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Brain tissue- and cell type-specific eQTL Mendelian
randomization reveals efficacy of FADS1 and FADS2 on
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Xueyan Wu1,2,6, Lei Jiang1,2,6, Hongyan Qi1,2,6, Chunyan Hu1,2, Xiaojing Jia1,2, Hong Lin1,2, Shuangyuan Wang1,2, Lin Lin1,2,
Yifang Zhang3, Ruizhi Zheng1,2, Mian Li1,2, Tiange Wang1,2, Zhiyun Zhao1,2, Min Xu1,2, Yu Xu1,2, Yuhong Chen1,2, Jie Zheng 1,2,4,5✉,
Yufang Bi 1,2✉ and Jieli Lu 1,2✉

© The Author(s) 2024

Epidemiological studies suggested an association between omega-3 fatty acids and cognitive function. However, the causal role of
the fatty acid desaturase (FADS) gene, which play a key role in regulating omega-3 fatty acids biosynthesis, on cognitive function is
unclear. Hence, we used two-sample Mendelian randomization (MR) to estimate the gene-specific causal effect of omega-3 fatty
acids (N= 114,999) on cognitive function (N= 300,486). Tissue- and cell type-specific effects of FADS1/FADS2 expression on
cognitive function were estimated using brain tissue cis-expression quantitative trait loci (cis-eQTL) datasets (GTEx, N ≤ 209;
MetaBrain, N ≤ 8,613) and single cell cis-eQTL data (N= 373), respectively. These causal effects were further evaluated in whole
blood cis-eQTL data (N ≤ 31,684). A series of sensitivity analyses were conducted to validate MR assumptions. Leave-one-out MR
showed a FADS gene-specific effect of omega-3 fatty acids on cognitive function [β=−1.3 × 10−2, 95% confidence interval (CI)
(−2.2 × 10−2, −5 × 10−3), P= 2 × 10−3]. Tissue-specific MR showed an effect of increased FADS1 expression in cerebellar
hemisphere and FADS2 expression in nucleus accumbens basal ganglia on maintaining cognitive function, while decreased FADS1
expression in nine brain tissues on maintaining cognitive function [colocalization probability (PP.H4) ranged from 71.7% to 100.0%].
Cell type-specific MR showed decreased FADS1/FADS2 expression in oligodendrocyte was associated with maintaining cognitive
function (PP.H4= 82.3%, respectively). Increased FADS1/FADS2 expression in whole blood showed an effect on cognitive function
maintenance (PP.H4= 86.6% and 88.4%, respectively). This study revealed putative causal effect of FADS1/FADS2 expression in
brain tissues and blood on cognitive function. These findings provided evidence to prioritize FADS gene as potential target gene for
maintenance of cognitive function.
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INTRODUCTION
Cognitive dysfunction is an important issue in the aging
population [1]. However, changes in brain function start to occur
several years before the diagnose of cognitive impairment [2].
Hence, identifying factors associated with the development of
cognitive impairment is of great societal interest.
Evidence suggested that fatty acids play an important role in

cognition [3]. Previous studies reported that omega-3 fatty acids
were associated with cognitive and mental health [4, 5]. However,
recent observational studies and randomized controlled trials
(RCTs) have shown inconsistent evidence [6–9]. Therefore, other
line of evidence is needed to clarify whether there is a causal
effect of omega-3 fatty acids on cognitive function. Omega-3 fatty
acids were influenced by genetic factors [10–12]. Delta-5
desaturase and delta-6 desaturase are key rate-limiting enzymes

