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1  |  INTRODUC TION

Liver fibrosis is linked to severe morbidity and mortality around the 
globe.1,2 A worldwide prevalence of 1.5 billion cases is estimated 
and accounts for more than a million deaths annually.3,4 Viral or 

parasite infections are the leading causes of liver fibrosis in devel-
oping nations, whereas excessive alcohol intake is the primary fac-
tor in industrialized nations.5,6 Autoimmune and metabolic diseases, 
drug-associated disorders and hereditary conditions are additional 
aetiologies of hepatic fibrosis.7–10 Regardless of their diverse causes, 
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Abstract
Liver fibrosis is a common chronic hepatic disease. This study aimed to investigate 
the effect of pitavastatin (Pit) against thioacetamide (TAA)-induced liver fibrosis. 
Rats were divided into four groups: (1) control group; (2) TAA group (100 mg/kg, i.p.) 
three times weekly for 2 weeks; (3 and 4) TAA/Pit-treated group, in which Pit was ad-
ministered orally (0.4 and 0.8 mg/kg/day) for 2 weeks following TAA injections. TAA 
caused liver damage manifested by elevated serum transaminases, reduced albumin 
and histological alterations. Hepatic malondialdehyde (MDA) was increased, and glu-
tathione (GSH) and superoxide dismutase (SOD) were decreased in TAA-administered 
rats. TAA upregulated the inflammatory markers NF-κB, NF-κB p65, TNF-α and IL-6. 
Treatment with Pit ameliorated serum transaminases, elevated serum albumin and 
prevented histopathological changes in TAA-intoxicated rats. Pit suppressed MDA, 
NF-κB, NF-κB p65, the inflammatory cytokines and PI3K mRNA in TAA-intoxicated 
rats. In addition, Pit enhanced hepatic antioxidants and boosted the nuclear factor 
erythroid 2–related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) mRNA. Moreover, 
immunohistological studies supported the ability of Pit to reduce liver fibrosis via sup-
pressing p-AKT expression. In conclusion, Pit effectively prevents TAA-induced liver 
fibrosis by attenuating oxidative stress and the inflammatory response. The hepato-
protective efficacy of Pit was associated with the upregulation of Nrf2/HO-1 and 
downregulation of NF-κB and PI3K/Akt signalling pathways.
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such injuries drive inflammation, and liver fibrosis becomes inevita-
ble sequelae of all chronic liver diseases.11,12

Reiterated liver insults lead to cellular damage, activation of my-
ofibroblasts and persistent inflammation.13 As a result, the wound 
healing response becomes abnormal, and an increased amount of re-
active oxygen species (ROS) is produced, which in turn, triggers the 
massive generation of inflammatory mediators, such as chemokines, 
cytokines, and multiple growth factors.14 Increased numbers of im-
mune and inflammatory cells may be attracted by chemokines; once 
there, cytokines and growth factors can bind to their specific recep-
tor, stimulating the production of several transcription factors and 
proteins.15 Consequently, regulatory pathways that support normal 
liver functions, cell development, proliferation and differentiation will 
also be disrupted. Collagen, elastin, and glycoproteins, among other 
extracellular matrix components (ECMs), will be made in large quan-
tities, deposited and regenerated in the peri-sinusoidal area.14 The 
aberrant overexpression of the enzymatic breakdown ‘matrix metal-
loproteinases (MMPs)’ and their corresponding antagonists causes 
matrix remodelling to begin. Moreover, the expression of genes that 
govern the production of interleukins, enzymes and growth factors 
is constantly upregulated.15 This causes a vicious cycle of liver dam-
age and repair that finally results in the disruption of liver processes, 
chronic inflammation and, ultimately, liver fibrosis.3,16,17

If untreated, fibrosis can lead to cirrhosis, hepatic failure and he-
patocarcinoma and potentially cause mortality. This process typically 
takes decades (about 20–30 years), although it can advance quickly, 
as in the case of biliary atresia, drug-induced liver damage, HIV/HCV 
coinfection, or HCV infections following liver transplantation.18 A 
great deal of work has been done to understand the pathophysi-
ology of fibrosis, which has led to the identification of prospective 
targets for antifibrotic drugs that could either slow down or reverse 
fibrosis.19

