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Graphical Abstract

1. We present the first comprehensive characterisation of the TME in CM at
single-cell and spatial resolution.
2. Myxoma tumour cells included EC-like and MSC-like tumour cells, with the
former potentially being differentiated directly from the latter.
3. The immune microenvironment of CM contained multiple factors that pro-
mote immune evasion, highlighting the potential of using immunotherapies as
a treatment option.
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Abstract
Background:Cardiacmyxoma (CM) is themost common (58%–80%) type of pri-
mary cardiac tumours. Currently, there is a need to develop medical therapies,
especially for patients not physically suitable for surgeries. However, the mech-
anisms that shape the tumour microenvironment (TME) in CM remain largely
unknown,which impedes the development of targeted therapies.Here,we aimed
to dissect the TME in CM at single-cell and spatial resolution.
Methods: We performed single-cell transcriptomic sequencing and Visium
CytAssist spatial transcriptomic (ST) assays on tumour samples from patients
with CM. A comprehensive analysis was performed, including unsupervised
clustering, RNA velocity, clonal substructure inference of tumour cells and
cell–cell communication.
Results: Unsupervised clustering of 34 759 cells identified 12 clusters, which
were assigned to endothelial cells (ECs), mesenchymal stroma cells (MSCs),
and tumour-infiltrating immune cells. Myxoma tumour cells were found to
encompass two closely related phenotypic states, namely, EC-like tumour cells
(ETCs) and MSC-like tumour cells (MTCs). According to RNA velocity, our
findings suggest that ETCs may be directly differentiated from MTCs. The
immune microenvironment of CM was found to contain multiple factors that
promote immune suppression and evasion, underscoring the potential of using
immunotherapies as a treatment option. Hyperactive signals sent primarily by
tumour cells were identified, such as MDK, HGF, chemerin, and GDF15 sig-
nalling. Finally, the ST assay uncovered spatial features of the subclusters,
proximal cell–cell communication, and clonal evolution of myxoma tumour
cells.
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Conclusions: Our study presents the first comprehensive characterisation of
the TME in CM at both single-cell and spatial resolution. Our study provides
novel insight into the differentiation of myxoma tumour cells and advance our
understanding of the TME in CM. Given the rarity of cardiac tumours, our study
provides invaluable datasets and promotes the development of medical therapies
for CM.

KEYWORDS
cardiac myxoma, myxoma tumour cell, single-cell RNA sequencing, spatial transcriptomics,
tumour microenvironment

1 INTRODUCTION

Primary cardiac tumours (PCTs) are extremely rare, rang-
ing from.001% to.03% in prevalence.1 Cardiac myxoma
(CM) stands as the most prevalent type among PCTs in
adults, accounting for 58% to 80% of cases.1 CM usually
develops in the atria and has been histologically defined as
a benign neoplasm. However, the designation of benignity
may underestimate its potentially devastating impact on
the patient. CM may cause life-threatening consequences,
such as stroke and heart failure.2 As of now, the sole defini-
tive treatment for CM is surgical resection. Nonetheless,
there is a need to develop targetedmedical therapies tomit-
igate the tumour progression, especially in patients who
are not physically suitable for surgeries.3
Histologically, tumour cells of CM typically form

perivascular ring structures, which are embedded in a
mucopolysaccharide myxoid matrix.4,5 Histopathological
analysis indicates that vascular and endothelial differenti-
ation may be the typical paths of myxoma tumour cells,6
although other lineages, such as neural, muscular, and
chondroid lineages, have also been reported.3 Therefore, it
has been postulated that myxoma tumour cells may orig-
inate from multipotent mesenchymal cells.7 However, the
histogenesis of CM has been uncertain until a recent study
proposed that atrialmyxoma is initiated from c-kit+ CD31−
CD45− cardiac progenitor/stem cells.8 Nevertheless, we
still lack a systematic understanding of the differentiation
trajectory and transcriptomic heterogeneity of myxoma
tumour cells.
The intricate ecosystem of the tumour microenvi-

ronment (TME) encompasses tumour cells, infiltrated
immune cells, other tissue-resident cell types, and noncel-
lular components, which interact with each other and col-
lectively influence tumour progression.9 However, factors
shaping the TME in CM remain poorly understood, which
hinders the understanding of the mechanisms underly-
ing tumour progression and impedes the development of
targeted therapies.Unlike conventional bulk-based expres-

sion profiling technologies, single-cell RNA sequencing
(scRNA-seq) enables precise dissection of the TME.10 In
addition, spatial transcriptomic (ST) profiling is a power-
ful technique that provides physical location information
not captured in scRNA-seq data, thus greatly expanding
our ability to understand the TME underlying tumour
progression.11
In this study, we sought to dissect the TME in CM at

single-cell and spatial resolution. Our analyses provide
novel insight into the differentiation of myxoma tumour
cells and advance our understanding of the TME in CM.

2 MATERIALS ANDMETHODS

2.1 Study subjects and tumour tissue
collection

For scRNA-seq, we enrolled CM patients (n = 11) who
had undergone surgical resection at Fuwai Hospital, the
ChineseAcademy ofMedical Sciences (Table S1). The diag-
nosis of CM for each patient was confirmed histopatho-
logically. In addition, there were no signs to support a
diagnosis of the Carney complex. CM tissues were iso-
lated during surgical resection. Tissues of nine patients
were immediately placed in precooled saline for tissue dis-
sociation. Additionally, formalin-fixed paraffin-embedded
(FFPE) tissue blocks from three of the nine enrolled
patients were prepared and subjected to ST assays. There-
fore, samples from three patients had both scRNA-seq and
ST data. Tissue blocks from two additional patients were
also subjected to ST assays.

2.2 Single-cell suspension preparation

Fresh CM tissue was dissected into small fragments,
and subjected to a single-cold phosphate-buffered saline
(PBS) wash. The tissue fragments were then transferred
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to a 15 mL centrifuge tube with a 10 mL enzyme mix-
ture (130-095-929, Miltenyi Biotec) prepared according to
the manufacturer’s instructions (9.35 mL DMEM, 50 μL
Enzyme A, 200 μL Enzyme R, and 400 μL Enzyme H).
Then, the tube was placed on a table concentrator for
30 min (37◦C, 100×g). Single-cell suspensions obtained
underwent filtration through strainers of 100 and 40 μm
to eliminate cellular debris and tissue. Afterward, the cell
suspensions underwent centrifugation, with subsequent
double washes at 500×g for 3 min at 4◦C. The result-
ing pellets were then resuspended in PBS. Measurement
of cell concentration and viability was conducted using a
Countstar Rigel S3 cell counter (Alit Biotech, Shanghai).

2.3 Single-cell transcriptomic
sequencing

The single-cell suspension was applied to a Chromium
Controller (10X Genomics). Employing the Chromium
Next GEM Single Cell 3ʹ Reagent Kits v3.1, libraries for
single-cell gene expression were prepared. Subsequently,
sequencing of the libraries occurred on a system of Illu-
mina NovaSeq 6000.

2.4 Preprocessing of the scRNA-seq data

The sequencing readswere processed using theCellRanger
software suite (v6.1.1), which aligned the reads to the
human reference genome (version: refdata-gex-GRCh38-
2020-A) and finally produced a gene–barcode matrix. For
quality control, the matrix was then imported into the R
package Seurat (v4.3.0).12 To eliminate genes identified as
a result of random noise, those with counts in fewer than
three cells were excluded. To eliminate cells of suboptimal
quality, filtration was performed using criteria such as the
number of genes, the count of uniquemolecular identifiers
(UMIs), the proportion of ribosomal genes, and proportion
of mitochondrial genes. The thresholds applied to each
sample are provided in Table S2. To further remove dou-
blets, cells were excluded if the predicted doublet scores by
Scrublet (v0.2.3)13 > .3.

