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Abstract

Documented male-female differences in the risk of cardiovascular and chronic kidney diseases 

have been largely attributed to estrogens. The cardiovascular and renal protective effects of 

estrogens are mediated via the activation of estrogen receptors (ERα and ERβ) and G protein-

coupled estrogen receptor, and involve interactions with the renin-angiotensin-aldosterone system. 

Aromatase, also called estrogen synthase, is a cytochrome P-450 enzyme that plays a pivotal 

role in the conversion of androgens into estrogens. Estrogens are biosynthesized in gonadal 

and extra-gonadal sites by the action of aromatase. Evidence suggests that aromatase inhibitors, 

which are used to treat high estrogen–related pathologies, are associated with the development 

of cardiovascular events. We review the potential role of aromatization in providing cardio-renal 

protection and highlight several meta-analysis studies on cardiovascular events associated with 

aromatase inhibitors. Overall, we present the potential of aromatase enzyme as a fundamental 

contributor to cardio-renal protection.
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1. Introduction

1.1. Prevalence of cardiovascular and chronic kidney diseases

Cardiovascular disease (CVD) is one of the major causes of death worldwide, and can 

impose a significant financial and health burden on patients in the United States and globally 

[1]. The Global Burden of Disease study, conducted in 195 countries, reported that the 
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prevalence of CVD cases almost doubled from 271 million in 1990 to 523 millions in 2019, 

while the number of CVD deaths progressively rose from 12.1 million in 1990 to 18.6 

millions in 2019 [2]. In 2020, CVD was responsible for 928,741 fatalities in the United 

States and approximately 19.1 million deaths worldwide [3].

Chronic kidney disease (CKD) is also one of the leading causes of death in the 21st 

century, with over 850 million people worldwide suffering from CKD [4,5]. The latest 

estimations (2017–2020) of CKD prevalence in the United States adult population revealed 

a 14.5% overall prevalence [6]. Globally, a total of 3.16 million deaths from kidney disease 

were reported in 2019 according to the Global Burden of Disease study [2]. Notably, 

the relationship between CVD and CKD is reciprocal. In other words, CVD can be an 

underlying cause of CKD and vice versa [7,8].

1.2. Age and sex factors contributing to cardiovascular health

CVD is considered as an age-related pathology in both men and women, because age is a 

major factor that influences the cardiovascular health [9]. CVD is a major cause of death 

in individuals aged 65 years or older, accounting for 40% of mortality [9]. By 2030, it is 

projected that over 20% of the population in the United States will be 65 years or older 

[9,10]. According to the American Heart Association, the incidence of CVD among adult 

Americans is 40% between the ages of 40 and 59, 75% between the ages of 60 and 79, and 

86% in individuals over the age of 80 [11].

The American Heart Association also reports that between 2013 and 2017, 77.8% of females 

and 70.8% of males aged 65–74 were diagnosed with hypertension; diagnosis rates were 

85.6% for women and 80.0% for males over the age of 75 years [12]. Previous studies have 

also revealed that women are at higher risk of stroke than men [13,14]. On the contrary, men 

typically develop CVD at a younger age and have a higher risk of coronary heart disease 

than women [15]. Several clinical studies reported that women prior to menopause are more 

protected from CVD, but this risk sharply increases after menopause [16,17]. This difference 

in the cardiovascular risk between premenopausal and postmenopausal women is attributed 

to estrogen and its associated receptors, which consequently contribute to the disparities in 

disease outcomes between men and women [18].

1.3. Age and sex factors contributing to renal health

CKD is recognized as a common clinical problem with elderly patients. Recent estimates 

by the Center of Disease Control and Prevention showed that CKD is more prevalent in 

individuals over the age of 65 (38%) compared to those between the ages of 45–64 (12%) 

and 18–44 (6%) [19]. CKD is slightly more common in women (14%) than men (12%) 

[19]. A systematic meta-analysis showed that CKD is more prevalent in females and that 

its prevalence increases with age [20]. The estimations in this meta-analysis were based 

on the use of creatinine levels to determine the estimated glomerular filtration rate, while 

albuminuria or proteinuria was not detected in many of the included studies [20].. This 

alligns with reports of increased prevelance in CKD stage 3–5 among women, but not 

men, between 2002 and 2007 [21]. In contrast, other studies reported higher incidence of 

kidney failure in men [22]. Harris and Zhang concluded that although women have a larger 
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prevalence of CKD, the incidence of end stage renal disease is 50% higher in adult men than 

in women [23]. Therefore, further investigation is needed to better understand how sex affect 

CKD incidence, prevalence, and progression, in addition to potential sex-specific disease 

markers to determine whether sex hormones are related to the onset or progression of renal 

disease [24].

2. Estrogens

2.1. Types of estrogens and primary sites of production

Estrogens are steroidal sex hormones that include estrone (E1), estradiol (E2), estriol 

(E3), and estetrol (E4) [25]. The predominant circulating female hormone is E2, which is 

commonly referred to as “estrogen”, due to its physiological importance and prevalence 

during the reproductive years [16,25]. E1 is commonly detected at higher levels after 

menopause, while E3, and E4 are produced only during pregnancy [26].