Pitavastatin is a cholesterol-lowering agent (statin) that was 
approved in 2009. It is also one of the foundations for treating 
and preventing atherosclerotic cardiovascular disease.20 Similar 
to other members of its class (statins), Pit works by inhibiting 
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in a 
competitive manner; it prevents HMG-CoA from being converted to 
mevalonic acid, the cholesterol precursor.21 More than 200 million 
users around the globe receive statins and have experienced positive 
effects, including lowering cardiovascular events and mortality.22 A 
great deal of recent evidence has shown that statin administration 
in patients with preexisting chronic liver conditions such as fibrosis, 
cirrhosis and hepatocellular carcinoma exerts no harmful effect on 
the liver.23 In fact, clinical trials on patients with chronic liver disease 
proved that liver enzymes were lower in the statin-treated group.22–24 
Some studies postulated that the beneficial action of statins, known 
as pleiotropic effects, would return to the inhibitory effect on cell 
proliferation, the anti-inflammatory action or the improvement in 
endothelial function, and the vaso-protective effect.25,26 Herein, we 
conducted a study to decipher the cell signalling pathway underlying 
the therapeutic effect of Pit in liver fibrosis; and to delineate a spe-
cific mechanism of action to statins in chronic liver diseases.

2  |  MATERIAL S AND METHODS

2.1  |  Animals

Wistar rats weighing 150–200 g and 5 months old were acquired from 
the Animal House Colony at the National Research Centre (NRC, 
Egypt). Twenty-four rats were housed on a 12-h light/dark cycle at 
ambient temperature (25°C). The animals were treated in accordance 
with national and international ethical standards. All the experiments 
followed the ethical guidelines established by the NRC's Committee 
on Animal Care and Use's ethics committees (Reg. No. 1041112022).

2.2  |  Chemicals

For induction of thioacetamide (TAA) toxicity, TAA was bought from 
Sigma-Aldrich (St Louis, MO, USA). For Pit treatments, Pit was ac-
quired from Western pharmaceutical industries, Egypt. Every other 
chemical used in the experiments had the highest purity and analyti-
cal grade. Freshly suspended Pit was orally administered at 0.4 and 
0.8 mg/kg in a 1% Tween 80 solution.

2.3  |  Experimental design

The rodents were split into four groups, each containing six animals; 
one was assigned as the negative control, one positive control, in 
addition to two Pit treatment groups. Rats in Group 1 (negative 
control group) were given an intraperitoneal (IP) injection of saline 
three times a week for two consecutive weeks. Rats in Group 2 (TAA 
group) received an intraperitoneal (IP) injection of TAA (100 mg/kg) 
three times a week for two consecutive weeks to cause liver fibro-
sis.27 Rats in groups three and four were given Pit orally ‘0.4 and 0.8 
mg/kg’28 every day for 2 weeks following the TAA injection.

2.4  |  Preparation of serum samples

The serum sampling was performed as per Metwaly et al.; the rats were 
deprived of food overnight. Subsequently, blood samples were taken, 
and the serum was separated by spinning the samples in a centrifuge 
at 3000 rpm and 4°C for 5 min. The resulting serum was then stored 
at −80°C for future use in the analysis of biochemical parameters.29

2.5  |  Liver tissue collection

Liver tissues were gathered and rinsed with a cold saline solution. They 
were divided into three portions. The initial portion was immediately 
frozen in liquid nitrogen and stored at −80°C for extracting mRNA. 
The second portion was homogenized with a mixture of 100 mg of 
tissue and 1 mL of iced 0.5% potassium chloride. This was followed 
by 1 min sonication and 10 min centrifugation at 3000 rpm at 4°C. 
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Subsequently, the resulting supernatant was separated and preserved 
at −80°C. This portion was intended for assessing hepatic glutathione 
(GSH) and MDA levels using colorimetric kits, as well as for measur-
ing NFκB, p-NFκB, TNF-α, IL-6, Nrf2, and HO-1 levels using enzyme-
linked immunosorbent assay (ELISA). The last portion was fixed in 10% 
buffered formalin, which was necessary for conducting further histo-
pathological and immune-histochemical examinations.