2.5 Normalisation, integration,
dimensional reduction and clustering of
the scRNA-seq data

The UMI count for each cell was normalised to 10 000 and
subsequently subjected to log transformation. With the
“vst” method, highly variable genes were selected for each
sample. To address potential batch effects, an integration

of cells from all samples was performed using canoni-
cal correlation analysis. Additionally, unwanted sources of
variation, including UMI count, gene number, cell cycle
score, and the proportion of mitochondrial genes, were
mitigated through regression using linear models. Subse-
quently, the scaled data underwent principal component
analysis (PCA). The initial 30 PCA components were
employed to generate a shared nearest neighbour (SNN)
graph. The resulting SNN graph was then embedded in
a two-dimensional space with Uniform Manifold Approx-
imation and Projection (UMAP). The original Louvain
algorithm was used to perform the clustering of cells. All
analyses mentioned above were carried out using Seurat
(v4.3.0).12

2.6 Differential gene expression
analysis

Differentially expressed genes between endothelial cell
(EC)-like tumour cells and left atrial ECs of normal
hearts, as well as between mesenchymal stroma cell
(MSC)-like tumour cells of CM and left atrial fibrob-
lasts of normal hearts were detected using the R pack-
age DEsingle (v1.18.0).14 The significance criteria were
as follows: adjusted p-value < .05, absolute log2 fold
change > 1, and categorisation as “general differen-
tial expression” (the gene is different between condi-
tions in terms of both the fraction of real zeros and
expression abundance). The single-cell/nucleus expres-
sion data of normal hearts from 14 individuals15 were
downloaded from the Heart Cell Atlas database (https://
www.heartcellatlas.org/v1.html). The file names of the
downloaded data were “hca_heart_vascular_raw.h5ad”
and “hca_heart_fibroblasts_raw.h5ad”. To detect the gene
signature of subclusters, the function “FindAllMarkers”
of Seurat was used (test.use = “bimod”, min.pct = .1,
logfc.threshold = .25 and return.thresh = .01).

2.7 Functional enrichment analysis

Functional enrichment of a set of genes was con-
ducted using CluoGO (v2.5.9)16 under default settings.
A Bonferroni-corrected p-value threshold of < .05 was
employed to determine statistical significance.

2.8 Copy number profile inference and
clonal substructure analysis

The R package SCEVAN (v1.0.1)17 was used to infer the
copy number profile based on scRNA-seq or ST data

https://www.heartcellatlas.org/v1.html
https://www.heartcellatlas.org/v1.html
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under default settings. Cellular classification (tumour
or normal cells) and intratumour clonal substructure
inference within a single sample were conducted using
the pipeline “pipelineCNA”. Intertumoural comparison
amongmultiple samples was performed using the pipeline
“multiSampleComparisonClonalCN.”

2.9 High-dimensional weighted gene
co-expression network analysis

TheRpackage hdWGCNA (v0.2.04),18 which is compatible
with the high-dimensional scRNA-seq data, was utilised
to conduct weighted gene co-expression network analysis
with default settings.

2.10 RNA velocity analysis

RNA velocity analysis was carried out using scVelo
(v0.2.4).19 In brief, the quantification of spliced and
unspliced mRNA expressions in each cell for every sample
was performed using the tool Velocyto (v0.17.17).20 Then,
the first- and second-order moments were calculated with
the first 30 PCA components. RNA velocities were esti-
mated using a dynamical model and velocity graphs were
constructed. In the end, the velocities were visualised in
the form of streamlines. Genes with high likelihoods in the
dynamic model were considered potential key genes.

2.11 10x Genomics visium CytAssist
spatial transcriptomic assay

The isolation of total RNA from FFPE tissue blocks was
achieved using the RNeasy FFPE kit (73504, Qiagen). The
quality assessment of the extracted RNAwas performed by
calculatingDV200. Tissue sections passing the quality con-
trol (DV200> 50%)were subjected to ST assay by following
the protocol of Visium CytAssist Spatial Gene Expres-
sion for FFPE (10x Genomics). Briefly, the tissue sections
were placed on Sigma–Aldrich Poly Prep Slides and dried
overnight. Then, the slides underwent incubation at 60◦C
for a duration of 2 h followed by deparaffinisation. Subse-
quently, the sections were stained with H&E and imaged
at 20× magnification in brightfield using a Leica Ape-
rio Versa 8 whole-slide scanner (Leica, Germany). For
the H&E-stained sections, decrosslinking was carried out
immediately and then probe panels covering the entire
human transcriptome were incorporated. After the probe
pairs were hybridised with their target transcripts, the
slides were placed on a Visium CytAssist instrument for
permeabilisation and RNase treatment. Subsequently, the

ligated probes underwent hybridisation with spatially bar-
coded oligonucleotides. In the final step, libraries for
STs were prepared from the probes and subsequently
sequenced on a system of Illumina NovaSeq 6000.

2.12 Spatial transcriptomic data
processing

The tool kit Space Ranger (v2.0.0) was used to perform
tissue/fiducial detection, read alignment, and UMI count-
ing of the ST data of each section. The obtained gene–spot
matrices were then imported into Seurat for downstream
analysis. Briefly, the expression was normalised for each
section using the SCTransform procedure. Then, the data
from different sections were integrated using the canoni-
cal correlation analysis procedure to correct for technical
differences. After PCA reduction, the first 20 PCA compo-
nents were used to construct an SNN graph. The clustering
of spots was carried out using the original Louvain algo-
rithm. To integrate the ST data with the scRNA-seq data,
the anchor-based integration workflow of Seurat was
applied to assign each spot a prediction score for each sub-
cluster that were obtained from the single-cell analysis.
The predicted composition of cell types and subclusters
identified by the scRNA-seq data was visualised at the spot
level for each CM tissue section using the function “decon-
volution_plot” in the Python package stLearn (v0.4.12).21
Spatially proximal cell–cell communition inference from
the spatial data was performed using CellChat v222 under
default settings.

2.13 Intercellular communication
analysis based on scRNA-seq data

CellChat (v1.6.1)23 was employed to deduce ligand–
receptor interactions between cell types. In brief, overex-
pressed receptors or ligands in each cell type were identi-
fied, and the potential strength of interactions between any
two cell types was determined using a probability value of
communication. To identify significant interactions, a per-
mutation test was executed with a significance threshold
set at p-value < .05. This involved random permutations
of cell-type labels, followed by the recalculation of the
communication probability.

2.14 Single-molecule fluorescence in
situ hybridisation

We performed single-molecule fluorescence in situ
hybridisation (smFISH) on FFPE CM sections of 5 μm
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thickness using the RNAscope Multiplex Fluorescent
Reagent Kit v2 (323100, Advanced Cell Diagnostics).
Fluorescence signals were scanned with the Vectra Polaris
pathology imaging system (PerkinElmer, USA). The target
gene probes were as follows: Hs-CDH5-C2 (437451-C2,
Advanced Cell Diagnostics), Hs-NPR3-C3 (431241-C3,
Advanced Cell Diagnostics), Hs-CCDC3-C1 (1220531-C1,
Advanced Cell Diagnostics), Hs-MIA (533581, Advanced
Cell Diagnostics), Hs-PDGFRA-C3 (604481-C3, Advanced
Cell Diagnostics), Hs-CPE-C2 (454101-C2, Advanced Cell
Diagnostics) and Hs-TSPAN8-C2 (816551-C2, Advanced
Cell Diagnostics).

2.15 Inferring microenvironmental
regulation of immune checkpoint
expression in tumour cells

scMLnet (v.0.1.0)24 was used to infer intercellular commu-
nications between CM tumour cells (receivers) and other
cell types (senders), as well as intracellular regulatory net-
works of immune checkpoint expression in CM tumour
cells. Default parameters were used.

2.16 Statistical analysis

All statistical analyses were performed using R. Dif-
ferences between two groups were compared using a
two-tailed Wilcoxon rank sum test.

