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Abstract

Background: Long QT syndrome (LQTS) is characterized by QT prolongation and increased 

risk for syncope, seizures, and sudden cardiac death. The majority of LQTS stems from 

pathogenic mutations in KCNQ1, KCNH2, or SCN5A. However, ~10% of patients with LQTS 

remain genetically elusive. We utilized genome sequencing (GS) to identify a novel LQTS genetic 

substrate in a multigenerational “genotype-negative” LQTS pedigree.

Methods: GS was performed on 5 affected family members. Only rare non-synonymous variants 

present in all affected family members were considered. The candidate variant was characterized 

functionally in patient-derived induced pluripotent stem cell (iPSC) and gene-edited, variant 

corrected, isogenic control iPSC derived cardiomyocytes (CMs).

Results: A missense variant (p.G6S) was identified in ALG10B-encoded alpha-1,2-

glucosyltransferase B. ALG10B is a known interacting protein of KCNH2-encoded Kv11.1 

(HERG). Compared with isogenic control, ALG10B-p.G6S iPSC-CMs showed 1) decreased 

protein expression of ALG10B (p.G6S: 0.7±0.18, n=8 vs. control: 1.25±0.16, n=9, p<0.05); 2) 
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significant retention of HERG in the endoplasmic reticulum (p<0.0005); and 3) a significantly 

prolonged action potential duration (APD) confirmed by both patch clamp (p.G6S: 531.1±38.3 

ms, n=15 vs. control: 324.1±21.8 ms, n=13, p<0.001) and MEA (p<0.0001). Lumacaftor, a 

compound known to rescue HERG trafficking, shortened the pathologically prolonged APD of 

ALG10B-p.G6S iPSC-CMs by 10.6% (n=31 electrodes, p<0.001).

Conclusions: Here, we demonstrate that ALG10B-p.G6S down-regulates ALG10B resulting 

in defective HERG trafficking and APD prolongation. Therefore, ALG10B is a novel LQTS-

susceptibility gene underlying the LQTS phenotype observed in a multigenerational pedigree. 

ALG10B mutation analysis may be warranted, especially in genotype-negative patients with an 

LQT2-like phenotype.
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INTRODUCTION

Sudden cardiac death (SCD) accounts for approximately 3.7 million deaths worldwide and 

has an estimated annual incidence ranging from 180,000 to 450,000 in the United States 

(US).1, 2 Annually, 2000 to 5000 young people under the age of 35 die suddenly in the 

US.1 Potentially lethal cardiac channelopathies such as long QT syndrome (LQTS) underlie 

a significant portion of SCD in the young.3

LQTS is typically an autosomal dominant disorder characterized by delayed repolarization 

of the myocardium associated with a prolonged QT interval on an electrocardiogram 

(ECG).4 Patients with LQTS have an increased risk for syncope, seizures, and sudden 

cardiac arrest (SCA) usually following a precipitating event such as exercise, extreme 

emotion, or auditory trigger.4 The prevalence of LQTS is ~1 in 2000 people and if left 

untreated, there is an estimated 50% 10-year mortality in the highest risk subset.5

About 75% of patients with LQTS host either loss-of-function (LOF) or gain-of-function 

(GOF) mutations in one of 3 major LQTS genes: KCNQ1-encoded IKs (Kv7.1) potassium 

channel (LQT1, ~35%, LOF), KCNH2-encoded IKr (Kv11.1, human Ether-à-go-go-Related 

Gene [HERG]) potassium channel (LQT2, ~30%, LOF), and SCN5A-encoded INa (Nav1.5) 

sodium channel (LQT3, ~10%, GOF) that are responsible for the cardiac action potential 

duration (APD).6, 7 Although the minor LQTS-associated genes contribute ~5% of overall 

cases, the remaining ~10–20% of patients diagnosed with LQTS clinically have a genetically 

elusive cause underlying their pathology and are thus classified as “genotype-negative”.8

In this study, we performed genome sequencing (GS) on a multigenerational “genotype-

negative” LQTS pedigree to identify a novel genetic substrate explaining their autosomal 

dominant LQT2-like phenotype. Patient-specific inducible pluripotent cell derived 

cardiomyocyte (iPSC-CM) disease modeling with candidate gene variant corrected isogenic 

control iPSC-CMs were used to demonstrate the necessity of the candidate variant in 
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causing APD prolongation and provide mechanistic insights into the cellular pathogenicity 

of the variant.