2.6  |  Liver function tests

To evaluate liver function, serum ALT, AST, and albumin levels were 
measured colorimetrically using commercial kits (Bio-diagnostic® 
kits Cat# AS 10 61 and AL 10 31, Cairo, Egypt).

2.7  |  Liver oxidative stress markers

The measurement of GSH content and MDA level ‘Catalog# K464-100 
and K739-100, BioVision, Milpitas Boulevard, Milpitas, USA’, was per-
formed calorimetrically according to the manufacturer's instructions.

2.8  |  ELISA assay

Protein concentrations were measured using commercially available 
enzyme-linked immunosorbent assay (ELISA) kits; NFκB, p-NFκB 
(Catalogue# MBS453975, MyBioSource, Inc., San Diego, CA 92195-
3308, USA), TNF-α (Catalogue# SL0889Mo, Sunlong Biotec Co. LTD, 
Zhejiang, China), IL-6 (Catalogue# K739-100, BioVision, Milpitas 
Boulevard, Milpitas, USA), Nrf2 (Catalogue# EH3417, Wuhan Fine 
Biotech Co., Ltd, China (430206)), and HO-1 (Catalogue# E4525-100, 
55 S. Milpitas Blvd., Milpitas, CA 95035 USA). The manufacturer's 
instructions were followed for each ELISA kit.

2.9  |  Histopathological and immune-histochemical 
examinations

According to the procedure of El-Said et al., the tissue was embed-
ded in 10% buffered formalin, liver tissues were fixed for 24 h. Then, 
dehydrated in different grades of alcohol, cleared in xylene, and 
embedded in paraffin wax. Using hematoxylin and eosin stain, the 
paraffin sections (4 μm) were stained. To avoid bias, the cells were 
examined by a blinded pathologist using a light microscope.30

2.10  |  Immune-histochemical examination of 
p-AKT expression

The other paraffin section from each group was used for immuno-
histochemical detection of the expression of p-AKT in various ex-
perimental groups using avidin-biotin-peroxidase according to the 
method described by.31

For the purpose of identifying a bound antigen and antibody, liver 
cuts were treated with antibodies for p-AKT (Abcam, Cambridge, 
MA, USA) at a dilution of 1:200 (v/v) and (Vactastain ABC perox-
idase kit, Vector Laboratories, Burlingame, USA). Chromagen 3, 
3-diaminobenzidine tetrahydrochloride was used to visualize each 
marker's expression (DAB, St Louis, MO, USA).

2.11  |  Statistical analysis

Before the statistical analysis, data values were checked for normality 
using the Shapiro test. The data are presented as means ± S.E. Data 
were processed by one-way anova followed by the Tukey–Kramer 
post hoc test. GraphPad Prism software (version 9, CA, USA) was 
employed to perform the statistical analysis and establish the repre-
sented graphs. The significance level was set to p < 0.05 for all statisti-
cal tests.32

3  |  RESULTS

3.1  |  Thioacetamide-induced alterations in sera 
parameters in rats

Liver damage, as revealed by ALT and AST activity (Figure 1A,B), by 
5.4- and 6.5-fold in relation to the negative control, and a reduction in 
albumin level (Figure 1C) by 57%, as a consequence of TAA exposure 
(Figure 1C). Pit administration at both 0.4 and 0.8 mg/kg reduced ALT 
and AST activity by about 75% and elevated the serum albumin level 
by 36% and 57%, respectively, compared to the TAA group.

3.2  |  Inhibition of the TAA-Induced oxidative stress 
by pitavastatin treatment

The degree of lipid peroxidation was evaluated by detecting malon-
dialdehyde (MDA), a result of lipid peroxidation. TAA-intoxicated 
rats had a 3.8-fold rise in MDA levels, while Pit (0.4 or 0.8 mg/
kg) treatment suppressed this increase by 43% and 58% relative 
to the TAA group (Figure  2A). Liver homogenates were tested 
for GSH level (Figure 2B) and superoxide dismutase (SOD) activ-
ity (Figure 2C), an intracellular antioxidant enzyme. TAA caused a 
decline in both the level of GSH and activity of SOD by 81% and 
77% relative to the control group. While the rats given Pit (0.4 or 
0.8 mg/kg) recovered the level GSH by 3.3- and 3.7-fold and the 
activity of SOD by 3.0-  and 3.4-fold relative to the TAA group, 
respectively.