3 RESULTS

3.1 The single-cell transcriptomic
landscape of cardiac myxoma

We performed scRNA-seq of tumour tissue samples from
nine patients with CM (Figure 1A and Table S1). After
quality filtering, 34 759 cells were clustered into 12 clus-
ters (Figure 1B and Table S2). According to the expression
of canonical markers for each cell type, these clusters
were assigned to different cell types (Figure 1C). Tumour-
infiltrating immune cells accounted for the majority
(73.4%) of the captured cells. The nonimmune counterpart
involved two cellular identities: ECs (marked by CDH5)
and MSCs (marked by PDGFRA). Notably, ECs and MSCs
were located closely adjacent to each other in the UMAP
space (Figure 1B), instead of being in separate clusters
as typically observed in normal tissues. This implies a
potential transition between them. The cellular composi-
tion varied significantly among samples, reflecting high
intertumoural heterogeneity (Figure 1D). The expression

signature for each cell type in CMwas identified (Figure 1E
and Table S3).
Next, to identifymyxoma tumour cells, we examined the

expression of canonical diagnostic markers for myxoma
tumour cells, including CALB2 (encoding calretinin) and
THBD (encoding thrombomodulin; Figure 1F).3 Notably,
CALB2 was highly expressed in the MSC cluster but was
also expressed in the EC cluster. Moreover, we exam-
ined the expression ofmore previously reportedmarkers3,6
across all cell types (Figure S1). Many were expressed in
both the EC and MSC clusters, such as HAND2, GATA4,
SOX9, FGF2 and CD34. Together, our data showed that the
EC and MSC clusters may represent two phenotypic states
of myxoma tumour cells, hereafter referred to as EC-like
tumour cells (ETCs) and MSC-like tumour cells (MTCs).

3.2 Tumour/normal cell classification
and clonal substructure inference based on
copy number profiles

To confirm the tumour identity of ETCs and MTCs, we
applied the tumour /normal cell classification methods
implemented in the R package SCEVAN, which infers
copy number profiles based on single-cell transcriptomic
data. Notably, the analysis uncovered substantial copy
number variations (CNVs), by which the cells were clas-
sified as either tumour cells or normal cells (Figure 2A).
While immune cells were expectedly classified as nor-
mal cells, ETCs and MTCs were classified as tumour
cells (Figure 2B), which reinforced our inference above
based on marker gene expression: myxoma tumour cells
harboured endothelial or mesenchymal identities. Fur-
thermore, significant intratumour genomic heterogeneity
was observed and a complex clonal substructure was
uncovered (Figure 2C,D and Figures S2–S5). For example,
six subclones of tumour cells were identified with different
CNV profiles in sample CM11. In addition to some shared
CNVs among samples, there were many sample-specific
CNVs in tumour cells, reflecting significant intertumoural
heterogeneity (Figure 2E). Together, similar to malignant
tumours, tumour cells in CM also demonstrated sub-
stantial genomic rearrangements and exhibited significant
intra- and intertumoural genomic heterogeneity.

3.3 Transcriptomic heterogeneity of the
mesenchymal stroma cell-like tumour cells
in cardiac myxoma

To decipher the transcriptomic heterogeneity of the
MSC-like tumour cells, we performed secondary clus-
tering and identified two subclusters (Figure 3A and
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Table S4). Subcluster MTC1 was marked by the expression
of CPE, which encodes carboxypeptidase E (Figure 3B).
Subcluster MTC0 was characterised by high expression of
TSPAN8 (encoding tetraspanin 8), which is overexpressed
in many cancers,25 and CD34, a common marker for
diverse progenitors.26 The presence of the two subclusters
MTC0 and MTC1 was confirmed by smFISH (Figure 3C).
Functional enrichment analysis of the signature genes
for each subcluster (Figure 3D) was performed. Notably,
the signature genes of MTC1 were significantly enriched
for connective tissue development-related gene ontol-
ogy (GO) terms (e.g., “mesenchyme development” and
“skeletal system development”) and terms associated with
degenerative changes such as necrosis (e.g., “positive
regulation of fibroblast apoptotic process”), calcification
(e.g., “regulation of ossification”), and myxoid matrix
production (e.g., “extracellular matrix organisation” and
“glycosaminoglycan metabolic process”; Figure S6A and
Table S5). These findings suggest that MTC1 may repre-
sent a differentiated state of tumour cells characterised by
myxoid matrix production and degenerative changes. The
signature genes of MTC0 were enriched for vasculature-
related terms such as “vasculature development” and
“regulation of angiogenesis”, suggesting that MTC0 had
properties of vasculature progenitors.
Moreover, RNA velocity analysis suggested a poten-

tial transition from MTC0 to MTC1 (Figure 3E), implying
that MTC1 may represent a more differentiated/activated
state relative to MTC0. To further characterise the
functional properties of the subclusters and to identify
functional gene modules associated with each subclus-
ter, we performed co-expression network analysis using
hdWGCNA.18 A total of 19 gene modules were identi-
fied in the co-expression network of MSC-like tumour
cells (Figure 3F and Figure S6D). Modules M10, M11 and
M16 were significantly associated with subcluster MTC1,
while modules M5, M7 and M8 were associated with
MTC0 (Figure 3G). Notably, module M10 (LDHA as the
top hub gene) was enriched for degenerative processes
(e.g., hypoxia, necrosis and calcification)-related terms
(Figure 3H), while module M5 (CD34 as the top hub gene)

was particularly enriched for endothelium-related terms
(Figure 3I and Table S6).

3.4 Transcriptomic heterogeneity and
differentiation dynamics of the endothelial
cell-like tumour cells in cardiac myxoma

Compared with left atrial ECs in healthy hearts,15 EC-
like tumour cells in CM exhibited significant activation
of various development-related pathways (Figure S7 and
Table S7), reflecting their large differences from normal
ECs. Secondary clustering identified two subclusters, ETC1
(marked by CCDC3) and ETC0 (marked by MIA), in EC-
like tumour cells (Figure 4A,B and Table S8). Notably, few
cells of the two subclusters expressed markers for human
heart capillaryECs (e.g.,RGCC andCA4), arterial ECs (e.g.,
SEMA3G), or venous ECs, for example, ACKR1,15 whereas
both subclusters expressed the pan-EC marker CDH5 and
markers for endocardial ECs (e.g., NPR3 and SMOC1;
Figure S8A), suggesting endocardial EC-like differentia-
tion of tumour cells. The presence of the two subclusters
was confirmed by smFISH (Figure 4C). The signature
genes of ETC1 (Figure 4D) were mainly enriched for terms
related to differentiation, migration, and development of
ECs (Figure S8B and Table S9), suggesting that ETC1 rep-
resented a more differentiated state of ETCs. Subcluster
ETC0 was adjacent to MTCs in the UMAP space (Figure
S9) and expressed the MSCmarker PDGFRA (Figure S4B),
reflecting that it might have progenitor properties. In sup-
port of this, RNA velocity analysis suggested a potential
differentiation trajectory of ETC0-to-ETC1 (Figure 4E).
Moreover, RNA velocity analysis suggested that ETCs may
be directly differentiated fromMTCs (Figure S10), support-
ing the view that ECs may be the typical destination of
myxoma cell differentiation.6
In addition, co-expression network analysis identified 14

co-expression modules in the EC-like tumour cells (Figure
S8D,E and Table S10), many of which exhibited differences
in expression activity between subclusters (Figure 4F).
Transcriptomic dynamics during the differentiation were