The ovaries, specifically the granulosa cells, are the primary source of E2 in premenopausal 

women, acting as a circulating hormone on distal tissues [25,27]. In men, E2 is produced 

in minute amounts by the testes [28]. Estrogens are also produced in extra-gonadal sites 

such as adipose tissue, brain, skin, muscles, bones, vascular endothelium, vascular smooth 

muscles, intestine, liver, and adrenal glands, where they act locally in a paracrine or 

intracrine manner [27,29]. In a study investigating the source of elevated estrogen after 

menopause, an increase in the expression of aromatase (the enzyme catalyzing estrogen 

biosynthesis) was detected in the subcutaneous abdominal adipose tissue of ovariectomized 

rats [30]. This finding coincides with another study, which concluded that the conversion 

of androstenedione to estrogen was higher in obese women [31]. Additionally, a cross-

sectional study on postmenopausal women found a link between rising body mass index 

and circulating estrogens (E1 and E2) [32]. However, the contribution of extra-gonadal E2 

biosynthesis in different organ systems to the systemic levels of sex hormones remains 

debatable.

2.2. Biosynthesis of estrogens

The biosynthesis of estrogen takes place through a series of reactions catalyzed by a 

number of cytochrome P450 enzymes and different hydroxysteroid dehydrogenases [33]. 

It starts by the conversion of cholesterol to pregnenolone by cytochrome P450 cholesterol 

side-chain cleavage enzyme (CYP11A) [33]. Pregnenolone can either be converted to 

17-hydroxypregnolone and consequently to dehydroepiandrosterone by 17α-hydroxylase 

(CYP17), or it can be converted to progesterone by 3β-hydroxysteroid dehydrogenase 

(3β-HSD) [33]. Both dehydroepiandrosterone and progesterone are then converted to 

androstenedione by 3β-HSD and CYP17, respectively [33]. Afterwards, the androstenedione 

can be either converted to testosterone by 17β-hydroxysteroid dehydrogenase (17β-HSD), or 

to E1 by the aromatase enzyme (CYP19A1) [33]. Then, 17β-HSD catalyzes the conversion 

of E1 to E2 [33]. Fig. 1 demonstrates the steps of estrogen biosynthesis.
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2.3. Estrogen receptors

Estrogens exhibit a wide range of physiological functions on different body tissues, 

including the cardiovascular, reproductive, skeletal, adipose, and central nervous systems 

[34–36]. E2 exerts its functions through acting on the estrogen receptors (ERα and ERβ) 

which are encoded by the ESR1 and ESR2 genes, respectively [37]. In addition, E2 also 

binds to a recently discovered G protein-coupled estrogen receptor 1 (GPER1) or G protein-

coupled receptor 30 (GPER30), also known as the membrane estrogen receptor [25]. Table 1 

lists the gene and protein designations for estrogen receptors.

The expression of ERs has been identified in a wide range of cells and tissues. ERα 
is primarily found in the mammary glands, uterus, ovary (thecal cells), bones, male 

reproductive organs (testes and epididymis), prostate (stroma), liver, and adipose tissue 

[37,38]. ERβ is present in the prostate (epithelium), bladder, ovary (granulosa cells), 

colon, adipose tissue, and immune system [37,38]. In addition, both ERα and ERβ are 

markedly expressed in the cardiovascular and central nervous systems [37,38]. Within 

the cardiovascular system, ERα and ERβ are expressed in endothelial cells, vascular 

smooth muscle cells, and a variety of cardiac tissue, including cardiomyocytes, and cardiac 

fibroblasts [18,28]. Stained human renal biopsies showed that ERα is mainly expressed the 

renal glomeruli and tubules [39], while both ERα and ERβ are expressed in the kidney 

proximal tubule [40]. According to several studies on rodents and humans, GPER1 is 

ubiquitously expressed within the reproductive system [41], cardiovascular system [42], 

renal system [43], brain [44], adrenal glands [45], adipocytes [46], and bones [47].

2.4. The cardio-renal protective effect of estrogen

Postmenopausal women have a higher risk of CVD than premenopausal women [48,49]. 

The protection against CVD prior to menopause has been largely attributed to estrogens, 

which have a variety of advantageous effects on arterial walls, cardiac and renal functions, 

as well as tissue regeneration [18]. A direct effect of estrogen involves its vascular actions 

regulating vascular tone, cell proliferation, and migration [50]. Estrogens also act directly 

on cardiomyocytes in a favourable way [50]. Besides, estrogen can exert an indirect 

cardioprotective effect through regulating the lipid profile and reducing the coagulating 

factors and reactive oxygen species [51]. For instance, a comparative study showed that 

postmenopausal women had considerably higher serum total cholesterol, triglyceride and 

low density lipoprotein cholesterol levels than premenopausal women, which may be related 

to reduced estrogen levels [52]. Estrogen also inhibits low-density lipoprotein transcytosis 

by reducing the expression of endothelial scavenger receptor class B type 1 [53].

The vascular and cardiac protective effects of estrogens are exerted via ERα, ERβ and 

GPER1 [16]. E2 binds to ERα and ERβ receptors, leading to activation of classical and non-

classical pathways [54]. Previous studies conducted on ERα-knockout mice demonstrated 

the cardioprotective effect of ERα in cardiomyocytes in both males and females by 

improving the effectiveness of cardiac repair following a cardiac injury, such as ischemic-

reperfusion injury or induced myocardial infarction (MI) [55,56]. ERα has been shown 

to contribute largely to the vasoprotective effects of E2 as well [18]. In male and female 

transgenic mice model, the overexpression of ERβ in cardiomyocytes improved the survival 
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and the cardiac function, and decreased maladaptive remodeling following MI [57]. In 

a study on ERβ-deficient mice subjected to MI, there was an increase in mortality and 

exacerbated clinical and biochemical markers associated with heart failure (HF) [58]. In 

addition, ERβ activation rescues pre-existing severe HF in male mice by inducing cardiac 

angiogenesis, suppression of fibrosis, and restoration of hemodynamic parameters [59].