3.3  |  Pitavastatin mitigates TAA-Induced hepatic 
inflammation in rats

To further explain the mechanism underlying the protective ef-
fect of Pit against liver fibrosis, the levels of NF-κB, p-NF-κB, TNF 
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and IL-6 were measured to evaluate the anti-inflammatory activity 
of Pit. TAA upregulated hepatic NF-κB (Figure 3A), p-NF-κB levels 
(Figure 3B), TNF-α (Figure 3C), and IL-6 (Figure 3D) by 4.8-, 4-, 4.1- 
and 4.7-fold compared to normal control. In contrast, Pit therapy 
dramatically downregulated NF-κB or p-NF-κB and its downstream 
signalling proinflammatory mediators, TNF-α and IL-6 by 61%, 46%, 
53%, and 60% for Pit 0.4 mg/kg dosage and by 68%, 57%, 61%, and 
68% for Pit 0.8 mg/kg dose, respectively.

3.4  |  Pitavastatin activates Nrf2/HO-1 signalling in 
TAA-Intoxicated rats

TAA downregulated the hepatic Nrf2 (Figure 4A) levels compared 
with the control group by 78%. Pit (0.4 or 0.8 mg/kg) upregulated 
hepatic Nrf2 by 3.3- and 3.7-fold relative to the TAA group. To 
confirm the Pit (0.4 or 0.8 mg/kg) activation in TAA-treated rats, 
HO-1, the downstream of Nrf2, was estimated, which showed 
a prominent rise by 2.2- and 2.8-fold relative to the TAA group 
(Figure 4B).

3.5  |  Effect of pitavastatin on Nrf2 and PI3K 
mRNA expression

The mRNA liver content of Nrf2 (Figure 5A) and PI3K (Figure 5B) 
showed that TAA caused a significant decrease in the Nrf2 and a 
significant increase in the PI3K by 80% and 2.8-fold relative to the 
control group. Pit (0.4 or 0.8 mg/kg) administration upregulated the 
mRNA of Nrf2 by 3.3- and 3.7-fold and downregulated PI3K by 53% 
and 61% compared to the TAA group.

3.6  |  Histopathological findings

Livers of control rats showed normal histological structure, normal 
central veins, portal areas, and hepatic cords (Figure 6A). Livers of 
TAA-cirrhotic model rats revealed capsular corrugation and marked 
parenchymal fibroplasia with portal-to-portal bridging fibrosis 
(Figure 6B). The portal areas showed increased fibrous tissue prolif-
eration that sends septa extending peripherally, dividing the paren-
chyma into pseudolobules, some of which are hyperplasic regenerated 

F I G U R E  1 Thioacetamide-induced alterations in the serum of Wistar rats (A) alanine, (B) aspartate aminotransferases, and (C) albumin. 
Each bar represents the mean ± SE of six rats. * versus normal control group, @ versus TAA group, # versus Pit (0.4 mg/kg) at p < 0.05. Pit, 
pitavastatin; TAA, thioacetamide.
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lobules. Along those sepat, there are proliferated bile ducts, few 
lymphoplasmacytes, and congested vessels. The hepatic cells within 
those regenerated nodules are larger in size with large magenta 
nuclei that sometimes-compressed other vacuolated hepatic cells 
(Figure 6C). Regarding rats treated with Pit following TAA adminis-
tration, examination of their livers showed that Pit could markedly 
retract hepatic fibroplasia, particularly with the higher dose group. 
No pseudo-lobulation was noticed in both groups. With 0.4 mg/kg 
Pit administration, only mild fibrous proliferation is observed in scat-
tered portal triads with or without incomplete peripheral extension 
accompanied by mild to moderate degrees of hepatocellular degen-
erative changes and scattered necrotic cells (Figure 6D). On the other 
hand, administering Pit at a dose of 0.8 mg/kg markedly curbed fi-
brous proliferation within the portal areas and hepatic parenchyma. 
Only some hepatocellular vacuolar degeneration and scarce necrotic 
cells were the only pronounced lesions (Figure 6E).