F IGURE 1 Single-cell transcriptomic landscape of CM. (A) Schematic representation of the experimental procedure. CM tissues from
patients (n = 11) were collected during surgical resection. Fresh samples from nine patients were individually subjected to scRNA-seq, and
FFPE tissue sections from five patients were subjected to ST assays. Three patients had both single-cell and ST data available and two patients
had only ST data. (B) UMAP visualisation of cellular identity. (C) Expression distribution of the marker gene(s) for each cell type. The
visualisation was enhanced by gene-weighted density estimation using the R package Nebulosa to recover the signal from dropped-out
features. (D) Relative proportion of each cell type in each sample. (E) Heatmap showing the expression of representative signature genes for
each cell type. (F) UMAP (upper panel) and dot plots (lower panel) showing the expression of the canonical markers CALB2 and THBD for
myxoma tumour cells in each cellular cluster. BC, B cell; cDC, conventional plasmacytoid dendritic cell; EC, endothelial cell; MSC,
mesenchymal stroma cell; Macro, macrophage; Mono, monocyte; NK, natural killer cell; NKT, natural killer T cell; pDC, plasmacytoid
dendritic cell; TC, T cell; CM, cardiac myxoma; ST, spatial transcriptomic; scRNA, single-cell RNA; UMAP, UniformManifold Approximation
and Projection.
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F IGURE 2 Tumour/normal cell classification and clonal substructure inference in CM based on copy number profiles inferred by the
scRNA-seq data. (A) Classification of myxoma cells as tumour cells and normal cells based on the copy number profile in sample CM11. (B)
Alluvial plot showing that the myxoma cells with EC or MSC identities were classified as tumour cells in sample CM11. (C) Copy number
profile of each subclone in tumour cells of sample CM11. (D) Phylogenetic tree showing the intratumoural clonal substructure of sample
CM11. (E) OncoPrint-like plot highlighting intertumoural heterogeneity in CM. The above analyses were performed using the method
implemented in the R package SCEVAN. Only four samples were considered because they had a relatively high proportion of tumour cells. In
A–D, the results are shown for a representative sample CM11. AMP, amplification; CNV, copy number variation; CM, cardiac myxoma; DEL:
deletion; scRNA-seq, single-cell RNA-seq.

uncovered (Figure 4G and Table S11). To prioritise the
potential key genes driving the differentiation, we set
stringent criteria: the gene must be within the top 5% of
genes ranked by likelihood in the RNA velocity dynamic
model and be one of the hub genes of co-expression

modules (defined as the top 10 genes ranked by eigengene-
based connectivity). A total of six potential key genes
were identified, includingMIA, TIMP1, SPON1, PLA2G2A,
TCF4 and CCDC80 (Figure 4H). Notably, MIA, PLA2G2A
and TIMP1 have previously been recognised as diagnos-
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tic markers of endothelial cell.27 The expression levels
of TCF4, SPON1 and CCDC80 increased over the latent
time, which may function in the activation/maintenance
of endothelial cell-related transcription programs.

3.5 Tumour immune
microenvironment in cardiac myxoma
dissected at single-cell resolution

To dissect the immune microenvironment in CM, sec-
ondary clustering of tumour -infiltrating lymphoid or
myeloid cells was performed. Exhausted T cell subclus-
ters Lym0 and Lym1, characterised by the expression of
inhibitory receptor genes such as CTLA4, PDCD1 and
LAG328 were identified in CD8+ and CD4+ T cells, respec-
tively (Figure 5A, Figure S11A, and Table S12). In addition,
naive CD4+ T cells (Lym6; marked by expression of
CCR7, SELL and LEF1; Figure S11B) and regulatory T
cells (Lym10; marked by FOXP3) were found (Figure 5B).
Notably, the exhausted T cell subclusters (Lym0 and Lym1)
accounted for a relatively high proportion of lymphoid
cells (28%−49%) in each sample (Figure 5C), which were
potential cellular targets of immunotherapies. Secondary
clustering of myeloid cells uncovered five subclusters of
macrophages (Figure 5D–F and Table S13). All of these
subclusters represented M2-like macrophages marked by
the expression of CD163 and MRC1 (Figure S11C), which
potentially contribute to tumour progression.29
Moreover, we examined the expression of genes encod-

ing tumour-associated immune checkpoint receptors and
ligands across cell types (Figure 5G). Myxoma tumour
cells, including ETCs and MTCs, expressed a relatively
high level of genes encoding most immune checkpoint
ligands, such as galectin-3, PD-L1, VSIG-3, CD155, CD112
andCEACAM1. The corresponding receptorswere primar-
ily expressed either by T cells (e.g., PD1, LAG3, TIGIT
and CTLA4) or macrophages/monocytes (e.g., VISTA and
TIM-3). Moreover, scMLnet was employed to deduce intra-
cellular regulatory networks potentially activated through

intercellular communications, governing the expression of
inhibitory immune checkpoint ligands in CM tumour cells
(Figure S12 and Table S14). Although scMLnet was unable
to deduce intracellular regulatory networks for the expres-
sion of PD-L1, VSIG-3 and CD112, the regulatory networks
of galectin-3, CEACAM1 and CD155 were constructed.
Notably, the results indicated that T cells, normally sup-
pressed by bindingwith the inhibitory immune checkpoint
ligands expressed by tumour cells, were also potentially
involved in regulating the expression of the three immune
checkpoint ligand genes in CM tumour cells. For exam-
ple, extracellular signal ligands sent by T cells, such as
OSM and MFNG, may bind with the receptors LIFR and
NOTCH1, respectively, on the cell surface of MTCs. This
binding may activate the intracellular expression of the
transcription factor RUNX1, ultimately resulting in the
upregulation of galectin-3 (encoded by LGALS3).
Overall, the immune microenvironment of CM was

found to contain multiple aspects that promote immune
suppression and evasion.

3.6 Intercellular communication
analysis uncovers hyperactive signals sent
primarily by myxoma tumour cells

Next, we sought to infer the intercellular communication
network in CM using CellChat. The tumour cell clusters
(i.e., MTC and ETC) sent or received the largest number
of signals (Figure 6A and Table S15), reflecting that the
communicationnetworkwas orchestrated primarily by the
tumour cells. While the tumour cells exhibited the great-
est strength (i.e., communication probability) of outgoing
signals, macrophages had the greatest strength of incom-
ing signals (Figure 6B,C). Furthermore, we identified the
secreted signalling pathways that were activated in CM,
as shown in Figure 6D. We focused on the hyperactive
signals primarily sent by the tumour cells. For example,
midkine growth factor (encoded by MDK) is known to
be highly expressed in numerous malignant tumours and

F IGURE 3 Transcriptomic heterogeneity of the MSC-like tumour cells in CM. (A) The subclusters of MSC-like tumour cells identified
by secondary clustering. (B) Expression distribution of representative marker genes. (C) The presence of the two major subclusters confirmed
by smFISH. Scale bar: 10 μm. Ring-like structures formed by tumour cells are displayed. (D) Heatmap showing the expression of the top
signature genes for each subcluster. (E) Differentiation trajectory (left panel) and latent time (right panel) in MSC-like tumour cells inferred
by RNA velocity analysis. The arrows indicate differentiation directions. (F) Gene co-expression network of MSC-like tumour cells. Each dot
denotes a single gene. The dot is colour-coded by the gene module. The dot size is scaled by the gene’s eigengene-based connectivity (kME).
The top three genes ranked by kME of each module are shown. (G) Subcluster-specific gene modules identified by differential module
eigengene analysis. Two-tailed Wilcoxon rank sum test. The significance threshold was set to an absolute log2 (fold change) value > 1 and a
p-value adjusted for multiple testing < .05. (H) Functional enrichment of subcluster MTC1-specific gene module M10. (I) Functional
enrichment of subcluster MTC0-specific gene module M5. In (H,I), only representative gene ontology terms for biological processes are
shown. Hypergeometric tests were performed for the functional enrichment analysis using ClueGO (significance threshold: p-value adjusted
for multiple testing < .05). CM, cardiac myxoma; MSC, mesenchymal stroma cell; smFISH, single-molecule fluorescence in situ hybridisation.
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plays diverse roles in the tumour development.30 We found
that MDK was primarily expressed by myxoma tumour
cells, and was significantly overexpressed when compared
to left atrial fibroblasts in normal hearts (Figure 6E and
Table S16). The receivers of MDK signalling were found
to involve nearly all cell types present in CM (Figure 6E),
reflecting its multiple roles in driving tumour progression.
Similarly, we observed other hyperactive signalling path-
ways in CM, such as HGF signalling, chemerin signalling,
and GDF15 signalling (Figure 6F–H). These findings in
CM were consistent with reports in many malignant
tumours.30–32 This implies that therapeutic strategies tar-
geting these signalling molecules in malignant tumours
may have potential efficacy for the treatment of CM.