Emerging evidence points to the role of GPER1 in mediating cardiovascular protection 

and maintaining blood pressure [60]. Through activation of GPER1, estrogen can reduce 

ischemia and preserve heart function [61]. Kabir et al. found that GPER1-knockout 

hearts of male mice failed to demonstrate cardio-protection following ischemic-reperfusion 

after treatment with E2, indicating the function of GPER1 in ameliorating cardiovascular 

disorders [62]. GPER1 activation also reduces cardiac myocyte hypertrophy and wall 

thickness and enhances myocardial relaxation in hypertensive female mRen2. Lewis rats 

placed on a high-salt diet [63]. The activation of GPER1 with G1 (a selective GPER1 

agonist) demonstrated cardio protective effects against doxorubicin-induced cardiotoxicity 

in male rats [64], and reversed cardiopulmonary dysfunction in ovariectomized rats [65]. 

Recent studies showed that the infusion of G1 into the renal medulla promotes Na+ excretion 

via an endothelin-1-dependent pathway in female, but not in male rats [66,67]. Additionally, 

GPER1 activation with G1 lowers blood pressure in ovariectomized rats [66]. These findings 

pave the way for additional clinical testing of novel GPER1 agonists for the treatment CVD 

in females following endogenous estrogen loss, perhaps removing the negative side effects 

of estrogen replacement therapy.

In terms of kidney function, women experience a slower decline in renal function than 

men, which supports the hypothesis that sex hormones play a significant role in the 

prevalence and severity of cardiovascular and kidney disorders [68]. E2 was found to 

preserve kidney function and prevent the development of glomerulosclerosis in the female 

rat remnant kidney model [69]. A number of studies have also shown that targeting 

ERs signaling pathways might have protective effects against certain renal disorders [70], 

including acute kidney injury [71,72] and CKD [73,74]. For instance, E2 was found to 

ameliorate glomerulosclerosis and tubulointerstitial fibrosis in the ageing Dahl salt-sensitive 

rat [73]. In addition, the activation of GPER1 via G1 demonstrated a protective effect 

against proteinuria and albuminuria in female Dahl salt-sensitive rats [75]. On the other 

hand, Mankhey et al. concluded that E2 deficiency worsens the kidney function in diabetic 

ovariectomized female rats, which is antagonized by E2 replacement therapy [76]. E2 

deficiency increases the risk of renal pathology specially in diabetic patients through the 

overactivity of renin angiotensin aldosterone system (RAAS) [77].

2.5. The RAAS-estrogen interactions

The RAAS plays a central role in the regulation of the cardiovascular and renal systems. 

It is a major contributor to the maintenance of blood pressure and body fluid homeostasis 

[78]. Hyper activation of the RAAS is associated with cardiovascular disorders and their 

complications, such as HF, hypertension, cardiac hypertrophy, atherosclerosis, coronary 

heart disease, myocardial dysfunction, and renal failure [79]. The inhibition of RAAS by 
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angiotensin-converting enzyme (ACE) inhibitors and angiotensin II receptor type 1 (AT1) 

blockers were shown to improve cardiac and renal-related conditions [79].

The RAAS is composed of a series of enzyme–catalyzed interactions between its 

components, which regulate cardiovascular and renal function. The main precursor of 

the RAAS (angiotensinogen) is produced by the liver [80]. Angiotensinogen is cleaved 

by the renin secreted by the kidney to produce angiotensin I (Ang I), which is then 

hydrolyzed by ACE in the lungs to produce angiotensin II (Ang II) [80–82]. The latter 

acts on the cell-surface G protein-coupled receptor (AT1), causing an increase in blood 

pressure through different mechanisms, most importantly, vasoconstriction and aldosterone 

secretion [81,82]. Ang II also binds to cell surface type II receptors (AT2) to induce 

vasodilation, natriuresis, and nitric oxide generation [81,82]. Meanwhile, a biologically 

active heptapeptide Ang-(1−7) can be produced in response to the degradation of Ang I by 

endopeptidases or the degradation of Ang II by angiotensin-converting enzyme 2 (ACE2) 

[83]. Ang-(1−7) interact with AT2 receptors and Mas G protein-coupled receptors (MasR), 

which are present in the heart, vasculature, and kidneys, promoting vasodilation, nitric 

oxide production, and increased arterial baroreflex sensitivity [84]. Similar cardioprotective 

effects occur when Ang-(1−7) interacts with AT2 receptors [84]. In animal models, it 

has been shown that Ang-(1−7) has antihypertensive, antifibrotic, antiarrhythmogenic, and 

antithrombotic effects [84]. In the context of this review, we will pay more attention to the 

impact of estrogens on the components of the RAAS.

The angiotensinogen mRNA is expressed in several body organs including the heart, 

vascular system, kidneys, and adrenal glands [79]. The levels of angiotensinogen are 

generally higher in premenopausal women than in postmenopausal women [79]. In 

addition, oral estrogen replacement therapy considerably increases plasma angiotensinogen 

levels, which counteracts the beneficial cardioprotective effects of estrogen [79]. However, 

evidence indicates that plasma renin is lowered by estrogen due to the suppression of renin 

secretion from renal juxta-glomerular cells [79]. This may account for the cardiovascular 

protective effects of estrogen.