METHODS

A Caucasian family with autosomal dominant LQTS was referred to the Mayo Clinic 

Windland Smith Rice Sudden Death Genomics Laboratory for further research-based 

genetic testing following negative commercially available genetic testing for LQTS. To 

prevent the re-identification of patients included in this study, individual patient data 

will not be made available to other researchers. The authors declare that all supporting 

data are available within the article and its online supplementary files. This study was 

approved by the Mayo Clinic Institutional Review Board (1216–97 and 09–006465). Patient 

samples were collected following written informed patient consent. The detailed methods 

are included in the supplemental material.

RESULTS

A multigenerational pedigree diagnosed with autosomal dominant long QT syndrome

The index case is a male who was originally diagnosed clinically at age 10-years-old 

following a near syncopal event after jumping into a cold swimming pool (Figure 1A). 

Figure 1B shows a representative ECG tracing for the index case. Two of his siblings have 

experienced exertion-related syncope during childhood and an abnormal ECG. Research-

based genetic testing was performed initially on the index case in the era prior to clinical 

laboratory improvement amendments (CLIA) approved commercial laboratory based genetic 

testing for LQTS. A KCNQ1-pG292D (c.806 G>A) variant was identified and reported 

as a “probable pathogenic mutation” based on its absence in 1,488 reference alleles from 

four ethnic groups.9 Cascade genetic testing identified KCNQ1-p.G292D in the index case’s 

affected siblings. However, several affected family members have since been shown to be 

negative for KCNQ1-p.G292D including two of the index case’s male children and niece 

(III3, III4, and III10, Figure 1A). The ECG of index cases’ brother (II6) demonstrated very 

tall T waves in the precordial leads (Figure 1C). In limb lead III and aVF there was a subtle 

flattening of the top of the T wave. This combined with the T waves in the Holter traces 

from the brother’s daughter that looked notched throughout the Holter recording raised the 

possibility of missed LQT2 (Figure 1D). Given the genotype-negative/phenotype-positive 

discordance in several affected family members, we performed GS on five affected family 

members to elucidate the underlying elusive QT substrate (Figure 2A).

Genome sequencing for the identification of a novel pathogenic substrate in an autosomal 
dominant LQTS pedigree

Following GS and ultra-rare (minor allele frequency<0.0005, gnomAD) non-synonymous 

variant filtering using an autosomal dominant inheritance pattern, we identified 7 ultra-rare 

non-synonymous variants in 7 genes present in all affected family members (Figure 2A and 

2B). Only one variant (ALG10B-c.16G>A, p.G6S) occurs in a gene whose protein product 

is a known ion channel interacting protein expressed in the heart.10, 11 The ALG10B-
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c.16G>A variant was confirmed by Sanger sequencing (Figure 2C). Cascade genetic testing 

identified 5 additional family members who tested positive for ALG10B-p.G6S (Figure 3).

Generation of patient-specific iPSC-CMs

To determine if ALG10B-pG6S is the pathogenic substrate responsible for the LQTS 

phenotype observed in the pedigree, patient-specific iPSCs (2 clones) were created from 

one of the ALG10B-p.G6S positive family members (II6). This family member also has 

the KCNQ1-p.G292D variant. ALG10B-p.G6S variant corrected isogenic control iPSCs 

lines (2 clones) were created using CRISPR/Cas9 technology. All clones were confirmed 

to contain predicted (mutant or wild type) sequences by Sanger sequencing (Figure 4A), 

cardiomyocyte differentiation markers after differentiation (Figure 4B), a normal female 

karyotype (Figure 4C), and pluripotent markers (Figure 4D).