3.7  |  Immunohistochemistry findings

Regarding the p-Akt immune expression, the livers of control rats 
showed nil expression of p-Akt within the hepatic parenchymal cells 

(Figure 7A). While in TAA fibrotic model rats, a marked increase in 
the expression of p-Akt was noticed compared with the other ex-
perimental groups (Figure 7B). However, Pit administration at both 
doses (Figure 7C,D) markedly decreased the immune expression of 
p-Akt among the livers of the treated rats.

4  |  DISCUSSION

Statins have been recently prescribed for all chronic liver illnesses, 
and further hepatoprotective benefits are under clinical investi-
gation.33 Pit, a third-generation statin, is of special interest in the 
treatment of chronic liver disease, including fibrosis, cirrhosis, and 
hepatocellular carcinoma.21,26,34,35 It has the highest bioavailability 
among all statins (more than 60%); therefore, it is highly effective in 
low doses and will be readily absorbed with minimal side effects.36 
The possible hepatoprotective effects of Pit and the underlying 
mechanisms are being assessed in the current study.

TAA-induced liver fibrosis is a reliable model that exactly mimics 
the biochemical and histological changes of human liver fibrosis.6 
It was employed in the present study as it is associated with lower 
mortality rates than other models. ALT and AST are cytoplasmic in 

F I G U R E  2 Effect of pitavastatin on (A) malondialdehyde, (B) glutathione, and (C) superoxide dismutase activity in rat livers intoxicated 
with TAA. Each bar represents the mean ± SE of six rats. * versus normal control group, @ versus TAA group, # versus Pit (0.4 mg/kg) at 
p < 0.05. Pit, pitavastatin; TAA: thioacetamide.
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origin, and elevated serum levels, as shown in the TAA group, reflect 
cell membrane destruction and hepatocyte death.32,37–41 Our results 
indicated that, unlike all other statins, Pit undergoes minimal hepatic 
metabolism42 and does not cause any elevation in aminotransferase 

levels. Infect, Pit is a highly lipophilic agent that undergoes glucuronic 
acid conjugation, and a recent meta-analysis study demonstrated 
that only hydrophilic statins result in the risk of aminotransferase 
elevation.43 Therefore, we can state that the high-dose (0.8 mg/kg) 

F I G U R E  3 Pitavastatin mitigated inflammation in TAA-intoxicated rats. Pitavastatin decreased hepatic (A) NF-κB, (B) p-NF-κB, (C) TNF-α 
and (D) IL-6 in TAA rats. Each bar represents the mean ± SE of six rats. * versus normal control group, @ versus TAA group, # versus Pit 
(0.4 mg/kg) at p < 0.05. Pit, pitavastatin; TAA, thioacetamide.

F I G U R E  4 Pit-activated hepatic (A) Nrf2/ (B) HO-1 signalling in TAA-intoxicated rats. Each bar represents the mean ± SE of six rats. 
* versus normal control group, @ versus TAA group, # versus Pit (0.4 mg/kg) at p < 0.05. Pit, pitavastatin; TAA, thioacetamide.
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administration of Pit, which showed better control of aminotransfer-
ase, was associated with no signs of toxicity in liver fibrosis. In line 
with our data, the safety of statins for patients with liver dysfunction 
has also been reported in several clinical trials.44