The effect of estrogen replacement therapy on Ang II levels is unclear. A study showed 

a protective effect against hypertension through estrogen-mediated reduction in the plasma 

levels of Ang II and amplification of the vasodilatory effect of Ang-(1−7) [85]. Estrogen also 

appeared to protect the heart against hypertrophy and fibrosis by demonstrating an inhibitory 

effect on Ang II-induced fibroblast-mediated remodeling and proliferation [86,87]. On the 

contrary, another study showed an increase in Ang II levels, which can be attributed to the 

suppression of RAAS by negative feedback [88]. Furthermore, a study revealed that Ang II 

induces albuminuria in male, but not female, rats during treatment with an ACE inhibitor 

[89]. Additional studies are needed to identify how estrogen dosing, route, and duration 

of administration and hormonal status of the recipient may impact key components in the 

RAAS system.

The expression of AT1 receptors in vascular smooth muscles is downregulated by estrogen, 

which can contribute to the association between estrogen deficiency and the incidence of 

CVD in post-menopausal women [90,91]. In the adrenal glands, estrogen reduces AT1 
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receptors and minimizes Ang II-induced aldosterone secretion [92]. It is thought that 

the activation of AT2 receptors will counteract the stimulation of AT1 receptors [93]. In 

estrogen-treated ovariectomized mice, the expression of AT2 receptors in the kidneys is 

increased, resulting in a reduced AT1/AT2 receptor ratio that favors vasodilation [81,94]. 

This may contribute to the preventive effects of estrogen on the progression of renal disease.

Estrogen was also found to regulate ACE. In ovariectomized rats, estrogen therapy reduces 

ACE activity in the plasma, kidneys, and aorta [85]. However, studies in ovary-intact female 

rats showed that during pregnancy, when estrogen level is elevated, ACE2 expression and 

renal and urinary Ang-(1−7) levels are increased [95,96]. Similarly, E2 pro motes the 

production of Ang-(1−7) in human endothelial cells via ERα, which induces E2-mediated 

vasodilatory effects [97]. Meanwhile, the expression of MasR varies between sexes in the 

renal system [98,99]. In comparison to males, the kidneys of female rats have greater levels 

of MasR mRNA, which can be attributed to sex hormonal factors [98,99].

Aldosterone is known to cause several types of tissue damage, including cardiac 

hypertrophy, cardiac fibrosis, proteinuria, vasoconstriction, and salt retention [79]. A number 

of studies showed that estrogen decreases Ang II-induced aldosterone secretion [100].

Thus, there are two major arms in the RAAS that has opposing actions. The first arm is 

the Ang II–ACE–AT1 that favors vasoconstriction and is known as the hypertensive axis, 

while the second arm is the Ang-(1−7)–ACE2–MasR/AT2 that favors vasodilation and is 

recognized as the antihypertensive axis [78,83]. Overall, estrogen promotes the production 

of angiotensinogen while inhibiting the production of renin and ACE. Also, the expression 

of AT1 is reduced by estrogen, while AT2 expression is increased. Therefore, estrogen shifts 

the balance of the RAAS towards the Ang-(1−7)–ACE2–MasR/AT2 receptor pathways, 

promoting cardiovascular protection [78]. Conversely, estrogen declination after menopause 

upregulates the vasoconstrictive arm of the RAAS [77]. However, the specific mechanisms 

by which estrogens interact with the RAAS to provide cardio-renal protection are still not 

fully understood and require further investigations. Fig. 2 illustrates the RAAS pathway and 

how estrogen modulates RAAS components favoring cardiovascular and renal protection.

2.6. Estrogen in ageing

With ageing, fluctuations in endogenous estrogen production as well as ERs expression 

start to emerge [101]. The expression of ERs is influenced by ageing in a tissue- and 

sex-specific manner, which may provide insight on the pleiotropic effects of estrogen on the 

cardiovascular system [43]. Further, this age-related change in the expression of ERs can 

be affected by illness and hormonal exposure, which consequently affect the response to 

estrogen [102,103].

In the context of CVD, the fall in estrogen levels accompanied by the alterations in ER 

expression and/or signaling brought on by ageing, plays a role in the reduced ability of 

estrogen to protect the arteries, which might be associated with cardiovascular and renal 

disorders [18]. For instance, ERs are lower in atherosclerotic human coronary arteries 

compared to normal human coronary arteries, regardless of menopausal state [104]. In a 

comparative study using a small sample of postmortem coronary arteries, the expression of 
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ER in vascular smooth muscle cells in postmenopausal women is lower than premenopausal 

women [104]. Gavin et al. reported a 30% reduction in the expression of ERα in endothelial 

cells during the early follicular (low estrogen) phase compared to the late follicular (high 

estrogen) phase of the menstrual cycle [105]. Similarly, the expression of ERα is 33% 

less in endothelial cells in postmenopausal women compared with the late follicular phase 

of the menstrual cycle in premenopausal women [105]. Animal studies also showed that 

endothelial ERα mRNA and protein expression decline after prolonged hypoestrogenic 

activity and is restored by estrogen replacement therapy [106]. Recently, Connelly et al. 

suggested that reduced estrogen levels cause a change in ERα:ERβ receptor ratios [103]. 

Meanwhile, the protein abundance of ERα and ERβ is slightly reduced with age in the aorta 

of female spontaneously hypertensive rats [107]. In a study conducted by Gurrala et al. to 

compare the transcript levels of murine ERs within the cardiovascular and renal systems 

across age and sex, it was revealed that the cardiac ERα mRNA transcript level is reduced 

in aged female mice compared to middle-aged females [43]. However, the level of cardiac 

ERα mRNA in male mice is not age-dependent [43]. Renal GPER1 increases with age only 

in female, but not male, mice; whereas cardiac GPER1 increases in both sexes with age 

[43]. Notably, other organ systems elicit changes in ER expression with ageing as well. 