The novel ALG10B-p.G6S variant is necessary for action potential prolongation in the 
patient’s iPSC-CMs

To examine whether ALG10B-p.G6S-derived iPSC-CMs could demonstrate APD 

prolongation, action potential (AP) measurements were performed in both isogenic control 

and ALG10B-p.G6S-derived iPSC-CMs using the standard whole-cell patch clamp current 

clamp mode at a constant paced rate of 1 Hz or gap free configuration. Not surprisingly, 

ALG10B-p.G6S-derived iPSC-CMs revealed APD prolongation in both paced (Figure 5A) 

and spontaneous mode (Figure 5B). APD50 was significantly prolonged from 254.1±21.0 

ms (isogenic control, n=13) to 460.9±38.1 ms (ALG10B-p.G6S, n=15, p<0.001 vs. isogenic 

control) (Figure 5C). APD90 was also significantly prolonged from 324.1±21.8 ms (isogenic 

control, n=13) to 531.1±38.3 ms (ALG10B-p.G6S, n=15, p<0.001 vs. isogenic control) 

(Figure 5D).

Recently, local extracellular action potential (LEAP), a high throughput assay used for 

AP measurements in iPSC-CMs, has been established as a powerful tool for iPSC-CM 

electrophysiology.12 In addition to patch clamp recordings, we performed electrophysiology 

studies in isogenic control and ALG10B-p.G6S-derived iPSC-CMs using multielectrode 

assay (MEA) plus LEAP. The AP morphology of normalized LEAP (Figure 5E) from both 

isogenic control and ALG10B-p.G6S iPSC-CMs was very similar to that derived from patch 

clamp. The APD30, 50, 90 and corrected APD90 (APD90c) in ALG10B-p.G6S iPSC-CMs 

were significantly prolonged compared to isogenic control iPSC-CMs (APD30: 238.1±6.2 

ms vs.123±3.6 ms; APD50: 323.7±4.3 ms vs. 167.3±2.3 ms; APD90: 395.9±2.5 ms vs. 

215.8±1.2 ms; APC90c: 387.9±2.2 ms vs. 236.4±1.2 ms; ALG10B-p.G6S, n=88 vs. isogenic 

control, n=76; p<0.0001) (Figure 5F). The APD data were consistent between MEA plus 

LEAP and patch clamp.

The novel ALG10B-p.G6S variant is associated with impaired trafficking of HERG 
potassium channels

Using western blot, we showed that ALG10B expression was significantly decreased 

in ALG10B-p.G6S iPSC-CMs compared to isogenic control iPSC-CMs (0.7±0.18 vs. 

1.25±0.16, ALG10B-p.G6S, n=8 vs. isogenic control, n=9, p<0.05, Figures 6A–B). There 

was no significant difference in protein expression of cTNT and MLC2v between isogenic 
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control and ALG10B-p.G6S iPSC-CMs (Figure 6C). Because ALG10B is a known to 

interact with HERG, we compared the expression profile of HERG in isogenic control and 

ALG10B-p.G6S iPSC-CMs. While there was no significant difference in HERG expression 

between isogenic control and ALG10B-p.G6S iPSC-CMs (1.26±0.27 vs. 0.74±0.22, 

isogenic control, n=6 vs. ALG10B-p.G6S, n=6, p>0.05, Figure 6D–E), the density ratio 

of 150 kDa (mature HERG) to 130 kDa (immature HERG) was significantly decreased 

in ALG10B-p.G6S iPSC-CMs compared to isogenic control iPSC-CMs (1.02±0.16 vs. 

0.52±0.12, isogenic control, n=6 vs. ALG10B-p.G6S, n=6, p<0.05, Figure 6F) thus 

suggesting the ALG10B-p.G6S results in a HERG trafficking defect.

Confocal imaging showed that ALG10B was expressed in the nucleus, endoplasmic 

reticulum (ER), cytoplasm, and plasma membrane. However, HERG protein was 

significantly retained in the ER in 53.1% (127/239 cells) of ALG10B-p.G6S iPSC-CMs 

compared to 19.9% (48/241 cells, p<0.0005, Figure 7A–B) of isogenic control iPSC-

