would be appropriate measures in genetically informed 

studies. Similarly, online EF tasks could reduce the burden of bringing participants into the 

lab for assessments and allow researchers to administer more tasks and not rely on small 

single-task in-lab data to study EF and its correlates. Finally, our findings reinforce the 

important existing efforts to standardize and validate online behavioral experiments (Sochat 

et al., 2016) by demonstrating that online EF tasks are highly related to traditional in-lab 

tasks.

One important future direction we are pursuing is to examine if EFs assessed in different 

contexts are similarly related to other outcomes beyond a cognitive variable like g. For 

example, it could be particularly valuable to examine if the Common EF factors assessed 

in different contexts show similar patterns of relationships with behavioral outcomes 

commonly associated with behavioral control, like impulsivity or psychopathology. For 

example, one hypothesis for the observation that EF factors derived from in-lab behavioral 

tasks display modest correlations with self-reported control abilities is that in-lab tasks 

measure performance under optimal conditions (minimal environmental variation), while 

self-report measures may measure average control across a wider range of conditions 

(Friedman & Gustavson, 2022). Online tasks could provide an intermediate measure that is 

more objective than self-report, but also taps more environmental variation than in-lab tasks, 

and hence may be more related to real-world behavioral outcomes that reflect individual 

differences in control abilities. Future studies that examine genetic and environmental 

correlations between Common EF assessed online and real-world outcomes may be able 

to elucidate if the environmental variance in Online Common EF is meaningful.

Summary and Conclusions

We found that Common EF factors assessed in different contexts are highly related, but 

not identical. This separability appears to be due to environmental factors, as Common EF 

factors assessed in different contexts were identical at the genetic level, but phenotypically 

separable. Overall, our results indicate that researchers can use both in-lab and online EF 

tasks to study EFs, and the use of EF tasks assessed in different contexts could allow 

researchers to examine different questions.

Context

We took advantage of our unique sample that collected both in-lab and online EF tasks to 

examine how closely related these EFs assessed in different contexts are. This question is 
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important given the growing popularity of online EF assessments; yet, to our knowledge, no 

study has employed latent variable models to examine relationships between EFs assessed 

in different contexts. Our group has extensively studied the unity/diversity model of EFs 

(Friedman & Miyake, 2017); however, that research has primarily relied on in-lab EF tasks, 

and we wanted to examine this well replicated model with both in-lab and online tasks. 

This study replicated the unity/diversity model of EFs in a previously unpublished sample 

with our unique task battery. Finally, twin studies are sometimes underestimated as mere 

studies of genetic influences/heritability. However, twin studies are invaluable for examining 

questions about environmental influences (Friedman et al., 2021). This project exemplifies 

how twin studies can be used to get at environmental research questions and examine 

relationships between variables at different levels of analysis.
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Public significance statement:

This study highlights that performance on online cognitive tasks show a close 

correspondence to cognitive tasks administered in highly controlled laboratory settings, 

suggesting that at home online cognitive tasks are valid. Online cognitive tasks could 

be more accessible to administer and incorporate into clinical, academic, and research 

settings.
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Figure 1. 
Visualization of CoTwins in-lab and remote online protocols (A), distributions of age at lab 

visit by study wave (B), and distribution of age at each task (C). Total N = 887. Wave 1 

in-lab n = 670, M age = 16.03, SD age = 1.13, min age = 13.98, max age = 17.95. Wave 2 

in-lab n = 217, M age = 17.57, SD = .65, min age = 16.48, max age = 19.05. OL SC = online 

category-switch; OL KT = online keep track; OL Stroop = online Stroop; 1 and 2 refer to the 

version of the online category-switch and keep track tasks.
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Figure 2. 
Phenotypic factor model of the context-specific executive function (EF) unity/diversity 

model and g. Lab SC = in-lab category-switch; Lab AS = in-lab antisaccade; Lab KT 

= in-lab keep track; OL SC = online category-switch; OL KT = online keep track; OL 

Stroop = online Stroop; 1 and 2 refer to the version of the online category-switch and 

keep track tasks. Block = block design; Vocab = Vocabulary. Ellipses indicate latent 

variables; rectangles indicate observed variables. Numbers on single-headed arrows indicate 

standardized factor loadings. Numbers in brackets are standard errors. Numbers at the ends 

of arrows are residual variances. OL = online; Vocab = vocabulary. Double headed arrows 

indicate correlations. Solid lines and boldface type signify p < .05.
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Figure 3. 
EF = executive function; A = additive genetic variance; C = shared environmental variance; 

E = nonshared environmental variance; rA = genetic correlation; rC = shared environmental 

correlation; rE = nonshared environmental correlation; Lab SC = in-lab category switch; Lab 

AS = in-lab antisaccade; Lab KT = in-lab keep track; OL SC = online category switch; 

OL KT = online keep track; OL Stroop = online Stroop; Block = block design; Vocab 