For example, Arimoto et al. reported that ERα, but not ERβ, is increased with age in rat 

cortical astrocytes [108]. Whereas, the expression of ERα declines in the hippocampus with 

advancing age, causing a decrease in cognition [109]. Additional studies are required to 

determine the age-related changes in ER signaling and its role in the development of CVD.

3. Aromatase enzyme

The aromatase enzyme, alternatively known as estrogen synthase, is a mono-oxygenase that 

belongs to the cytochrome P450 family and is encoded by the CYP19A1 gene [33]. This 

enzyme catalyzes the demethylation of carbon 19 in androgens causing their aromatization 

into 18-carbon estrogens [110]. Androstenedione, testosterone, and 16-hydroxytestosterone 

are the physiological substrates of aromatase, which are then transformed into E1, E2, and 

E3, respectively [111]. Collectively, the synthesis of estrogen is catalyzed by the aromatase 

enzyme, which converts endogenous androgens into estrogens [111].

3.1. The mechanism of aromatization

The aromatization process advances through a number of steps elaborated in Fig. 

3. First, the methyl group at C19 in androstenedione is hydroxylated to produce 19-

hydroxyandrostenedione, which is then followed by a second hydroxylation reaction 

to produce 19-dihydroxyandrostenedione [112,113]. The latter is then dehydrated to 19-

oxoandrostenedione [112,113]. Finally, the steroid ring-A is subjected to oxidative cleavage 

of the C10-C19 bond followed by release of formic acid, leading to the formation of 

estrogen [112,113].

3.2. Distribution of aromatase

Estrogens are produced by gonadal and extragonadal sites. Gonadally and extragonadally-

driven estrogens share the same chemical structure and biological activity, but differ in 

their metabolic pathways of synthesis [29]. Extra-gonadal estrogens are produced when C19 
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precursors are supplied to any tissue that expresses aromatase [29]. Noteworthy, aromatase is 

primarily produced by ovarian granulosa cells in premenopausal women and adipose cells in 

postmenopausal women [114].

On the gonadal level, aromatase is expressed in both ovaries and testis. In the ovaries, 

aromatase expression is limited to differentiated preovulatory granulosa cells and luteal 

cells, and it is not expressed by undifferentiated granulosa cells in preantral follicles [115]. 

The follicle-stimulating hormone stimulates the growth and maturation of preantral follicles 

to the preovulatory stage, and the differentiation of granulosa cells, inducing the activation 

of aromatase [115]. Aromatase is downregulated after ovulation as granulosa cells develop 

into luteal cells [115]. Meanwhile, the detection of high amounts of estrogens in the male 

semen can be explained by the expression of aromatase in different testicular cells. Carreau 

et al. reported the presence of physiologically active aromatase in Leydig cells, Sertoli cells, 

spermatocytes, spermatids, and ejaculated spermatozoa in males [116].

Aromatase is also highly expressed in the placenta of both human and non-human primates 

[117], as well as other extra-gonadal tissues including the thalamus, hypothalamus, and 

hippocampus, indicating that aromatase is expressed widely in numerous regions of human 

brain in both men and women [118]. Aromatase activity has also been reported in 

stromal cells and adipocytes [119]. In bone tissue, aromatase has been identified within 

the human fetal osteoblastic cell line (SV-HFO) [120], and human osteoblasts [121]. 

The human hepatocellular carcinoma cells and HepG2 hepatoma cells showed increase 

in estrogen biosynthesis upon treatment with androgen precursors such as testosterone 

or androstenedione, indicating elevated aromatase activity [122]. Western blotting and 

immunohistochemistry showed that aromatase is expressed in the adrenal cortex as well 

as in adrenocortical tumors [123,124]. In addition, aromatase activity was demonstrated by 
3[H2O] assay and gas chromatography-mass spectrometry in the parietal cells of the gastric 

mucosa [125]. It has also been previously reported that aromatase is expressed in epidermal 

keratinocytes and dermal fibroblasts [126,127]. In situ, hybridization revealed the presence 

of aromatase in human vascular smooth muscle cells but not in endothelial cells [128]. In 

men, aromatase is also expressed in the prostate [129]. Although extra-gonadal estrogen 

is synthesized in small amounts, its concentration is high enough to exert a biological 

effect locally [29]. Therefore, the disruption of aromatase homeostasis, accompanied by a 

disturbance in estrogen levels, will result in organ-specific effects.

3.3. Disruption of aromatase homeostasis

Both high and low levels of aromatase, and consequently high and low levels of estrogen, 

can cause a wide range of diseases and side effects [130]. Aromatase or estrogen excess-

driven pathologies include breast, prostate, lung, gastric, and hepatic cancers, polycystic 

ovary syndrome, endometriosis, obesity, short stature, male hypogonadism, gynecomastia, 

and testicular hypertrophy [130–132]. Aromatase or estrogen deficiency-induced pathologies 

include cardiovascular problems [36, 133], osteoporosis [36,130], hot flushes [134], 

vaginal dryness and vaginal atrophy [134], skin ageing, thinning and pigmentation [135, 

136], schizophrenia [130], Alzheimer’s disease [130], depression [137], insomnia [134], 
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neuropathies [36], and elevated aldosterone levels [138,139]. Fig. 4 illustrates the sites of 

aromatase expression and estrogen disturbance-related effects.