CMs. Recently, Lumacaftor has been demonstrated to rescue HERG potassium channel 

trafficking defects in iPSC-CM models of LQT2. 13–15 ALG10B-p.G6S iPSC-CMs from 

the same batch of differentiation were treated with or without 10 μM of Lumacaftor 

for 10 days. Significant ER retention of HERG was seen in ALG10B-p.G6S iPSC-CMs 

without Lumacaftor (53.1%, 127/239 cells) compared to ALG10B-p.G6S iPSC-CMs treated 

with Lumacaftor (25.1%, 79/315 cells, p<0.0005, Figure 7C–D). After ALG10B-p.G6S 

iPSC-CMs (n=33 electrodes) were treated with 10 μM of Lumacaftor for 8 days, APD30 

(0.25±0.01 s vs 0.21±0.01 s, p<0.05), APD50 (0.34±0.01 s vs 0.3±0.01 s, p<0.05), APD90 

(0.44±0.01 s vs 0.4 ±0.01 s, p<0.01), and APD90c (0.35±0.01 s vs 0.31±0.01 s, p<0.001) 

were shortened significantly compared to untreated ALG10B-p.G6S iPSC-CMs (n=31 

electrodes, Figure 8A–B).

KCNQ1-G292D missense variant did not change IKs current in heterologous TSA 201 cells

Since some family members also carried KCNQ1-G292D variant, in order to address 

whether KCNQ1-G292D plays a role in patients’ phenotype, we performed patch clamp 

studies in TSA201 cells transfected with KCNQ1-WT /KCNE1 or KCNQ1-G292D/KCNE1. 

Typical IKs traces of voltage-dependent activation from KCNQ1+KCNE1, KCNQ1-G292D 

+KCNE1 are shown in Supplemental Figure IA with holding potential at −80 mV to 

various depolarization potentials (see figure legend). Analysis of the peak current-voltage 

relationship revealed that IKs peak current densities were unchanged by KCNQ1-G292D 

+KCNE1 across the voltage from −40 mV to +80 mV compared with KCNQ1-WT+KCNE1 

(p>0.05) (Supplemental Figure IB). At +80 mV, the IKs peak current density was 

790.6±81.5 pA/pF (KCNQ1-WT+KCNE1, n=10) and 719.5±86.3 pA/pF (KCNQ1-G292D 

+KCNE1, n=10, p=0.56 vs. KCNQ1-WT). Analysis of the tail current-voltage relationship 

revealed that IKs tail current densities were also unchanged by KCNQ1-G292D +KCNE1 

across the voltage from −40 mV to +80 mV compared with KCNQ1-WT+KCNE1 (p>0.05) 

(Supplemental Figure IC). At +80 mV, the IKs tail current density was 159.3±16.7 pA/pF 

(KCNQ1-WT+KCNE1, n=8) and 153.4±14.6 pA/pF (KCNQ1-G292D +KCNE1, n=8, 

p=0.79 vs. KCNQ1-WT). Not surprisingly, Activation curves (Supplemental Figure ID) and 

deactivation curves (Supplemental Figure IE) remain unchanged as well across the voltage 
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from −40 mV to +80 mV between KCNQ1-WT+KCNE1 and KCNQ1-G292D +KCNE1 

(p>0.05).

DISCUSSION

Although a vast majority of LQTS has been established to have a genetic cause, about 

10–20% of LQTS cases remain genetically elusive.8 Herein, we identified a novel genetic 

cause for a multigenerational family’s autosomal dominant “LQT2-like” phenotype.

LQT2 is caused by LOF pathogenic variants in the KCNH2-encoded (Kv11.1) potassium 

channel, commonly known as the HERG potassium channel, which is responsible for the 

repolarizing IKr current critically important in phase 3 of the ventricular action potential.16 

To date, nearly 500 LQT2-associated heterozygous, pathogenic variants have been identified 

with 40% representing nonsense, frame-shift, or splice-site variants that inhibit HERG 

protein synthesis (class 1). The remaining 60% are missense variants which cause HERG 

channel LOF by either disrupting channel trafficking to the membrane (class 2), disrupting 

channel gating (class 3), and/or negatively affecting channel conductance (class 4). Of the 

nearly 200 unique missense variants studied to date using in vitro heterologous expression 

systems (i.e. HEK293 cells), ~90% (~50% of all LQT2 pathogenic variants) represent 