that crucial in a series of elongation and desaturation reactions of
omega-3 fatty acids, which are encoded by two genes: fatty acid
desaturase 1 (FADS1) and fatty acid desaturase 2 (FADS2) [13, 14].
Several studies reported the associations between single nucleo-
tide polymorphisms (SNPs) in the FADS loci and omega-3 fatty
acids concentrations [15–17], implying that variants in the FADS
gene region modify the activity of polyunsaturated fatty acids
desaturation. However, evidence between FADS1/FADS2 gene
expression and their own cognitive impairment is limited [18]. In
addition, FADS1 and FADS2 gene are expressed in multiple human
tissues and cells. The role of expression levels of FADS1 and FADS2
in different tissues and cell types on cognitive function needs
further investigation.
Mendelian randomization (MR) analysis is an emerging method

that using genetic variants as instrumental variables (IVs) to infer
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the causal effect of an exposure on an outcome [5, 19–21]. Due to
specificity of IVs, the MR estimates are not commonly subject to
confounding bias and reverse causation [22]. MR has also been
applied to detect putative causal effect of tissue-specific gene
expression and a wide range of diseases using expression
quantitative trait loci (eQTLs) as instruments [23–25]. However,
the eQTL relationship was highly dependent on cell type and
eQTLs that from bulk tissue samples may mask the cell specificity
of genetic regulatory effects [26]. With development of novel
omics tools, especially single-cell sequencing technology [27–29]
and genetic colocalization methologies [30], estimating the effect
of gene on disease in single-cell level will provide novel insight of
disease etiology and molecular mechanism soon. In addition to
tissue specificity, recent studies have demonstrated that many
eQTL effects are cell type-specific [31], as well as genes showing
cell type-specific effects including FADS1 and FADS2 [27]. By using
eQTLs of diverse cell types will help us to supplement the
potential molecular mechanisms that underlie cognitive function.
Therefore, the aim of this study was to investigate the causal

effect of omega-3 fatty acids on cognitive function within and
outside the FADS region by using MR method. To identify
potential target gene, the tissue- and cell type-specific causal

effects of FADS1 and FADS2 gene expression on cognitive function
were evaluated using cis-eQTL-based MR and colocalization.

METHODS
Overall study design
Figure 1 presented the overall design of the study. In this study, i) we
applied a two-sample MR analysis to determine whether omega-3 fatty
acids have causal effect on cognitive function within and outside the FADS
region; ii) conducting tissue- and cell type-specific MR analyses to assess
tissue- and cell type-dependent effects of FADS1 and FADS2 expression in
brain and blood on cognitive function. It is important to note that we
applied the MR Steiger filtering approach to exclude cis-eQTLs with
potential reverse causality [32]. Ethical approval of all data was obtained in
the original studies.

Data sources
Genetic instruments of omega-3 fatty acids. Genome-wide association
study (GWAS) results in individuals of mostly European ancestry were
obtained from the UK Biobank (up to 114,999 individuals) for plasma
concentration of omega-3 fatty acids [33]. This is one of the largest
available GWASs of circulating polyunsaturated fatty acids. SNPs were
excluded if it had a minor allele frequency no more than 0.01 or did not
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Fig. 1 Flow chat of the whole study design. SNP single nucleotide polymorphism, eQTL expression quantitative trait loci, GWAS Genome-
wide association study, MR Mendelian randomization.
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reach the significant genome-wide association level (P ≤ 5 × 10−8) (Sup-
plementary Table 1).

Genetic instruments of FADS1 and FADS2 expression in brain
and blood. Brain tissue-specific cis-eQTL data of FADS1 and FADS2
expression was obtained from the GTEx project (v8; https://gtexportal.org/
home/). For each tissue, the independent cis-eQTL that passed the false
discovery rate (FDR) threshold (with FDR < 0.05) was selected as instrument
for the tissue-specific analysis, which resulted in 10 cis-eQTLs of the 10
tissues for FADS1 gene and nine cis-eQTLs of the nine tissues for FADS2
gene respectively (Supplementary Table 2A). Besides, the results were also
validated using the brain cis-eQTL data from the MetaBrain consortium
(https://www.metabrain.nl), which is a large scale eQTL meta-analysis of
previously published human brain eQTL datasets (N ≤ 8,613) [34]. For
consistency, we selected the significant cis-eQTLs (q-value < 0.05) for
FADS1 and FADS2 genes with FDR < 0.05. After selection, three cis-eQTLs of
FADS1 gene derived from three brain tissues were selected (Supplemen-
tary Table 2A).
Single-cell cis-eQTL data of FADS1 and FADS2 expression was obtained