3.4. Regulation of aromatase enzyme

Aromatase enzyme is highly expressed in the ovarian granulosa cells [140]. The expression 

of aromatase is mainly induced by the follicle stimulating hormone which activates the 

transcription factor GATA4 that afterward activates other kinases, including ERK1/2, 

PKA, and PI3K [141]. Cyclic adenosine monophosphate (cAMP) is also involved in the 

transcription of aromatase [142]. In addition, it has been shown that the transcription of 

cardiac aromatase was stimulated by the administration of E2 therapy that can bind to ER to 

form a dimer which translocate into the nucleus where it can bind directly to the estrogen 

responsive element site on the aromatase gene (CYP19A1) [143]. E2 can also act indirectly 

by stimulating transcription factors [143].

4. Aromatase inhibitors (AIs)

4.1. Discovery of AIs

Historically, oophorectomy and adrenalectomy have been used to treat breast cancer [144]. 

The anti-epileptic medication, aminoglutethimide, was found to reduce the production 

of adrenal steroid hormones by blocking cytochrome P450 enzymes [145]. It was then 

recommended as a potential medical substitute to adrenalectomy for the treatment of breast 

cancer [146,147]. Later, it was discovered that the key mechanism of aminoglutethimide was 

the suppression of aromatase enzyme, which subsequently leads to a reduction in estrogen 

levels [148,149]. Aminoglutethimide was recognized as the first-generation AI [114]. In 

1981, the effect of using 4-hydroxy-androstenedione (4-OH-A) against breast cancer in 

post-menopausal women was reported [150, 151]. By the middle of the 1980 s, 4-OH-A was 

named formestane and was recognized as the first selective AI against breast cancer [152]. 

Formestane is considered as a second-generation AI [114].

Currently-used AIs (shown in Fig. 5) are classified into irreversible steroidal inhibitors 

(exemestane) and reversible non-steroidal inhibitors (anastrozole and letrozole) [153]. 

These AIs are nominated as third-generation AIs [114]. The third-generation AIs have 

an advantage over the first and second generations as they are well tolerated and highly 

selective for the aromatase enzyme [154]. In addition, third-generation AIs outperform the 

first- and second-generation AIs in terms of clinical benefit and near-complete specificity 

in clinical application [155]. However, long-term adverse effects of these drugs, such as 

skeletal and cardiovascular problems, must be carefully monitored [155].

4.2. Uses and side effects of AIs

AIs are currently approved by the United States Food and Drug Administration (FDA) 

for clinical use against ER-positive breast cancer in postmenopausal women [152,155]. 

However, AIs are not yet FDA-approved as risk-lowering agents in women who have not 

been diagnosed with breast cancer [156]. Although AIs demonstrated potential role against 

other estrogen-dependent conditions, their use is not yet FDA-approved. For instance, AIs 

showed therapeutic efficacy in improving endometriosis-associated pain [157–159], but their 
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use for endometriosis is still considered off-label [160]. Similarly, a case of male breast 

cancer responding to a combination of letrozole and palbociclib was reported [161]. Yet, AIs 

are not FDA-approved for male breast cancer [161].

Given that AIs work by suppressing the aromatization of androgens to estrogens, causing 

reduction in the estrogen level in the ovaries and peripheral organs [114,162], they reduce 

the favorable effects of estrogen on lipid profile and bone health [158]. The most common 

side effect associated with AIs is the joint pain and stiffness [158], which is probably 

associated with the suppression of cartilage-protective effect of estrogen [163]. Other 

side effects of AIs include hot flashes, mood disturbances, skin ulcers, and liver function 

abnormality, which are normally associated with the gradual decline in ovarian estrogen 

production after menopause [164].

The reduction in circulating estrogens caused by AIs, and subsequently, the decrease in 

estrogen-mediated protective effects on the cardiovascular system, may potentially lead to 

an increased risk of unfavorable cardiovascular events [157,158]. Indeed, several studies 

found that AI users had a higher incidence of adverse CVD outcomes, but the findings 

are not yet universally accepted [165]. In the next sub-section, we will discuss a number 

of meta-analysis studies analyzing randomized controlled trials (RCTs) and cohort studies. 

These studies report cardiovascular events associated with AIs vs. a comparator.

4.3. Controversies regarding the cardiotoxicity of AIs

Due to the documented role of estrogen in developing breast cancer, treatment options 

including ER blockers such as tamoxifen (TAM) or AIs [162] have been introduced as 

effective therapeutic options against invasive ER-positive breast cancer in postmenopausal 

women [166]. The use of AIs was evaluated in three different settings: (i) monotherapy/

upfront therapy (AIs instead of TAM), (ii) sequential therapy (TAM switched to AIs or vice 

versa), and (iii) extended therapy (AIs following five years treatment with TAM) [162]. 

Although TAM is the gold standard breast cancer therapy, a shift from TAM to AIs in 

the management of ER-positive breast cancer has occurred [166]. On the other hand, some 

studies reported that AIs are associated with greater incidence of cardiovascular events 

compared to TAM. Yet, the increased risk of cardiovascular events is still unclear whether it 

is due to actual cardiac toxicity of AIs or due to the potential cardioprotective effect of TAM 

[162].

TAM appeared to have positive cardioprotective effect throughout different mechanisms. 