Our results indicate that Pit (0.8 mg/kg) can reverse liver fi-
brosis by targeting two main pathways—NF-κB and PI3K/Nrf2/
HO-1—that capture inflammation, oxidative stress, and proliferation. 
Kupffer cells are an important contributor to HSC/HMF activation 
and liver fibrosis. They function to sense and remove pathogens 
and dangerous molecules via pattern-recognition receptors (PRRs), 

which detect danger signals, including lipopolysaccharide, chemical 
insults, and carcinogens.45 Upon TAA recognition, various inflam-
matory cytokines and chemokines were released by Kupfer cells, 
which stimulated HSCs and started the inflammation response.6 
TAA also activated NF-κB, which regulates the inflammatory re-
sponse in HSCs. This was further confirmed by the high content of 
Ser536-phosphorylated p65 (the active form of NF-κB). Accordingly, 
several NF-κB-dependent genes, including IL-6 and TNF-α, were up-
regulated in the TAA group. Our results demonstrated that Pit ex-
erts a potent anti-inflammatory effect, most probably via binding 

F I G U R E  5 Effect of pitavastatin on Nrf2 and PI3k mRNA expression. Each bar represents the mean ± SE of six rats. * versus normal 
control group, @ versus TAA group, # versus Pit (0.4 mg/kg) at p < 0.05. Pit, pitavastatin; TAA, thioacetamide.

F I G U R E  6 Effect of pitavastatin on histopathology findings. Hematoxylin and eosin stained liver sections. (A) liver of control rat showing 
normal parenchymal cells, portal triad (dotted arrow), and central vein (arrow). (B, C) liver of TAA administrated rat showing portal to portal 
bridging fibrosis (dotted arrow) with pseudolobulation (PL) and increased fibrous proliferation in portal areas, few lymphoplasmacytes (long 
arrow), proliferated bile ducteols (short arrow), vacuolated hepatocytes (insert) and few apoptotic cells. Pit (D) (0.4 mg/kg) and (E) (0.8 mg/kg) 
treated rats showing marked retraction of fibrous proliferation in portal areas (dotted arrow) and in hepatic parenchyma with only mild 
incomplete peripheral extension of fibrous septa (arrow) in the low dose treated rat.
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to NF-κB, curbing the formation of its active form, pNF-κB, and, in 
turn, inhibiting the downstream inflammatory response of NF-κB as 
represented in the reduced liver content of IL-6 and TNF-α.46

Oxidative stress is a common sequela of inflammation; ROS are 
highly generated in response to persistent inflammatory media-
tors. Nrf2 regulates the liver resistance to oxidants47; it mediates 
the expression of antioxidant-responsive elements (ARE), which in 
turn, initiate the transcription of several downstream antioxidant 
protective genes such as HO-1, SOD, and reduced glutathione 
(GSH).48 Herein, Pit played a dual function in preventing liver fibro-
sis: first, it greatly enhanced Nrf2 content and expression, allowing 
Nrf2 to inhibit the activation of hepatic stellate cells. Second, Pit 
increased the DNA-binding activity of Nrf2 and induced the ex-
pression (measured as liver content) of its target genes, HO-1, SOD, 
and GSH. Additionally, Pit—owing to its fundamental lipid-lowering 
effect—reduces the levels and oxidation of low-density lipoprotein; 
therefore, MDA, a lipid peroxidation byproduct, was significantly 
decreased upon Pit administration. Collectively, this confirms the 
cellular protective effect of Pit in liver fibrosis.49 It is worth noting 
that the MDA data presented in Figure 2A exhibited large error bars, 
particularly in the TAA group. This could be attributed to inherent 
individual variability in the degree of lipid peroxidation induced by 
TAA administration. Importantly, despite the variability, pitavasta-
tin treatment at both doses still significantly reduced MDA levels 
compared to the TAA group.35,37,50,51 The lack of dose-dependent 
difference in MDA suppression between the two pitavastatin doses 

could suggest a potential ceiling effect on lipid peroxidation inhibi-
tion even at the lower 0.4 mg/kg dose. However, further studies with 
larger sample sizes may be warranted to fully evaluate the dose–re-
sponse relationship.