from a brain cell type cis-eQTL study, which including eight brain cell types
from 373 brain samples that published by Bryois et al. [27]. The cis-eQTLs
(with FDR < 0.05) were identified in two cell types for FADS1 and one cell
type for FADS2 expression respectively. Same as tissue-specific instru-
ments, only cis-eQTL with the strongest association for each cell type was
selected as instrument for the cell-type specific analysis (Supplementary
Table 2B).
The cis-eQTL associations of FADS1 and FADS2 expression derived from

whole blood in 31,470 individuals made available by the eQTLGen
Consortium [35], and the study included rigorous quality control
(Supplementary Table 1).

Outcome data. The GWAS summary statistics of cognitive function was
extracted from Davies et al. [3], which included 300,486 individuals of
European ancestry from 57 population-based cohorts brought together by
the Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE), the Cognitive Genomics Consortium (COGENT) consortia, and
the UK Biobank. Cognitive function in the three cohorts was estimated by
applying a consistent method of extracting a general cognitive function
component from cognitive test, which has been reported in more details in
the original study [3] (Supplementary Table 3).

Statistical analyses
MR analysis of omega-3 fatty acids on cognitive function. For each omega-
3 fatty acids instrument set, we harmonized the SNP-omega-3 fatty acids
and SNP-cognitive function data and did the univariable MR analysis by
using the TwosampleMR R package (version 0.5.6). In total, 45 SNPs were
selected from the UK Biobank as IVs for omega-3 fatty acids, and the
primary analysis used the inverse variance weighted (IVW) method to
estimate the causal effect.

Leave-one-out analysis: We further conducted leave-one-out analysis
and assessed the causal effect of single SNP rs174564 within the FADS
region by using the Wald ratio method [36]. Considering the potential
effect of rs174564 on cognitive function, we further excluded it from 45
instruments for omega-3 fatty acids to estimate the causal effect of the
other variants outside the FADS region on cognitive function.

LD Score regression analysis of omega-3 fatty acids on cognitive function.
Considering the GWAS data of omega-3 fatty acids and cognitive function
have minor sample overlap, which may induce spurious correlation. We
employed linkage disequilibrium score regression (LDSC, v.1.0.1) analysis to
evaluate the genetic correlation between omega-3 fatty acids and cognitive
function and to test the existence of sample overlap [37, 38]. The LD scores
from the European 1000 Genomes Project dataset were referenced [39].

Tissue- and cell type-specific MR analyses
MR analysis of FADS1 and FADS2 expression in brain tissues on
cognitive function: For tissue-specific MR analysis, we estimated the
putative causal effects of FADS1 expression in 10 brain tissues and FADS2
expression in nine brain tissues using data from the GTEx. MR analysis of
FADS1 expression in three brain tissues on cognitive function were also
conducted using the MetaBrain data. The Wald ratio [36] method was used
since one instrument were available for each tissue. FDR correction was
applied using the Benjamini-Hochberg method [40].

MR analysis of FADS1 and FADS2 expression in brain single cell on
cognitive function: In cell type-specific MR analysis, the putative causal
effects of FADS1 expression in two brain cell types and FADS2 expression in
one brain cell type on cognitive function were estimated by using the
Wald ratio method [36]. FDR was computed using the Benjamini-Hochberg
method [40].

MR analysis of FADS1 and FADS2 expression in whole blood on
cognitive function: We further used three cis-eQTLs of FADS1 expression
and five cis-eQTLs of FADS2 expression derived from whole blood
respectively to estimate the causal effects of expression of these two genes
on cognitive function by using IVW method. Moreover, a novel MR method
with automated instrument determination (MRAID) was applied [41].