HERG channel trafficking defective mutations.16

Akin to the KCNQ1-encoded (Kv7.1) potassium, CACNA1C-encoded L-type calcium, and 

the SCN5A-encoded (Nav1.5) sodium channels that are responsible for the cardiac APD 

and associated with the pathobiology of LQTS, the HERG potassium channel is a highly 

regulated macromolecular complex, with associated partner proteins that work in concert 

with the pore-forming alpha-subunit of the channel.17 In fact, essentially all of the so 

called “minor” LQTS-susceptibility genes (AKAP9, ANK2, CALM1, CALM2, CALM3, 

CAV3, KCNE1, KCNE2, SCN4B, and SNTA1) that have been implicated previously as a 

monogenic cause for LQTS are channel interacting proteins to these various ion channel 

pore-forming subunits; most of which were identified as a result of hypothesis driven 

candidate gene analysis.17

Here, using genome sequencing followed by familial triangulation in a multigenerational 

genotype-negative pedigree, we identified ALG10B-p.G6S variant as novel monogenic 

cause for LQTS. The ALG10B-encoded alpha-1,2-glucosyltransferase B protein has 

sequence equivalence and is a functional homologue of potassium channel regulator 1 

(KCR1) and is a known HERG channel interacting protein. It has been demonstrated 

previously to modulate the effect of drug blockade on Kv11.1 (HERG potassium channel) 

through the cellular glycosylation pathway.10, 11

When coexpressed in heterologous systems, KCR1 (ALG10B), a 12 transmembrane domain 

protein, has been demonstrated to associate with HERG at the plasma membrane and render 

it less sensitive to classic HERG potassium channel blockers including dofetilide, quinidine, 

and sotalol. 11 In 2007, Nakajima and colleagues demonstrated that KCR1 modulates 

drug block of HERG through enhancing cellular glycosylation by acting as an α−1,2-

glucosyltransferase.11 This step is thought to be vital in the transfer of oligosaccharides to 
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nascent polypeptides and their subsequent membrane trafficking. Although HERG itself is 

not a target of KCR1-mediated glycosylation, it has been shown that N-glycosylation of 

HERG is required for KCR1 to influence HERG pharmacology.11 This is not surprising as 

HERG is known to assemble into tetramers in the ER before being exported to the Golgi for 

complex glycosylation prior to being trafficked to the plasma membrane.18

Interestingly, in 2004, Petersen and colleagues showed that a GOF polymorphism (p.I447V, 

more accurately annotated as p.I446V) in KCR1 enhanced its protective role against drug 

blockade of HERG leading to a reduced risk of drug-induced QT prolongation.19 Among 

92 patients exhibiting severe repolarization abnormalities when exposed to HERG blocking 

drugs, only two (2.2%) hosted the p.I447V polymorphism compared to 10 out of 71 (14%) 

controls. In heterologous co-expression studies performed in Chinese hamster ovary cells, 

wild-type KCR1 decreased the rate of dofetilide drug blockage of HERG and the p.I447V 

variant decreased this rate even further. Thus, suggesting the p.I447V allele may exert a 

protective effect against drug-induced QT prolongation. 19

Conversely, a LOF variant (E33D) in KCR1 was linked to an increased risk of drug-induced 

QT prolongation when identified in a 70 year-old man who experienced a sudden collapse 

and was found to be in ventricular fibrillation by the emergency response team.20 The 

patient, who had been on manidipine, kallidinogenase, and bezafibrate for hypertension and 

hyperlipidemia, had an emergency room ECG that recorded a QTc of 502 ms on admission 

and subsequently normalized to 431 ms while on metoprolol and mexiletine.

Here, using genome sequencing pedigree analysis and iPSC-CM based disease modeling 

we demonstrate for the first time that ALG10B LOF variants may represent a monogenic 

cause for LQTS. With the use of ALG10B-p.G6S patient-specific and CRISPR/Cas9 

variant corrected isogenic control iPSC-CMs, we have demonstrated that the ALG10B-

p.G6S variant that cosegregates with the LQTS phenotype with reduced penetrance in the 

multigenerational pedigree was necessary for action potential prolongation in the patient’s 

iPSC-CMs due to impaired trafficking of HERG potassium channels. Recently, the FDA-

approved cystic fibrosis protein trafficking chaperone, lumacaftor, has been proposed as 

a potential therapeutic for patients with LQT2.13–15 Interestingly, lumacaftor was able to 

partially restore the HERG trafficking defect and shorten the action potential duration in the 

ALG10B-p.G6S patient-specific iPSC-CMs.