Particularly, TAM reduces acetylcholine-induced vasoconstriction and potentiates 

adenosine-induced vasodilatory response, which thereby reduces blood pressure and 

coronary artery disease in ovariectomized spontaneously hypertensive rats, pointing to 

potential beneficial actions of TAM on coronary vascular health after menopause [167]. 

TAM has also demonstrated lipid-lowering effects, which is one of the prominent factors 

of protection against developing CVD. A study on postmenopausalpatients with early 

breast cancer showed that TAM reduces the total cholesterol and low-density lipoprotein 

cholesterol levels while it does not affect high-density lipoprotein cholesterol [168]. A 

recent study also affirmed the favorable effect of TAM on lipid profile and ameliorating 

dyslipidemia [169]. Of note, TAM is a selective ER modulator that elicits antagonistic 
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activity against ERα and ERβ, however, it has been shown to elicit agonistic activity 

towards GPER1 [170]. Whether GPER1 agonistic activity contributes to the protective 

actions of TAM remains to be tested.

4.3.1. Meta-analyses showing significant increase of CVD with AIs—A number 

of meta-analysis studies reported an increase in the cardiovascular events associated with 

the use of AIs vs. a comparator. In general, the studied population in the clinical trials 

consisted of postmenopausal women with ER-positive breast cancer. Amir et al. conducted 

a meta-analysis on seven RCTs comparing AIs with TAM in postmenopausal women with 

early-stage breast cancer [171]. Data were extracted from two trials evaluating monotherapy 

with AIs vs. TAM, four trials evaluating switching from TAM to AIs vs. TAM, and one 

trial evaluating switching from TAM to AIs vs. AIs [171]. The findings revealed that only 

using AIs vs. TAM or switching from TAM to AIs vs. AIs showed a statistically significant 

association between AIs and CVD [171]. In addition, the pooled analysis of the data for 

all three treatment settings showed that the use of AIs for a longer duration was related 

to a significant increase in the risks of acquiring CVD compared to short duration of AIs 

or the use of TAM [171]. One meta-analysis study revealed that AIs used in monotherapy 

and sequential therapy settings are correlated with higher incidence of cardiovascular events 

when compared with TAM [172]. A meta-analysis conducted by Khosrow-Khavar et al. 

reported that the pooled analysis of eight RCTs comparing AIs (monotherapy) vs. TAM 

and four RCTs comparing AIs vs. TAM followed by AIs (sequential therapy), showed an 

elevated risk of CVD associated with the use of AIs [173]. Goldvaser et al. collated seven 

RCTs in order to compare AIs (extended therapy) to placebo or no treatment [174]. The 

pooled analysis of the included studies reported a significant increase in the likelihood 

of developing cardiovascular events with the extended AIs therapy [174]. In a recent 

meta-analysis, the findings revealed that patients receiving AIs (monotherapy or sequential 

therapy) vs. TAM alone or TAM followed by AIs, were at greater risk of developing 

cardiovascular events [175].

Recently, Yoo et. al conducted a meta-analysis of twenty five studies to investigate the CVD 

side effects associated with AIs and to evaluate the relation between AIs and the changes in 

lipid profile in adult female breast cancer patients above 19 years old [176]. By comparing 

the post-AIs lipid profile to the baseline group after six months of treatment, a significant 

reduction in high-density lipoprotein cholesterol was observed [176].

4.3.2. Meta-analyses showing non-significant increase of CVD with AIs—
Despite the findings of the above studies that support the correlation between the use of AIs 

and cardiovascular events, some studies demonstrate statistically non-significant relationship 

between AIs and the occurrence of cardiovascular events. Yu et al. conducted meta-analysis 

study based on six RCTs, thirteen prospective cohort studies, and one retrospective cohort 

[177]. It was found that AIs were associated with an insignificant increase in the incidence 

of stroke, angina, MI, and HF in breast cancer patients compared to TAM [177]. Likewise, 

Sun et al. found that the pooled results of eight cohort studies revealed that there was no 

significant difference between AIs users and non-users in the incidence of MI, and HF 

[178]. Likewise, the combined analysis of four RCTs evaluating AIs (sequential therapy) 
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vs. TAM showed a non-statistically significant correlation between AIs and cardiovascular 

events [171]. In addition, some studies reported that the extended therapy with AIs is not 

associated with cardiovascular events [172,173, 175]. Further, the incidence of MI and HF 

was relatively higher in the AIs group than TAM group, but this difference did not reach 

statistical significance [176].

This lack of consistency in the data obtained from meta-analyes on the cardiovascular 

toxicity of AIs can be attributed to multiple factors. There is substantial population 

heterogeneity since some studies included subjects from different countries. Studies also 

varied in the inclusion of subjects with or without history of CVD and differed in the follow-

up time after treatment with AIs. Importanly, there were differences in how cardiovascular 

events were defined as some meta-analyses included cardiovascular-related risk factors 

such as hypertension and hypercholesteremia. Finally, methodological difference in the 

meta-analyses, such as the type of studies included whether RCTs or cohort studies, and 

whether AIs are compared to TAM, placebo or without a comparator, also contribute to 

variation in the findings.