3.7 Spatial features of the subclusters,
proximal cell–cell communication, and
clonal evolution of myxoma tumour cells
based on spatially resolved transcriptomics

To characterise the TME in situ, we conducted ST assays
on tissue sections from five patients (Tables S1 and S2).
According to haematoxylin and eosin (H&E) staining,
the tumour cells, which typically formed ring or cord-
like structures, were concentrated within a specific area
of section S81555 (indicated by a black box; Figure 7A),
while a diffuse distribution of the tumour cell struc-
tures was observed in most other sections (Figure 7B
and Figure S13). The ST spots of all sections were clus-
tered and the spot clusters were annotated to their major
cell types based on the expression of lineage markers
(Figure 7C, Figure S14, andTable S17). A total of five ST spot
clusters were annotated to tumour cells (marked by rela-
tively high expression of CALB2; Figure 7D). Notably, few
macrophages/monocytes (sc1) and T cells (sc12) infiltrated
the tumour cell-enriched region, which was filled with
abundant mucopolysaccharides (grey in H&E staining;
Figure 7A), reflecting the secretion of an abundant myx-

oid matrix as a mechanism of immune escape for myxoma
tumour cells. The relative proportions of the spot clusters
varied significantly among different samples (Figure 7E).
The expression of secreted protein-coding genes, including
MDK, HGF, RARRES2, GDF15, IL6 andMIA, was concen-
trated in the tumour cell-enriched region (Figure 7F), thus
confirming the expression specificity of these signalling
molecules.
To integrate the scRNA-seq data,we adopted the anchor-

based integration workflow of Seurat, which enables prob-
abilistic classification of cell types or subclusters for each
ST spot. The predicted composition of cell types or subclus-
ters identified by the scRNA-seq data was visualised at the
spot level for each CM tissue section (Figures S15–S19). In
line with the composition analysis derived from scRNA-
seq data, MTC, particularly subclusterMTC1, was found to
constitute the largest proportion within the tissue section.
However, the predicted proportion based on the ST data
generally exceeded that of scRNA-seq due to the low reso-
lution of ST spots. For instance, MTC was found to be the
predominant cell type in both tissue section S81555 (com-
prising 63% of ST spots; Figure 1D) and the sample (CM6)
from the same patient in scRNA-seq (accounting for 42.2%;
Figure S15). Notably, MTC1 was located close to the centre
of the tumour cell-enriched region filled with a thick myx-
oid matrix (Figure 7G and Figure S15), which explained
why its signature genes were enriched for degenerative
processes (e.g., hypoxia, necrosis and calcification). In con-
trast, MTC0, a less activated state of tumour cells, was
located relatively distant from the centre. Next, spatially
proximal cell–cell communication was inferred from the
ST data of the representative section S81555 (Figure S20A)
using the R package CellChat v2, which incorporates
the spatial location information of cells.22 Tumour cells
(comprising ETCs and MTCs) and macrophages consti-
tuted a dense module of communication (Figure S20B,C).
Consistent with the results of single-cell data (Figure 6),
MDK signalling, HGF signalling, chemerin signalling, and
GDF15 signalling were also observed to be hyperactive

F IGURE 4 Transcriptomic heterogeneity and differentiation dynamics of the EC-like tumour cells in CM. (A) Two subclusters of
EC-like tumour cells identified by secondary clustering. (B) Expression distribution of representative marker genes. (C) The presence of the
two subclusters confirmed by smFISH. Scale bar: 10 μm. Ring-like structures formed by tumour cells are displayed. (D) Heatmap showing the
expression of the top signature genes for each subcluster. (E) Differentiation trajectory (left panel) and latent time (right panel) in EC-like
tumour cells inferred by RNA velocity analysis. (F) Subcluster-specific gene modules identified by differential module eigengene analysis.
Two-tailed Wilcoxon rank sum test. The significance threshold was set to an absolute log2 (fold change) value > 1 and a p-value adjusted for
multiple testing < .05. (G) Heatmap showing expression dynamics during the differentiation of EC-like tumour cells (ETC0-to-ETC1). Genes
whose expression was dynamically changed over latent time were clustered into four gene clusters (I–IV). Representative genes and enriched
gene ontology terms of each gene cluster are shown. The color of each module is consistent with that presented in (f). (H) Potential key genes
driving the differentiation of EC-like tumour cells. The annotation shown on the panel, for example, “II, M2_1, and 13.2″ on the panel of the
geneMIA, denotes thatMIA belongs to gene cluster II, and is also the top hub gene of gene module M2 with a log2 (fold change) of 13.2 in
expression between EC-like tumour cells in CM and left atrial ECs of healthy hearts. EC, endothelial cell; CM, cardiac myxoma; smFISH,
single-molecule fluorescence in situ hybridisation.
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F IGURE 5 Tumour immune microenvironment in CM dissected at a single-cell resolution. (A) The UMAP plot showing subclusters of
lymphoid cells. The small panel shows cells color-coded by the cell type. (B) The dot plot showing the expression of marker genes for each
subcluster of lymphoid cells. (C) Relative proportion of each subcluster of lymphoid cells in each sample. (D) The UMAP plot showing
subclusters of myeloid cells. The small panel shows cells color-coded by cell type. (E) The dot plot showing the expression of marker genes for
each subcluster of myeloid cells. (F) Relative proportion of each subcluster of myeloid cells in each sample. (G) The dot plot showing the
expression of tumour -associated immune checkpoint receptors (in red) and ligands (in black). CM, cardiac myxoma; ETC, EC-like tumour
cell; MTC, MSC-like tumour cell; UMAP, Uniform Manifold Approximation and Projection.
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signals primarily sent by the tumour cells based on the
ST data (Figure S20D). The spatially proximal cell–cell
communication analysis consolidated the signalling net-
works of these pathways inferred from the single-cell data
(Figure S20E–G and Figure 6). For example, the ligand of
the chemerin signalling pathway, RARRES2, was primar-
ily sent byMTCs andwasmainly received bymacrophages
(Figure S20E and Figure 6G), reflecting that tumour cells
may regulate the phenotype of macrophages through the
secretion of RARRES2.
In addition, the copy number profile inferred based on

the ST data generally distinguished tumoural from nor-
mal spots (Figure 7H). The subclones of tumour cells were
distributed in circles around the centre of the tumour
cell-enriched region (Figure 7I), reflecting phenotypic
changes in CM tumour cells potentially through subclone
evolution.