Although some family members also carried KCNQ1-G292D variant, we have demonstrated 

that this variant revealed normal function and might not contribute to patients’ phenotype. 

We also noticed that the family members who carried ALG10B variant had variable 

penetrance most likely due to their variable genetic background.

CONCLUSIONS

Here, we have demonstrated that ALG10B is a novel LQTS-susceptibility gene that serves 

as the pathogenic substrate for the LQT2-like phenotype observed in a multigenerational, 

genotype-negative pedigree. ALG10B mutation analysis may be warranted, especially in 

genotype-negative patients with an LQT2-like phenotype.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Non-standard Abbreviations and Acronyms:

ALG10B alpha-1,2-glucosyltransferase B protein

APD action potential duration

ECG electrocardiogram

ER endoplasmic reticulum

GOF gain-of-function

GS genome sequencing

HERG Ether-à-go-go-Related Gene

iPSC-CM Patient-specific inducible pluripotent cell derived cardiomyocyte

KCR1 potassium channel regulator 1

LEAP local extracellular action potential

LQTS long QT syndrome

LOF loss-of-function

MEA multielectrode assay

SCA sudden cardiac arrest

SCD Sudden cardiac death
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Figure 1 |. A multi-generational pedigree diagnosed with autosomal dominant long QT syndrome
Shown in panel A is a multi-generation pedigree diagnosed with LQTS. The arrow points 

to the family index case. Squares represent males, Circles represent females. The black 

symbols represent family members diagnosed with LQTS based on a prolonged QTc 

interval. The numbers within the symbols represent the QTc measurements in milliseconds. 

The boxes under the symbols represent the genotype for family members identified as 

genotype-positive (dark blue) or genotype-negative (light blue) for the KCNQ1-p.G292D 

variant identified originally in the index case. Panel B shows a representative ECG tracing 

for the index case. Panel C is a representative ECG tracing of a family member (1A, II6) 

demonstrating very tall T waves in the precordial leads and a subtle flattening of the top of 

the T wave in limb lead III and aVF. Panel D represents Holter traces from a family member 

(1A, III11) where T waves appear notched and reminiscent of LQT2 like ECG.
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Figure 2 |. Genome sequencing for the identification of a novel pathogenic substrate in an 
autosomal dominant LQTS pedigree
Shown in panel A is the genome sequencing variant filtering strategy used to identify ultra-

rare non-synonymous candidate variants present in all affected individuals who underwent 

genome sequencing (yellow circles). Panel B lists the candidate genes/variants that were 

considered for further analysis. Of the 7 ultra-rare variants, the ALG10B-p.G6S variant 

represented the top candidate disease causing gene/variant based on biological plausibility. 

In panel C is the Sanger sequencing chromatogram confirming the c.16G>A (ALG10B-

p.G6S) variant.
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Figure 3 |. Genome sequencing for the identification of a novel pathogenic substrate in an 
autosomal dominant LQTS pedigree
Shown is a multi-generation pedigree diagnosed with LQTS. The arrow points to the family 

index case. Squares represent males, Circles represent females. The black symbols represent 

family members diagnosed with LQTS based on a prolonged QTc interval. The numbers 

within the symbols represent the QTc measurements in milliseconds. The boxes under the 

symbols represent the genotype data for both the KCNQ1-p.G292D and ALG10B-p.G6S 

variants. The dark blue boxes represent those family members who are genotype-positive for 

KCNQ1-p.G292D. The dark red boxes represent those family members who are genotype 

positive for ALG10B-p.G6S. Family members who are genotype-negative for either the 

KCNQ1 or ALG10B variants are illustrated by the light blue or light red boxes, respectively. 

