Skip to main content
. 2024 Jan 24;10(3):e24727. doi: 10.1016/j.heliyon.2024.e24727

Table 4.

Thematic clusters based on keyword co-occurrence.

Cluster Cluster 1 (red) Cluster 2 (green) Cluster 3 (blue)
Cluster theme Disinformation in social media Techno-scientific research for auto-detection of fake news COVID-19-induced infodemics
TP 3273 4293 3983
TC/TP 15.6 15.6 17.9
TC 51141 66856 71370
Top ten keywords fake news
disinformation
twitter
media literacy
fact checking
post-truth
journalism
facebook
political communication
trust
machine learning
deep learning
natural language processing
deep fake
artificial intelligence
rumour
sentiment analysis
text classification
neural network
support vector machine
social media misinformation
covid-19
infodemic
coronavirus
pandemic
vaccination
internet
public health
health communication
vaccine hesitancy
Top three cited articles, their focus, number of citations Del Vicario, M.D. et al.
Misinformation online
TC = 1029
Wang, Y. et al.
Health Misinformation on Social Media
TC = 589
Zubiaga, A. et al.
Rumours in social media
TC = 79
Tandoc, E.C. et al.
Typology for fake news
TC = 981
Rossler, A. et al.
Machine learning detection
TC = 977
Ruchansky, N. et al.
Deep learning for fake news
TC = 588
Kata, A.
Anti-vaccine
TC = 584
Cinelli, M. et al.
COVID-10 infodemic
TC = 742
Pennycook, G. et al.
COVID-19 Misinformation
TC = 717

Next, we analyze the top three cited articles from each of the clusters.