4 DISCUSSION

Developing targeted medical therapies for CM is essen-
tial to avoid surgeries, especially for patients who are not
physically suitable for surgeries due to reasons such as
advanced age, tumour location and risks of complications.
Understanding the cellular composition, differentiation
trajectory, regulatory network and cell-to-cell interactions
in the TME is of fundamental importance for elucidat-
ing the mechanisms underlying tumour progression and
developing targeted drugs. Here, we characterised the
TME in CM at a single-cell and spatial resolution for the
first time. Based on marker gene expression and copy
number profiles, we found that myxoma tumour cells
encompassed two closely related phenotypic states, that
is, ETCs and MTCs. The transcriptomic heterogeneity of
tumour cells was found to be driven primarily by differ-
entiation/activation stages. Based on RNA velocity and

expression analyses, we found that ETCs may be directly
differentiated from MTCs. Furthermore, potential key
genes driving ETC differentiation were identified, includ-
ing MIA, TIMP1, SPON1, PLA2G2A, TCF4 and CCDC80.
The immune microenvironment of CM was found to
contain multiple factors that promote immune suppres-
sion and evasion, underscoring the potential of using
immunotherapies as a treatment option for this tumour.
The intercellular communication network in CM was
found to be orchestrated primarily by tumour cells, and
hyperactive signals sent primarily by tumour cells were
identified, such as MDK, HGF, chemerin and GDF15 sig-
nalling. Finally, the spatial features of the subpopulation
distribution and clonal evolution of myxoma tumour cells
were determined based on spatially resolved transcrip-
tomics.
Our current understanding of the cellular states of myx-

oma tumour cells has been derived primarily from studies
that employed immunohistochemistry. Previously, it was
noted that myxoma tumour cells were immunoreactive for
endothelial markers such as CD31 and CD34.3,6 These cells
are spatially closely associated with vascular ECs and typi-
cally formmyxomatous perivascular ring structures (single
or multilayered) or pseudo-vascular structures.33 These
observations have led to the impression that vascular chan-
nels seem to arise from the myxomatous structures.6,34
However, due to technical limitations, there is no evidence
supporting the view that the ECs of the vascular chan-
nel in CM could be directly derived from myxoma tumour
cells. Our single-cell data supported the existence of two
phenotypic states in myxoma tumour cells, namely, ETCs
and MTCs, and that ETCs could be directly differentiated
from MTCs. This finding was obtained based on multi-
ple pieces of evidence, including the adjacency of ETCs
and MTCs in the UMAP embedding (Figure 1B), RNA
velocity (Figure 4E and Figure S10), and copy number pro-
files (Figure 2B). Moreover, ETCs were found to express

F IGURE 6 Intercellular communication analysis uncovers hyperactive signals sent primarily by myxoma tumour cells. (A) Heatmap
showing the number of interactions among cell types inferred by CellChat. The bar denotes the total number of interactions that were sent
(right) or received (top) by each cell type. (B) Heatmap showing interaction strength (communication probability) among cell types. The bar
denotes the accumulated strength of interactions that were sent (right) or received (top) by each cell type. (C) The bubble plot showing the
accumulated strength of interactions that were sent or received by each cell type. Dot size denotes the total number of interactions. (D)
Strength of secreted signalling pathways sent (outgoing) or received (incoming) by each cell type. The top bars denote the accumulated
strength of signals that were sent or received by each cell type. Right bars denote the accumulated strength of signals across all cell types. (E)
MDK signal broadcast mainly by tumour cells. (F) HGF signal broadcast mainly by tumour cells. (G) CHEMERIN signal broadcast mainly by
tumour cells. (H) GDF signal broadcast mainly by tumour cells. In (E–H), the bar plot shows the relative contribution of each ligand-receptor
pair in the pathway; the chord plot shows interaction strength among cell types for a specific ligand–receptor pair; the UMAP plot reflects the
expression distribution of the ligand; and the violin plot shows the normalised expression of the ligand in MTCs of CM and left atrial
fibroblasts of normal hearts (p-value adjusted for multiple testing < .05, the differential expression analysis method implemented in the R
package DEsingle). The expression data of normal hearts were downloaded from the Heart Cell Atlas database
(https://www.heartcellatlas.org/v1.html). In the chord plot, the size of the inner bar is proportional to the signal strength received by the
target cell types. ETC, EC-like tumour cell; LA-FB, left atrial fibroblasts; log2FC, log2 (fold change); MTC, MSC-like tumour cell.

https://www.heartcellatlas.org/v1.html
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F IGURE 7 Spatial features of subclusters and clonal evolution of myxoma tumour cells based on spatially resolved transcriptomics. (A)
H&E staining (left) and spatial transcriptome (ST) spot cluster distribution (right) for a section of sample S81555. Spots are colour-coded by
spot cluster. Scale bar: 1 mm. The black box indicates a region concentrated with ring- or cord-like tumour cell structures. (B) H&E staining
(left) and ST spot cluster distribution (right) for a section of sample S82094. Spots are colour-coded by spot cluster. Scale bar: 1 mm. (C) The
UMAP plot showing the clusters of ST spots of five sections from five patients. Each ST spot cluster was annotated with its major composition
cell type. The colour of each cluster is consistent with that used in (A,B). (D) Heatmap showing the expression of the top features for each spot
cluster annotated as tumour cells. (E) The relative proportion of each spot cluster in each sample. (F) Spatial distribution of the expression of
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markers for endocardial ECs (Figure S8A), indicating that
endocardial EC-like differentiation was the primary dif-
ferentiation path for myxoma tumour cells. Therefore,
drugs that target key genes involved in ETC differentiation
are anticipated to have an impact on tumour growth and
progression.
Malignant tumour cells are characterised by a high

level of genomic instability, which results in frequent
genomic rearrangements that contribute to cancer genome
evolution.35 Genomic rearrangements have previously
been reported in cases of sporadic CM based on cyto-
genetic analysis.36 However, the extent of intratumour
genomic heterogeneity and the clonal substructure ofmyx-
oma tumour cells have been largely unknown. Here, we
found that similar to malignant tumours, tumour cells
in CM also demonstrated substantial genomic rearrange-
ments, and exhibited significant intra- and intertumoural
genomic heterogeneity (Figure 2). Moreover, the special
feature of the clonal substructure of myxoma tumour
cells was revealed for the first time: the subclones spread
around the centre of the tumour cell-enriched region
(Figure 7I). Our results support the view that genomic
overlap exists between benign andmalignant tumours and
that these two categories of tumours are rather similar at
themechanistic level.37 Therefore, the activation of cardiac
stem/progenitor cells that initiates CM may be driven by
somatic mutations.
The TME in CM was found to be similar to that in

malignant tumours in several aspects. The intercellular
communication network was orchestrated primarily by
tumour cells (Figure 6). The hyperactive signals in many
malignant tumours,30–32 such as MDK, HGF, chemerin
and GDF15 signalling, were found to be sent primarily by
myxoma tumour cells (Figure 6). The immune microen-
vironment of CM was found to contain multiple aspects
that promote immune suppression and evasion, includ-
ing the presence of abundant M2-like macrophages and
exhausted T cells, as well as high expression of most
immune checkpoint ligands and receptors (Figure 5).
These results underscore the potential of using targeted
drugs and/or immunotherapies that are currently used for
cancers as treatment options for CM. However, preclinical
and clinical trials are essential to evaluate the efficacy of
immunotherapies for the CM treatment.

The histomorphology of CM exhibits notable hetero-
geneity, especially in the inflammatory cells, myxoid
stroma, necrosis, cystic changes, haemorrhage, calcifica-
tion and other aspects.38 Among these factors, we believe
that haemorrhage significantly impacts the proportion
of tumour cells in single-cell transcriptome experiments.
This may account for the observed wide variation in the
proportion of tumour cells among samples (Figure 1D).
The current study was constrained by a small-sample size
due to the rarity of the tumour. More samples from differ-
ent sampling sites of the same tumour and more patients
may be needed to unveil the complete landscape of cellu-
lar heterogeneity. In addition, the ST analysis was limited
by the resolution of the ST assay technology. The diame-
ter of the capture spots (55 μm) generally exceeded that
of the perivascular ring structures in tissue sections of
CM, thereby impeding accurate spatial analysis of cellu-
lar subpopulations although deconvolution or integration
analysis methods could be applied. A high-resolution ST
assay is thus warranted, especially for tissue sections with
a diffuse distribution of the tumour cell structures.

5 CONCLUSIONS

Our study presents the first comprehensive characterisa-
tion of the TME in CM at both single-cell and spatial
resolution. Our analyses provide novel insight into the
differentiation of myxoma tumour cells and advance our
understanding of the TME in CM. Given the rarity of car-
diac tumours, our study provides invaluable datasets and
promotes the development of medical therapies for CM.

AUTH OR CONTRIBUT IONS
Xuanyu Liu designed the project, analysed the data, and
wrote the manuscript. Huayan Shen organised the sam-
ple collection and performed the experiments. Jinxing Yu,
FengmingLuo, Tianjiao Li, Qi Li andXinYuan contributed
to subject enrollment and specimen collections. Yang Sun
and Zhou Zhou supervised the project.