Figure created using Biorender.com.
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Figure 4 |. Generation of patient-specific iPSC-CMs.
Shown in panel A is sanger sequencing of isogenic control and ALG10B-G6S iPSCs, shown 

in panel C are normal male karyotype of isogenic control and ALG10B-G6S iPSCs. Shown 

in panel D are representative confocal images of undifferentiated patient-specific mutant 

and isogenic control iPSCs demonstrating four pluripotent markers (Tra-1–60, NANOG, 

SSEA4, and OCT4). Scale bars equal 20μm. Following cardiac differentiation, iPSC-derived 

cardiomyocyte was confirmed with differentiation markers (α-actinin and cTnT) as shown in 

panel B.
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Figure 5 |. The novel ALG10B-p.G6S variant is necessary for action potential prolongation in the 
patient’s iPSC-CMs.
A. Representative patch-clamp AP traces from isogenic control (black) and ALG10B-

G6S-derived iPSC-CMs (red) paced at 1Hz. B. Representative patch-clamp AP traces 

from isogenic control (black) and ALG10B-G6S-derived iPSC-CMs (red) in gap free 

configuration. C. Bar graph showing APD50 from isogenic control (n= 13) and ALG10B-

G6S (n=15) iPSC-CMs paced at 1 Hz. D. Bar graph showing APD90 from isogenic 

control (n= 13) and ALG10B-G6S (n=15) iPSC-CMs paced at 1 Hz. E. Representative 

multielectrode assay (MEA) plus local extracellular action potential (LEAP) based stable 

beatings (on top) and APD (on bottom) traces of isogenic control (left panel) and ALG10B-

G6S (right panel)-derived iPSC-CMs. F. Bar graph showing APD30, APD50, APD90 

and corrected APD90 (APD90c) from isogenic control (n=76 electrodes in 12 wells and 

ALG10B-G6S (n=88 electrodes in 12 wells). All values in panel C, D, and F represent 

mean±SEM.
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Figure 6 |. ALG10B expression was significantly decreased in ALG10B-G6S iPSC-CMs.
A. Western blot demonstrating ALG10B expression (relative to Vinculin) in isogenic control 

and ALG10B-G6S iPSC-CMs. B. Bar graph showing ALG10B expression in isogenic 

control (n=9) and ALG10B-G6S iPSC-CMs (n=8) by western blot data analysis. C. Western 

blot demonstrating cTNT, MLC2v expression (relative to Vinculin) in isogenic control and 

ALG10B-G6S iPSC-CMs. D. Western blot demonstrating HERG expression (relative to 

Vinculin) in isogenic control and ALG10B-G6S iPSC-CMs. E. Bar graph showing HERG 

expression in isogenic control (n=6) and ALG10B-G6S iPSC-CMs (n=6). F. Bar graph 

showing density ratio of 2 bands of HERG isogenic control (n=6) and ALG10B-G6S 

iPSC-CMs (n=6). All values represent mean ± SEM.
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Figure 7 |. Defective trafficking of hERG was restored by Lumacaftor in ALG10B-G6S iPSC-
CMs.
A. Representative immunofluorescence images from isogenic control (on top) and ALG10B-

G6S (on bottom) showing for ALG10B (green), HERG (red), nucleus (blue). B. Bar graph 

showing proportion of iPSC-CMs with HERG retaining in endoplasmic reticulum (ER) from 

isogenic control (48 out of 241 cells, 19.9%) and ALG10B-G6S (127 out of 239, 53.1%). 

C. Representative immunofluorescence images from ALG10B-G6S without Lumacaftor (on 

top) and ALG10B-G6S with Lumacaftor (on bottom) showing for ALG10B (green), HERG 

(red), nucleus (blue). B. Bar graph showing proportion of iPSC-CMs with HERG retaining 

in ER from ALG10B-G6S without Lumacaftor (127 out of 239, 53.1%) and ALG10B-G6S 

with Lumacaftor (79 out of 315, 25.1%).
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Figure 8 |. Prolonged APD in ALG10B-G6S iPSC-CMs was shortened by Lumacaftor treatment.
A. Representative APD traces from ALG10B-G6S iPSC-CMs without Lumacaftor (black) 

and with Lumacaftor (red). B. Bar graph showing APD30, APD 50, APD90 and corrected 

APD90 from ALG1-B-G6S iPSC-CMs without Lumacaftor (black, n=31 electrodes in 11 

wells) and with Lumacaftor (red, n=33 electrodes in 11 wells).
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