MR sensitivity analysis. We conducted a set of sensitivity analyses to
estimate the effects using methods that were robust to other forms of
pleiotropy using MR-Egger, weighted median, simple mode, and weighted
mode, as each method can obtain consistent estimate of the causal effect
if the pleiotropic effect is independent of the effect on the exposure.
Cochrane’s Q test for inverse variance weighted analysis was conducted to
assess the presence of heterogeneity between individual SNP [42].

Genetic colocalization analysis. To examine the posterior probability for a
shared causal variant between FADS1/FADS2 expression and cognitive
function for the candidate MR signal [43], we used a Bayesian
colocalization method that is noted as COLOC [30]. A colocalization
probability (PP.H4) > 70% would suggest that the two genetic association
signals are likely to share the same causal variant. Besides, we used an
approximate colocalization analysis which is called LD check [44]. We
estimated the linkage disequilibrium (LD) r2 between each cis-eQTL against
all variants with GWAS P < 1 × 10−3 in the region associated with cognitive
function. In this analysis, r2 > 0.7 between each cis-eQTL and cognitive
function variants was considered as approximate colocalization.

RESULTS
We selected 45 omega-3 fatty acids variants as instruments, which
were selected from Borges CM (N= 114,999). Besides, we selected
10 cis-eQTLs and nine cis-eQTLs respectively which is the
strongest cis-eQTL for each brain tissue from the GTEx v8
database, and three cis-eQTLs from the MetaBrain data for
tissue-specific MR analysis. For brain cell type-specific MR analysis,
we used two cis-eQTLs from two cell types and one cis-eQTL from
one cell type respectively that published from Bryois (N= 373). For
instruments of FADS1 and FADS2 expression in whole blood, we
selected three cis-eQTLs and five cis-eQTLs respectively that from
eQTLGen Consortium (N ≤ 31,684). All the above cis-eQTLs were
tested for Steiger filtering method so that there is no potential
reverse causality. For FADS1 and FADS2 expression in different
tissues, mean F statistics ranged from 8.5 to 581.5, indicating that
most instruments were unlikely to be subject to weak instrument
bias. F statistics for hippocampus and substantia nigra is less than
10 (Supplementary Table 2A). For FADS1 and FADS2 expression in
different cell types, the F statistics only for inhibitory neurons is
less than 10 (Supplementary Table 2B). We kept all instruments
but with caution that three of these cis-eQTL dataset could suffer
from weak instrument bias.

Effect of omega-3 fatty acids on cognitive function
We investigated the causal effect of omega-3 fatty acids on
cognitive function using genetic variants within and outside the
FADS region. Little evidence was observed to support a causal
effect using the IVW method [β=−6 × 10−3, 95% confidence
interval (CI) (−1.8 × 10−2, 6 × 10−3), P= 3.3 × 10−1], although
weighted median and weighted mode estimates suggested
potential causal effects [β=−1.2 × 10−2, 95% CI (−2 × 10−2,
−4 × 10−3), P= 3 × 10−3; β=−1.3 × 10−2, 95% CI (−2.1 × 10−2,
−5 × 10−3), P= 3 × 10−3, respectively] (Fig. 2A). Besides, strong
evidence of heterogeneity was observed for the overall effect of
omega-3 fatty acids on cognitive function (P-value of the Q

X. Wu et al.

3

Translational Psychiatry           (2024) 14:77 

https://gtexportal.org/home/
https://gtexportal.org/home/
https://www.metabrain.nl


test= 5.5 × 10−17) (Supplementary Table 4). Specially, leave-one-
out analysis indicated that the potential effect on cognitive
function was driven by a single variant, rs174564, within the FADS
region [β=−1.3 × 10−2, 95% CI (−2.2 × 10−2, −5 × 10−3),
P= 2 × 10−3] (Fig. 2B, Supplementary Fig. 1). The estimated effect
using instruments outside the FADS region showed little evidence
by using IVW and the other sensitivity MR methods (P > 0.05) (Fig.
2C). In addition, the LDSC results showed that there was no
genome-wide genetic correlation between omega-3 fatty acids
and cognitive function after controlling for sample overlap
(intercept=−1.3 × 10−2, P= 0.36, Supplementary Table 5).