= vocabulary; 1 and 2 refer to the version of the online category-switch and keep track 

tasks. Ellipses indicate latent variables; rectangles indicate observed variables. Numbers 

on single-headed arrows indicate standardized factor loadings. Numbers in brackets are 

standard errors. Double-headed arrows indicate correlations. Solid lines and boldface type 

indicate p < .05, whereas dashed lines and regular text indicate p > .05, determined with 

chi-square difference tests for the A, C, and E effects and their correlations.
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Table 1

Task Descriptive Statistics

Measure n mean sd min max range skew kurtosis

Lab Category-switch 881 212.26 166.2 −216.94 746.05 962.99 0.94 0.9

Lab Antisaccade 872 0.96 0.28 0.31 1.57 1.26 −0.08 −0.25

Lab Keep track 886 0.85 0.22 0.2 1.52 1.33 0.19 0.28

OL Category-switch 1 316 146.88 122.96 −58.82 523.96 582.78 1.1 0.89

OL Keep track 1 359 0.88 0.2 0.5 1.57 1.07 0.82 1.33

OL Stroop 419 147.41 93.87 −81.94 422.76 504.7 0.28 −0.41

OL Category-switch 2 407 129.71 103.05 −53 462.89 515.89 0.79 0.43

OL Keep track 2 404 0.92 0.19 0.45 1.57 1.12 0.14 0.18

Block Design Raw 885 44.02 12.26 8 70 62 −0.44 −0.17

Vocab Raw 886 37.62 4.49 16 52 36 −0.64 0.92

Note. Descriptive statistics for cognitive tasks after data screening. OL = online.

J Exp Psychol Gen. Author manuscript; available in PMC 2025 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Freis et al. Page 30

Table 2

Task Reliabilities

Task Method Within-task Reliability Test-retest with subsequent tasks

Category-switch Lab .64a .34–.42

Antisaccade Lab .87a −

Keep track Lab .76b .33–.40

Category-switch Online .85–.92a .51–.56

Keep track Online .50–.72b .41–.57

Stroop Online .89–.90a -

Note. Dashes indicate the correlation was not available because the tasks were not administered twice.

a
Calculated by adjusting odd-even correlations with the Spearman-Brown prophecy formula.

b
Calculated using Cronbach’s alpha.
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Table 3

Phenotypic Correlations

1 2 3 4 5 6 7 8 9 10

1. LabSC 1

2. LabAS 0.21* 1

3. LabKT 0.12* 0.26* 1

4. olSC 1 0.39* 0.25* 0.09 1

5. olKT 1 0.06 0.10 0.34* 0.06 1

6. olStroop 0.16* 0.21* 0.10 0.24* 0.07 1

7. olSC 2 0.35* 0.17* 0.00 0.50* 0.06 0.19* 1

8. olKT 2 0.07 0.11* 0.42* 0.00 0.45* 0.08 0.09 1

9. Block 0.05 0.23* 0.44* 0.04 0.20* 0.24* 0.01 0.23* 1

10. Vocab 0.07 0.15* 0.42* 0.06 0.12* 0.12* 0.00 0.21* 0.39* 1

Note. Correlation matrix of cognitive tasks after data screening. LabSC = in-lab category-switch; LabAS = in-lab antisaccade; LabKT = in-lab keep 
track; olSC = online category-switch; olKT = online keep track; olStroop = online Stroop; 1 and 2 refer to the version of the online category-switch 
and keep track tasks. Block = block design; Vocab = Vocabulary. In the full models, category-switch and Stroop task scores were multiplied by −1 
so that so that for all tasks, higher numbers indicate better performance

*
p < .05.
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Table 4

Univariate Twin Models

Task

Twin Correlations Variance Components Model Fit

MZ DZ A C E χ 2 df p RMSEA CFI

LabAS .49 .28 .38* .10 .52* 4.09 6 .664 .000 1

LabSC .44 .17 .40* .00 .60* 14.86 6 .021 .082 .790

LabKT .65 .29 .64* .00 .36* 6.35 6 .385 .016 .997

olSC 1 .15 .20 .00 .18 .82* 4.51 6 .609 .000 1

olKT 1 .58 −.12 .40* .00 .60* 23.32 6 .001 .163 .329

olSC 2 .29 .17 .20 .07 .73* 5.45 6 .488 .000 1

olKT 2 .52 .41 .28 .24 .48* 9.96 6 .127 .072 .856

olStroop .38 .04 .30 .00 .70* 4.22 6 .647 .000 1

Block .78 .38 .79* .00 .21* 7.53 6 .275 .034 .992

Vocab .61 .35 .51* .10 .39* 5.99 6 .424 .000 1

Note. LabSC = in-lab category-switch; LabAS = in-lab antisaccade; LabKT = in-lab keep track; olSC = online category-switch; olKT = online keep 
track; olStroop = online Stroop; 1 and 2 refer to the version of the online category-switch and keep track tasks. Block = block design; Vocab = 
Vocabulary.

*
p < .05, determined with chi-square difference tests.
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