4.4. AIs and renal toxicity

The impact of AIs on the renal system has not been sufficiently studied. There is a lack 

of RCTs that investigate the relationship between AIs and kidney function. However, 

a case of anastrozole-induced glomerulonephritis [179], and a case of letrozole-induced 

acute interstitial nephritis [180] were previously reported. Animal studies also showed an 

increase in the biomarkers of renal proximal tubular injury by chronic aromatase suppression 

with anastrozole in female rats [181]. The levels of urinary albumin and plasma urea 

were elevated in anastrozole-treated female rats fed a high salt diet [181]. Anastrozole 

increased the urinary excretion of the renal proximal tubule injury biomarker (kidney injury 

molecule-1), but the level of the glomerular injury biomarker (nephrin) was not elevated 

[181]. AIs can also induce renal toxicity by altering calcium reabsorption in the kidneys 

[182]. However, anastrozole attenuates diabetic renal disease in male rats as demonstrated 

by decreasing albuminuria, glomerulosclerosis, and tubulointerstitial fibrosis [183]. Because 

the former study was conducted on male rats, the results cannot be extrapolated to include 

females. In another study, letrozole administration in female rats resulted in a reduction 

in renal functions as well as micromorphological deteriorations [184]. This is due to 

the direct oxidative damage caused by letrozole and its metabolites [184]. In particular, 

letrozole causes a decrease in the expression of cytoprotective detoxification genes (nuclear 

factor erythroid 2-related factor 2, cytochrome-c, and caspase-3), an increase in hepatorenal 

lipid peroxides, and a decrease in glutathione and catalase enzyme [184]. Anastrazole 

treatment also produced similar results in female rats [185]. In light of these findings, further 

investigation is needed to determine if renal toxicity is a potential adverse effect of AIs.

5. Extra-gonadal aromatase and cardio-renal protection

A unique feature of extra-gonadally synthesized estrogens is being produced locally in 

concentrations high enough to exert local biological effects with limited systematic effects 

[29]. Despite the documented cardioprotective effects of estrogen, the use of estrogen-
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replacement therapy as a cardioprotective agent is still controversial [16]. This is due to 

the fact that estrogens have major off-target effects which include increased risks of breast 

and endometrial cancer, as well as thromboembolisms and strokes [186]. However, evidence 

suggests that the regulation of aromatase enzyme activity and expression protects against 

cardiac and vascular damage [187]. The aromatase enzyme was found to be expressed in 

the coronary endothelium and has an effect on the cardiac function and structural modelling 

as a result of the localized conversion of androgens to E2 in an acute MI male mouse 

model [187]. Bayard et al. also demonstrated the activity of aromatase enzyme using female 

rat arterial smooth muscle cells and bovine coronary endothelial cells in in-vitro models 

[188,189]. Another research revealed that aromatase activity is demonstrated in human 

arterial smooth muscle cells and therefore hypothesized that E2 produced in vascular smooth 

muscle cells regulates cardiac contractility and vascular tone (autocrine activity) while 

stimulating nitric oxide production and angiogenesis in endothelial cells (paracrine activity) 

[128]. In order to investigate whether upregulation of cardiac aromatase expression could 

improve ischemic resilience, Bell et al. conducted a study on hearts from male transgenic 

aromatase-overexpressing mice (AROM+), using an expression vector for human P-450 

aromatase [190]. The male AROM+ mice have lower testosterone and higher E2 levels 

than wild-type male mice. Interestingly, ischemic contracture are attenuated in AROM+ 

hearts, suggesting that aromatase regulation modulates cardiac performance after ischemia 

[190]. Another recent study found that HF is associated with local deficiency of cardiac 

estrogen and downregulation of aromatase, thus suggesting that the restoring the transcript 

level of cardiac aromatase can protect against HF [191]. Taken together, the abovementioned 

information indicate a need for more investigation into the potential role of extra-gonadal 

aromatization and the importance of restoring cardiac aromatase and enhancing estrogen 

signalling in conferring cardio-renal protection.

6. Conclusion and future prospects

Aromatase is localized in gonadal and extra-gonadal sites in the human body and plays 

a pivotal role in estrogen biosynthesis. For instance, it is established now that the brain 

can synthesize estrogen, and that brain aromatase is crucial for neuroprotection [192]. 

In this context, we propose that estrogenesis within the cardiovascular and renal systems 

may function to provide cardio-renal protection as well. We argue that aromatase has 

a fundamental effect in cardio-renal protection through increasing the level of estrogen. 

In other words, aromatase can function as a component of androgen metabolism that 

directly supplies estrogen to cardiovascular tissues. Future studies are required to properly 

understand this complex relationship, and identify the role of aromatization in preserving 

cardiovascular and renal health.
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Fig. 1. 
The Biosynthesis of estrogens. Created by Chemdraw Software.
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Fig. 2. 
Overview of renin angiotensin aldosterone system (RAAS) pathways showing primary 

receptor-mediated cardiovascular effects and influence of estrogen on RAAS components. 

*ACE: angiotensin-converting enzyme, Ang I: angiotensin I, Ang II: angiotensin II, Ang (1 

7): angiotensin 1–7, AT1: angiotensin II receptor 1, AT2: angiotensin II receptor 2, MasR: 

Mas receptor, (+) upregulation by estrogen, (-) downregulation by estrogen. Created in 

BioRender.com.
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Fig. 3. 
Biosynthesis of estrogen by aromatase. Created by Chemdraw Software.
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Fig. 4. 
The major sites of aromatase and the associated estrogen-disruption pathologies. (-) estrogen 

deficiency, (+) estrogen surplus. Created in BioRender.com.
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Fig. 5. 
Third generation aromatase inhibitors. Created by ChemDraw Software.
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Table 1

Protein, gene and HGNC ID designations for estrogen receptors.

Protein Gene HGNC ID

Estrogen receptor alpha (ERα) ESR1 3467

Estrogen receptor beta (ERβ) ESR2 3468

G protein-coupled estrogen receptor 1 (GPER1) GPER1 4485
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