Tissue- and cell type-specific effect of FADS1 and FADS2
expression on cognitive function
Due to the key role of FADS gene on cognitive function, we
investigated the tissue- and cell type-specific causal effect of
FADS1 and FADS2 expression on cognitive function (Figs. 3 and 4).
As brain is closely related to cognitive function, we focused on
explored the causal effect of FADS1 and FADS2 gene expression on
cognitive function using cis-eQTL data from 10 and nine brain
tissues respectively (e.g., amygdala, cortex, etc). The MR and
colocalization analyses suggested putative causal effects of FADS1
expression in 10 brain tissues and FADS2 expression in one brain
tissue on cognitive function, and these associations passed FDR
threshold of 0.05: increased expression levels of FADS1 gene in
cerebellar hemisphere showed a cognitive function maintenance
effect. While, decreased expression levels of FADS1 in nine
additional brain tissues showed effects on maintaining cognitive
function, including cerebellum, spinal cord cervical c-1, hypotha-
lamus, cortex, hippocampus, putamen basal ganglia, anterior
cingulate cortex BA24, caudate basal ganglia, and frontal Cortex
BA9. In addition, the significant results with colocalization
evidence for cerebellum, cortex and hippocampus were validated
in the MetaBrain data and were all directionally consistent with
the MR effects in GTEx (Fig. 3A). For FADS2, increased expression
levels in nucleus accumbens basal ganglia showed a possible
maintenance effect of cognitive function. The MR and colocaliza-
tion results suggested little evidence to support causality for
FADS2 in other eight brain tissues (Fig. 3B, Supplementary Table 6).
Secondly, we estimated the cell type-specific causal effect of

gene expression of FADS1 and FADS2 on cognitive function using

brain single-cell cis-eQTL data. FADS1 and FADS2 expression in one
cell type showed MR and colocalization evidence: decreased levels
of FADS1 and FADS2 expression in oligodendrocytes showed
cognitive function maintenance effect. Causal effect of FADS1
expression on cognitive function was not observed in inhibitory
neurons (Fig. 4, Supplementary Table 7).
In order to further verified the role of FADS1 and FADS2 gene

expression on cognitive function in whole blood, we estimated the
causal effect using three cis-eQTLs for FADS1 and five cis-eQTLs for
FADS2 respectively. MR analysis indicated that increased expression
levels of FADS1 and FADS2 in whole blood showed effects on
cognitive function maintenance [IVW β= 9 × 10−3, 95% CI (3 × 10−3,
1.5 × 10−2), P= 5 × 10−3; IVW β= 5 × 10−3, 95% CI (1 × 10−4,
1 × 10−2), P= 4.6 × 10−2; respectively]. In sensitivity analysis, weighted
median suggested that increased expression levels of FADS1 was
associated with maintenance of cognitive function [β= 9 × 10−3, 95%
CI (3 × 10−3, 1.5 × 10−2), P= 4 × 10−3], while the estimates showed
little causal evidence using other sensitivity MR methods (Fig. 5). Little
evidence of heterogeneity was observed (P-value of all the Q
test > 0.05) (Supplementary Table 4). The MRAID method showed that
FADS1 expression in whole blood had robust causal effect on
cognitive function (P= 0.02) and directionally consistent with the MR
effects from the IVW method, while the causal effect of FADS2 were
not observed (Supplementary Table 8). After performing colocaliza-
tion analysis with the candidate MR signal, we observed compelling
evidence of gene colocalization between expression of FADS1 and
FADS2 and cognitive function (PP.H4= 86.6% and 88.4%, respectively)
(Fig. 6, Supplementary Table 9).
Furthermore, to understand the link between omega-3 fatty