The PI3K/AKT signalling pathway is intimately connected to the 
activation of hepatic stellate cells and the production of ECM.52,53 
Inhibition of the PI3K/AKT signalling has been shown to be effective 
in preventing liver damage, enhancing liver function, and reducing 
collagen synthesis and deposition.54,55 Therefore, one of the current 
approaches for treating liver fibrosis is to reduce PI3K/AKT activity. 
According to our findings, TAA increased the expression of PI3K and 
p-AKT, which is consistent with other research.56,57 In line with our 
findings in the rat model of TAA-induced hepatic fibrosis, the PCR 
and immunohistochemical analysis showed that Pit efficiently sup-
presses the PI3K/AKT signal pathway.58 These findings showed that 
the suppression of the PI3K/AKT signalling pathway by Pit could re-
duce hepatic fibrosis. Additionally, NF-κB signalling is governed by 
PI3K/AKT.59 Crosstalk between the PI3K/AKT and NF-κB pathways 
may have occurred in the current investigation because both of their 
activity was suppressed.

Beyond its lipid-lowering role, our study showed that Pit has 
beneficial pleiotropic effects that target key processes in the patho-
physiology of liver fibrosis. It acts on inflammation by decreasing 
the production of NF-kB, and hence the release of proinflammatory 
cytokines such as TNF-α and IL-6, and it decreases the level of oxi-
dative stress by stimulating the Nrf2/HO-1 pathways.

F I G U R E  7 Photograph of liver slices stained with antibodies. Normal control (A), TAA group (B), and Pit-treated groups 0.4 or 0.8 mg/kg 
(C,D).
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It is important to note that our investigation focused on a con-
cise acute model, facilitating the monitoring of liver fibrosis progres-
sion. This approach serves as a valuable clinical tool for safeguarding 
patients' livers, preventing the progression to advanced stages of 
hepatic fibrosis. Moreover, it provided a reliable means to histologi-
cally induce substantial bridging fibrosis while mitigating the risk of 
increased animal mortality associated with more prolonged expo-
sures. This model was studied previously in studies.27,37,50,51,60

The observed antifibrotic effects and mechanisms of pitavastatin 
in a rat model of TAA-induced liver fibrosis suggest its potential for 
clinical use. Given its existing approval and favourable safety profile, 
repurposing pitavastatin for hepatic fibrosis treatment in patients 
appears feasible and could offer a streamlined path for clinical trans-
lation. However, additional pharmacokinetic studies are required to 
determine the optimal dosing regimen that can safely replicate the 
antifibrotic concentrations achieved in this preclinical study. The 
next steps should involve clinical trials assessing pitavastatin's effi-
cacy as a monotherapy or in combination with other agents for liver 
fibrosis across various causes. In summary, this study establishes a 
robust preclinical foundation, supporting the need for future clinical 
investigations into pitavastatin as a therapy for liver fibrosis.

5  |  CONCLUSIONS

The current investigation results show that Pit is very efficient in 
reducing TAA-induced liver fibrosis, which is probably mediated by 
its ability to inhibit oxidative stress and lipid peroxidation as an an-
tioxidant. It has the ability to reduce inflammation by blocking the 
NF-κB pathway, which triggers the production of inflammatory me-
diators like TNF-α and IL-6. As a result of activating Nrf2, increasing 
HO-1, suppressing PI3K activity, and inhibiting Akt phosphorylation, 
Pit therapy improved the oxidative stress state of rat livers. This 
indicates that this improvement is associated with the Nrf2/HO-1 
signalling pathway. Pit exhibited antifibrotic properties against TAA-
induced liver fibrosis in rats. These findings suggest that Pit may 
have therapeutic potential for reducing hepatic inflammation and its 
development into fibrosis.

The antifibrotic effects and mechanisms demonstrated for pi-
tavastatin in the rat model of TAA-induced liver fibrosis provide sup-
port for its potential clinical application. As pitavastatin is already an 
approved medication with a favourable safety profile, repurposing it 
for hepatic fibrosis treatment in patients is feasible and could provide 
an expedited path for clinical translation. Further pharmacokinetic 
studies are still needed to determine the optimal dosing regimen 
that could safely reproduce the antifibrotic hepatic concentrations 
achieved in this preclinical study. Clinical trials evaluating the antifi-
brotic efficacy of pitavastatin monotherapy or in combination with 
other agents in patients with liver fibrosis of various aetiologies are 
warranted. Overall, the present study provides a strong preclinical 
basis to motivate future clinical investigation of pitavastatin for liver 
fibrosis therapy.
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