ACKNOWLEDGMENTS
We thank Qingzhi Wang from the Department of Pathol-
ogy of Fuwai Hospital for assisting with histopathological

representative genes encoding proteins secreted by tumour cells. Only the results on the section from sample S81555 are shown. (G) Predicted
spatial distribution of MTC subclusters MTC1 and MTC0 on the section of sample S81555. The boxed region in (A) is displayed. The ST and
scRNA-seq data were integrated using the anchor-based integration workflow of Seurat. (H) Copy number profile inferred by SCEVAN based
on the ST data distinguishes tumour from normal cells on the section of sample S81555. (I) Spatial distribution (left) and clonal substructure
(right) of subclones inferred by SCEVAN based on ST data on the section of sample S81555. BC, B cell; CM, cardiomyocytes; EC, endothelial
cell; PC, plasma cell; SMC, smooth muscle cell; TAF, tumour-associated fibroblast; TC, T cell; H&E, hematoxylin and eosin; UMAP, Uniform
Manifold Approximation and Projection; MTC, MSC-like tumour cell; scRNA-seq, single-cell RNA-seq.



18 of 19 LIU et al.

experiments. This work was supported by the CAMS Inno-
vation Fund for Medical Sciences, Grant number: 2021-
I2M-C&T-B-039); the National High Level Hospital Clin-
ical Research Funding, Grant numbers: 2023-GSP-RC-21,
2022-GSP-GG-6, 2022-PUMCH-C-025

CONFL ICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILAB IL ITY STATEMENT
Raw sequencing data have been deposited in Genome
Sequence Archive for humans (https://ngdc.cncb.ac.cn/
gsa-human/) and are available through the accession
number HRA004062.

ETH ICAL APPROVAL
All study procedures complied with the ethical regula-
tions approved by the Ethics Committee of FuwaiHospital,
the Chinese Academy of Sciences (No. 2022-1656). Writ-
ten informed consent was received from each patient. The
study conforms to the principles outlined in the Helsinki
Declaration of 1975.

ORCID
ZhouZhou https://orcid.org/0000-0002-1060-0355

REFERENCES
1. Velez Torres JM, Martinez Duarte E, Diaz-Perez JA,

Rosenberg AE. Cardiac myxoma: review and update
of contemporary immunohistochemical markers and
molecular pathology. Adv Anat Pathol. 2020;27:380-384.
doi:10.1097/PAP.0000000000000275

2. Griborio-Guzman AG, Aseyev OI, Shah H, Sadreddini M.
Cardiac myxomas: clinical presentation, diagnosis and manage-
ment. Heart. 2022;108:827-833. doi:10.1136/heartjnl-2021-319479

3. Barh D, Kumar A, Chatterjee S, Liloglou T. Molecular features,
markers, drug targets, and prospective targeted therapeutics
in cardiac myxoma. Curr Cancer Drug Targets. 2009;9:705-716.
doi:10.2174/156800909789271549

4. Wilkes D, Charitakis K, Basson CT. Inherited disposition to
cardiac myxoma development. Nat Rev Cancer. 2006;6:157-165.
doi:10.1038/nrc1798

5. Burke A, Tavora FR, Maleszewski JJ, Frazier AA. Cardiac myx-
oma. ATLAS TUMOR Pathol. Ser. 4 Tumors Hear. Gt. Vessel.,
vol. 22. Maryland: American Registry of Pathology.2015:79-107.
doi:10.1016/j.visj.2021.101134

6. Di Vito A, Mignogna C, Donato G. The mysterious pathways
of cardiac myxomas: a review of histogenesis, pathogenesis and
pathology. Histopathology. 2015;66:321-332. doi:10.1111/his.12531

7. Amano J, Kono T,Wada Y, et al. Cardiac myxoma: its origin and
tumor characteristics. Ann Thorac Cardiovasc Surg. 2003;9:215-
221.

8. Scalise M, Torella M, Marino F, et al. Atrial myxomas arise from
multipotent cardiac stem cells. Eur Heart J. 2020;41:4332-4345.
doi:10.1093/eurheartj/ehaa156

9. de Visser KE, Joyce JA. The evolving tumor microenvironment:
from cancer initiation to metastatic outgrowth. Cancer Cell.
2023;41:374-403. doi:10.1016/j.ccell.2023.02.016

10. Jia Q, Chu H, Jin Z, Long H, Zhu B. High-throughput single-
cell sequencing in cancer research. Signal Transduct Target Ther.
2022;7:145. doi:10.1038/s41392-022-00990-4

11. Elhanani O, Ben-Uri R, Keren L. Spatial profiling technolo-
gies illuminate the tumor microenvironment. Cancer Cell.
2023;41:404-420. doi:10.1016/j.ccell.2023.01.010

12. Stuart T, Butler A, Hoffman P, et al. Comprehensive integration
of single-cell data. Cell. 2019;177:1888-1902.e21. doi:10.1016/j.cell.
2019.05.031

13. Wolock SL, Lopez R, Klein AM. Scrublet: computational iden-
tification of cell doublets in single-cell transcriptomic data. Cell
Syst. 2019;8:281-291. doi:10.1016/j.cels.2018.11.005 e9

14. Miao Z, Deng K, Wang X, Zhang X. DEsingle for detecting
three types of differential expression in single-cell RNA-seq data.
Bioinformatics. 2018;34:3223-3224. doi:10.1093/bioinformatics/
bty332

15. Litviňuková M, Talavera-López C, Maatz H, et al. Cells of
the adult human heart. Nature. 2020;588:466-472. doi:10.1038/
s41586-020-2797-4

16. Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a Cytoscape plug-
in to decipher functionally grouped gene ontology and pathway
annotation networks. Bioinformatics. 2009;25:1091-1093. doi:10.
1093/bioinformatics/btp101

17. De Falco A, Caruso F, Su XD, Iavarone A, Ceccarelli M. A varia-
tional algorithm to detect the clonal copy number substructure
of tumors from scRNA-seq data. Nat Commun. 2023;14:1074.
doi:10.1038/s41467-023-36790-9

18. Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup
V. hdWGCNA identifies co-expression networks in high-
dimensional transcriptomics data. Cell Reports Methods.
2023;3:100498. doi:10.1016/j.crmeth.2023.100498

19. Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing
RNA velocity to transient cell states through dynamical mod-
eling.Nat Biotechnol. 2020;38:1408-1414. doi:10.1038/s41587-020-
0591-3

20. La Manno G, Soldatov R, Zeisel A, et al. RNA velocity of
single cells. Nature. 2018;560:494-498. doi:10.1038/s41586-018-
0414-6

21. Pham D, Tan X, Balderson B, et al. Robust mapping of spa-
tiotemporal trajectories and cell–cell interactions in healthy and
diseased tissues. Nat Commun. 2023;14:1-25. doi:10.1038/s41467-
023-43120-6

22. Jin S, Plikus MV, Nie Q, CellChat for systematic analy-
sis of cell-cell communication from single-cell and spatially
resolved transcriptomics. BioRxiv. 2023. doi:10.1101/2023.11.05.
565674

23. Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and anal-
ysis of cell-cell communication using CellChat. Nat Commun.
2021;12:1088. doi:10.1038/s41467-021-21246-9

24. Cheng J, Zhang J, Wu Z, Sun X. Inferring microenvironmental
regulation of gene expression from single-cell RNA sequenc-
ing data using scMLnet with an application to COVID-19. Brief
Bioinform. 2021;22:988-1005. doi:10.1093/bib/bbaa327