acids variants and FADS gene variants, we estimated the LD
between them. The omega-3 fatty acids variant rs174564 is
located in the intron of FADS2 gene and it is in strong LD (r2 > 0.7)
with several of the FADS1 and FADS2 cis-eQTLs/instruments we
used. This suggested that omega-3 fatty acids and FADS1/FADS2
cis-eQTLs are likely to represent the same genetic signal in the
FADS region. Therefore, the effect of FADS1/FADS2 expression on
cognitive function could be related to the omega-3 fatty acids
variant rs174564. The pairwise LD r2 between each cis-eQTL and
rs174564 was presented in Supplementary Table 10.
Finally, we attempted to identify potential mechanistic path-

ways between omega-3 fatty acids, FADS1/FADS2 genes, and
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Omega-3 fatty acids 45 Inverse variance weighted

MR Egger
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Fig. 2 Mendelian randomization analysis of the causal effect of omega-3 fatty acids on cognitive function within and outside the FADS
region. A All instruments of omega-3 fatty acids on cognitive function. B Single SNP within the FADS region of omega-3 fatty acids on
cognitive function. C SNPs outside the FADS region of omega-3 fatty acids on cognitive function. The vertical line in this plot indicates the null
of beta= 0 and the error bars correspond to 95% confidence intervals. CI confidence interval.
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cognitive function through MELODI Presto [45]. The results
showed that potential intermediates between omega-3 fatty acids
or FADS1/FADS2 genes and cognitive function were mostly
associated with metabolic or neurological diseases, such as non-
insulin dependent diabetes, metabolic syndrome, obesity and
Alzheimer’s disease (Supplementary Table 11).

DISCUSSION
In this study, we found that FADS1 and FADS2 expression in different
brain tissues and cell types showed causal effect on cognitive
function using genetic tools. Data on the expression of FADS1 and
FADS2 in whole blood further confirmed this finding. Our results
revealed that FADS1 and FADS2 are likely to be two causal genes
influencing cognitive function, while the FADS gene as potential
target gene, may be functional especially in specific cell type.
Previous epidemiology studies reported a protective effect of

omega-3 fatty acids on cognitive function, and this effect is
particularly pronounced in individuals with early and mild
cognitive impairment [46]. However, no benefit was observed

when subjects with diagnosed Alzheimer’s disease were supple-
mented with omega-3 fatty acids as well as in many other
population-based studies [47–49]. These inconsistencies may be
attributed to interventions in RCTs that have been carried out too
late to against the progression of cognitive impairment and are
vulnerable to confounding factors. In our MR analysis, we found a
weak negative association between omega-3 fatty acids and
cognitive function using some MR methods, while the sensitivity
analysis suggested strong evidence of heterogeneity, which
suggested that a few genes may drive the causal effect between
the two. Leave-one-out analysis further suggested that the effect
of omega-3 fatty acids on cognitive function is more likely to be
driven by SNP within the FADS gene region rather than a general
effect of omega-3 fatty acids.
As a natural extension, we investigated the impact of FADS1 and

FADS2 gene expression on cognitive function. The FADS variants have
been reported to be associated with cognitive function in previous
studies, but the association has only been studied in the context of
the effect of FADS gene variation on children or offspring [50–53].
Genetic variants in the FADS1/FADS2 region are associated with
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Fig. 3 Forest plot illustrating the brain tissue-dependent association for FADS1 and FADS2 expression on cognitive function. A FADS1.
B FADS2. The vertical line in this plot indicates the null of beta = 0 and the error bars correspond to 95% confidence intervals. Solid squares
represented results that passed the LD check, while hollow squares represented results that failed the LD check. Asterisks represented results
using the MetaBrain database.
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maternal long-chain polyunsaturated fatty acid status and could
modified cognitive development of infants [50]. In addition, FADS1/
FADS2 genetic variants have been reported to be associated with
behavioral outcomes in children [52, 53]. However, one issue to be
resolved is whether there is an association between FADS gene
expression and cognitive function, and whether this association is
influenced by tissue type, especially brain tissue. Our tissue-specific
MR analysis showed that increased levels of FADS1 expression in
cerebellar hemisphere and FADS2 expression in nucleus accumbens
basal ganglia may maintain cognitive function, while decreased levels
of FADS1 expression in other nine brain tissues, including cerebellum,
spinal cord cervical c-1, hypothalamus, cortex, hippocampus, puta-
men basal ganglia, anterior cingulate cortex BA24, caudate basal
ganglia, and frontal Cortex BA9, may benefit cognitive function
maintenance. It is accepted that the cerebellum played a possible role
in the mediation of cognitive processes [54]. Previous studies have
showed that individuals with Parkinson’s disease had significant
atrophy of left cerebellar hemisphere [55, 56]. A broad variety of
cognitive and linguistic deficits can occur after cerebellar damage
[57–59]. The most popular mechanism of cerebellar involvement in
cognitive functions is Schmahmann’s dysmetria of thought theory,
which assuming that the way the cerebellum regulates movement
may also influence mental processes [60]. Besides, basal ganglia are
critical for several cognitive, motor and emotional functions and are
part of a complex functional circuit [61–63]. Early animal experiments
confirmed the relationship between basal ganglia and cognitive and
memory function, which pointed out that this relationship may be
related to the cholinergic neuronal impulse transmission in the basal
ganglia and the role of dopamine neurons for reward learning
[64, 65]. Human studies have also reported that basal ganglia may
play an integrative role in cognitive information processing and that
the electrical activity of multifunctional clusters of neuronal popula-
tions may underlie this nonspecific integrative effect [66]. In this study,
we revealed a putative causal mechanism that increased expression
levels of FADS1 gene in cerebellar hemisphere and FADS2 gene in
nucleus accumbens basal ganglia are associated with maintenance of
cognitive function.
It is important to notice that eQTL effect of the same gene could

be different dependent on the tissues or cell types of the human

brain. In tissue-specific MR analysis, we observed that both FADS1
and FADS2 expression in cortex showed MR evidence, which
decreased FADS1 expression levels and increased FADS2 expres-
sion levels showed maintenance effect on cognitive function.
However, the causal effect of FADS2 were not confirmed by
colocalization evidence. Similar with cortex, decreased expression
levels of FADS1 in anterior cingulate cortex BA24 and frontal
cortex BA9 was associated with maintaining cognitive function.
This directional inconsistency may be due to the limitation of
tissue sample size or there may be different pathways involved in
FADS1/FADS2 expression in cortex on cognition. More datasets of
larger independent tissue-specific eQTL data and additional
genetic methods, such as transcriptome-wide association study
(TWAS), should be considered in future studies to further improve
the statistical power and identify true causal genes with functions
[67–70]. Previous studies have affirmed the role of the anterior
cingulate cortex and frontal cortex in social cognition and
cognitive control [55, 56, 71, 72], and we supplied new evidence
for this association at genetic level. Furthermore, our cell type-
specific MR analysis used single-cell brain cis-eQTL data high-
lighted the important role of FADS1/FADS2 gene in oligodendro-
cytes. Recently, Kenigsbuch et al. [73] confirmed that
oligodendrocyte state was associated with brain pathologies
among multiple central nervous system diseases. Our findings
provided new evidence that decreased expression levels of
FADS1/FADS2 in oligodendrocytes could influence cognitive
function. The potential mechanism causing the differences
between tissues and cells need further investigation.
To further verify our findings, we also used cis-eQTL data in

whole blood and found a protective effect of FADS1 and FADS2
expression in blood on cognition. Additionally, the causal effect of
FADS1 gene was also confirmed by MRAID method, which
provided additional evidence to prove the robustness of this
finding. As one of the main MR approaches, the IVW method relies
on pre-selected independent SNPs as instruments for MR analysis
and could not account for horizontal pleiotropy [74]. MRAID uses
multiple correlated genetic variants and account for correlated
and uncorrelated pleiotropy [41]. While, the causal effect of FADS2
gene was only observed using the IVW method. Despite the good
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Cell type Gene