25. Heo K, Lee S. TSPAN8 as a novel emerging therapeutic tar-
get in cancer for monoclonal antibody therapy. Biomolecules.
2020;10:388. doi:10.3390/biom10030388

https://ngdc.cncb.ac.cn/gsa-human/
https://ngdc.cncb.ac.cn/gsa-human/
https://orcid.org/0000-0002-1060-0355
https://orcid.org/0000-0002-1060-0355
https://doi.org/10.1097/PAP.0000000000000275
https://doi.org/10.1136/heartjnl-2021-319479
https://doi.org/10.2174/156800909789271549
https://doi.org/10.1038/nrc1798
https://doi.org/10.1016/j.visj.2021.101134
https://doi.org/10.1111/his.12531
https://doi.org/10.1093/eurheartj/ehaa156
https://doi.org/10.1016/j.ccell.2023.02.016
https://doi.org/10.1038/s41392-022-00990-4
https://doi.org/10.1016/j.ccell.2023.01.010
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cels.2018.11.005
https://doi.org/10.1093/bioinformatics/bty332
https://doi.org/10.1093/bioinformatics/bty332
https://doi.org/10.1038/s41586-020-2797-4
https://doi.org/10.1038/s41586-020-2797-4
https://doi.org/10.1093/bioinformatics/btp101
https://doi.org/10.1093/bioinformatics/btp101
https://doi.org/10.1038/s41467-023-36790-9
https://doi.org/10.1016/j.crmeth.2023.100498
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41467-023-43120-6
https://doi.org/10.1038/s41467-023-43120-6
https://doi.org/10.1101/2023.11.05.565674
https://doi.org/10.1101/2023.11.05.565674
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1093/bib/bbaa327
https://doi.org/10.3390/biom10030388


LIU et al. 19 of 19

26. Sidney LE, BranchMJ, Dunphy SE, DuaHS, HopkinsonA. Con-
cise review: evidence for CD34 as a common marker for diverse
progenitors. StemCells. 2014;32:1380-1389. doi:10.1002/stem.1661

27. SkamrovAV,NechaenkoMA,Goryunova LE, et al. Gene expres-
sion analysis to identify mRNA markers of cardiac myxoma.
J Mol Cell Cardiol. 2004;37:717-733. doi:10.1016/j.yjmcc.2004.06.
006

28. Wherry EJ, Kurachi M. Molecular and cellular insights into T
cell exhaustion. Nat Rev Immunol. 2015;15:486-499. doi:10.1038/
nri3862

29. Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages
in tumor immunity.Front Immunol. 2020;11:583084. doi:10.3389/
fimmu.2020.583084

30. Filippou PS, Karagiannis GS, Constantinidou A. Midkine
(MDK) growth factor: a key player in cancer progression and
a promising therapeutic target. Oncogene. 2020;39:2040-2054.
doi:10.1038/s41388-019-1124-8

31. Fu J, Su X, Li Z, et al. HGF/c-MET pathway in cancer:
from molecular characterization to clinical evidence. Oncogene.
2021;40:4625-4651. doi:10.1038/s41388-021-01863-w

32. Spanopoulou A, Gkretsi V. Growth differentiation factor 15
(GDF15) in cancer cell metastasis: from the cells to the patients.
Clin Exp Metastasis. 2020;37:451-464. doi:10.1007/s10585-020-
10041-3

33. Tyebally S, ChenD, Bhattacharyya S, et al. Cardiac tumors: state-
of-the-art review. JACC CardioOncol. 2020;2:293-311. doi:10.
1016/j.jaccao.2020.05.009

34. Di Vito A, Santise G, Mignogna C, et al. Innate immunity in
cardiac myxomas and its pathological and clinical correlations.
Innate Immun. 2018;24:47-53. doi:10.1177/1753425917741678

35. Willis NA, Rass E, Scully R. Deciphering the code of the
cancer genome: mechanisms of chromosome rearrangement
genomic instability and the evolution of a cancer.Trends Cancer.
2015;1:217-230. doi:10.1016/j.trecan.2015.10.007.Deciphering

36. Dijkhuizen T, De Jong B, Meuzelaar JJ, Molenaar WM, Van
Den Berg E. No cytogenetic evidence for involvement of gene(s)
at 2p16 in sporadic cardiac myxomas: cytogenetic changes
in ten sporadic cardiac myxomas. Cancer Genet Cytogenet.
2001;126:162-165. doi:10.1016/S0165-4608(00)00402-7

37. Boutry J, Tissot S, Ujvari B, et al. The evolution and ecol-
ogy of benign tumors. Biochim Biophys Acta—Rev Cancer.
2022;1877:188643. doi:10.1016/j.bbcan.2021.188643

38. Basso C, Rizzo S, Valente M, Thiene G. Cardiac masses and
tumours. Heart. 2016;102:1230-1245. doi:10.1136/heartjnl-2014-
306364

SUPPORT ING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Liu X, Shen H, Yu J,
et al. Resolving the heterogeneous tumour
microenvironment in cardiac myxoma through
single-cell and spatial transcriptomics. Clin Transl
Med. 2024;14:e1581.
https://doi.org/10.1002/ctm2.1581

https://doi.org/10.1002/stem.1661
https://doi.org/10.1016/j.yjmcc.2004.06.006
https://doi.org/10.1016/j.yjmcc.2004.06.006
https://doi.org/10.1038/nri3862
https://doi.org/10.1038/nri3862
https://doi.org/10.3389/fimmu.2020.583084
https://doi.org/10.3389/fimmu.2020.583084
https://doi.org/10.1038/s41388-019-1124-8
https://doi.org/10.1038/s41388-021-01863-w
https://doi.org/10.1007/s10585-020-10041-3
https://doi.org/10.1007/s10585-020-10041-3
https://doi.org/10.1016/j.jaccao.2020.05.009
https://doi.org/10.1016/j.jaccao.2020.05.009
https://doi.org/10.1177/1753425917741678
https://doi.org/10.1016/j.trecan.2015.10.007.Deciphering
https://doi.org/10.1016/S0165-4608(00)00402-7
https://doi.org/10.1016/j.bbcan.2021.188643
https://doi.org/10.1136/heartjnl-2014-306364
https://doi.org/10.1136/heartjnl-2014-306364
https://doi.org/10.1002/ctm2.1581

	Resolving the heterogeneous tumour microenvironment in cardiac myxoma through single-cell and spatial transcriptomics
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Study subjects and tumour tissue collection
	2.2 | Single-cell suspension preparation
	2.3 | Single-cell transcriptomic sequencing
	2.4 | Preprocessing of the scRNA-seq data
	2.5 | Normalisation, integration, dimensional reduction and clustering of the scRNA-seq data
	2.6 | Differential gene expression analysis
	2.7 | Functional enrichment analysis
	2.8 | Copy number profile inference and clonal substructure analysis
	2.9 | High-dimensional weighted gene co-expression network analysis
	2.10 | RNA velocity analysis
	2.11 | 10x Genomics visium CytAssist spatial transcriptomic assay
	2.12 | Spatial transcriptomic data processing
	2.13 | Intercellular communication analysis based on scRNA-seq data
	2.14 | Single-molecule fluorescence in situ hybridisation
	2.15 | Inferring microenvironmental regulation of immune checkpoint expression in tumour cells
	2.16 | Statistical analysis

	3 | RESULTS
	3.1 | The single-cell transcriptomic landscape of cardiac myxoma
	3.2 | Tumour/normal cell classification and clonal substructure inference based on copy number profiles
	3.3 | Transcriptomic heterogeneity of the mesenchymal stroma cell-like tumour cells in cardiac myxoma
	3.4 | Transcriptomic heterogeneity and differentiation dynamics of the endothelial cell-like tumour cells in cardiac myxoma
	3.5 | Tumour immune microenvironment in cardiac myxoma dissected at single-cell resolution
	3.6 | Intercellular communication analysis uncovers hyperactive signals sent primarily by myxoma tumour cells
	3.7 | Spatial features of the subclusters, proximal cell-cell communication, and clonal evolution of myxoma tumour cells based on spatially resolved transcriptomics

	4 | DISCUSSION
	5 | CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ETHICAL APPROVAL
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