Inhibitory neurons FADS1

Oligodendrocytes FADS1

Oligodendrocytes FADS2

Fig. 4 Forest plot illustrating the causal effect association for single cell gene expression of FADS1 and FADS2 on cognitive function. The
vertical line in this plot indicates the null of beta= 0 and the error bars correspond to 95% confidence intervals. Solid squares represented
results that passed the LD check, while hollow squares represented results that failed the LD check. CI confidence interval.
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Fig. 5 Mendelian randomization analysis of the causal effect of FADS1 and FADS2 gene expression in whole blood on cognitive function.
A FADS1. B FADS2. The vertical line in this plot indicates the null of beta= 0 and the error bars correspond to 95% confidence intervals. CI
confidence interval.
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statistical power from both IVW or MRAID analysis [41], the effect
of FADS2 on cognitive function needs to be investigated in future
studies. Importantly, our colocalization evidence confirmed the
causal effect of FADS1/FADS2 expression levels on cognitive
function. It is well known that FADS1 and FADS2 polymorphisms
could modulate fatty acid metabolism [75]. The results from
MELODI Presto also identified and prioritized metabolic and
neurological diseases as potential intermediates between omega-
3 fatty acids or FADS1/FADS2 genes and cognitive function, which
provided direction for future mechanistic studies.

There are some strengths in our study. First, we have used large-
scale GWAS data of omega-3 fatty acids, tissue and single-cell
sequencing cis-eQTL data of gene expression and GWAS data of
cognitive function, which brought good instrument strength and
statistical power to our study. Second, traditional studies tend to
focus on the association between omega-3 fatty acids and
cognition, while we proposed for the first time that FADS1 and
FADS2 expression in multiple brain tissues and cell types had
different effect on cognitive function. Third, we have supplemen-
ted the mechanism of cognition at the genetic level by providing
evidence to prioritize FADS1 and FADS2 as two potential target
genes on cognition, which could be functional in brain.
Our study has several limitations. Firstly, the instruments of

omega-3 fatty acids and a small proportion of the outcome
samples were obtained from the UK Biobank, which have minor
sample overlap issue. However, there was no sample overlap
between cis-eQTL data and the outcome GWAS, which means the
vast majority of the MR results will not be influenced by the
sample overlap issue. Secondly, there were limited number of
instruments for the cis-eQTL data, which means most of the MR
sensitivity methods such as MR-Egger were not applicable.
However, we systematically conducted colocalization analysis to
enhance the causal evidence of our findings. Thirdly, the F
statistics of hippocampus, substantia nigra and inhibitory neurons
were lower than the common threshold of 10, the weak
instrument bias need to be carefully considered when interpreting
the findings. However, our top findings were observed in
oligodendrocytes, which showed good instrument strength.
Large-scale single-cell eQTL studies are needed in the future to
provide better statistical power.
In conclusion, our MR analysis showed novel insight between

FADS1/FADS2 gene expression and cognitive function by using
tissue and single cell cis-eQTL data and state-of-the-art methods
such as genetic colocalization. Integrating these novel data and
methods suggested that FADS1 and FADS2 expression levels could
influence cognitive function in different brain tissues and cell
types. Our results provided clues for the understanding of the
genetic mechanism of cognitive function and improved the
current knowledge of FADS gene and cognition. Future studies are
needed to prioritize FADS1/FADS2 as potential target genes for
maintenance of cognitive function.
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