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Summary
Background Tumour-promoting inflammation is a “hallmark” of cancer and conventional epidemiological studies
have reported links between various inflammatory markers and cancer risk. The causal nature of these relationships
and, thus, the suitability of these markers as intervention targets for cancer prevention is unclear.

Methods We meta-analysed 6 genome-wide association studies of circulating inflammatory markers comprising
59,969 participants of European ancestry. We then used combined cis-Mendelian randomization and colocalisation
analysis to evaluate the causal role of 66 circulating inflammatory markers in risk of 30 adult cancers in 338,294
cancer cases and up to 1,238,345 controls. Genetic instruments for inflammatory markers were constructed using
genome-wide significant (P < 5.0 × 10−8) cis-acting SNPs (i.e., in or ±250 kb from the gene encoding the relevant
protein) in weak linkage disequilibrium (LD, r2 < 0.10). Effect estimates were generated using inverse-variance
weighted random-effects models and standard errors were inflated to account for weak LD between variants with
reference to the 1000 Genomes Phase 3 CEU panel. A false discovery rate (FDR)-corrected P-value (“q-value”)
<0.05 was used as a threshold to define “strong evidence” to support associations and 0.05 ≤ q-value < 0.20 to
define “suggestive evidence”. A colocalisation posterior probability (PPH4) >70% was employed to indicate support
for shared causal variants across inflammatory markers and cancer outcomes. Findings were replicated in the
FinnGen study and then pooled using meta-analysis.

Findings We found strong evidence to support an association of genetically-proxied circulating pro-adrenomedullin
concentrations with increased breast cancer risk (OR: 1.19, 95% CI: 1.10–1.29, q-value = 0.033, PPH4 = 84.3%)
and suggestive evidence to support associations of interleukin-23 receptor concentrations with increased
pancreatic cancer risk (OR: 1.42, 95% CI: 1.20–1.69, q-value = 0.055, PPH4 = 73.9%), prothrombin concentrations
with decreased basal cell carcinoma risk (OR: 0.66, 95% CI: 0.53–0.81, q-value = 0.067, PPH4 = 81.8%), and
interleukin-1 receptor-like 1 concentrations with decreased triple-negative breast cancer risk (OR: 0.92, 95% CI:
0.88–0.97, q-value = 0.15, PPH4 = 85.6%). These findings were replicated in pooled analyses with the FinnGen
study. Though suggestive evidence was found to support an association of macrophage migration inhibitory factor
concentrations with increased bladder cancer risk (OR: 2.46, 95% CI: 1.48–4.10, q-value = 0.072, PPH4 = 76.1%),
this finding was not replicated when pooled with the FinnGen study. For 22 of 30 cancer outcomes examined,
there was little evidence (q-value ≥0.20) that any of the 66 circulating inflammatory markers examined were
associated with cancer risk.

Interpretation Our comprehensive joint Mendelian randomization and colocalisation analysis of the role of circu-
lating inflammatory markers in cancer risk identified potential roles for 4 circulating inflammatory markers in risk of
4 site-specific cancers. Contrary to reports from some prior conventional epidemiological studies, we found little
evidence of association of circulating inflammatory markers with the majority of site-specific cancers evaluated.
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(IIG_FULL_2020_022), National Institute for Health Research (NIHR202411, BRC-1215-20011), Medical Research
Council (MC_UU_00011/1, MC_UU_00011/3, MC_UU_00011/6, and MC_UU_00011/4), Academy of Finland
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Institute (INCa SHSESP20, 2020-076), Versus Arthritis (21173, 21754, 21755), National Institutes of Health (U19
CA203654), National Cancer Institute (U19CA203654).
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Introduction
Emerging evidence implicates chronic inflammation in
cancer development.1–3 Preclinical studies have shown
that pro-inflammatory cytokines (e.g., tumour necrosis
factor-α, interleukin-1, interleukin-6) promote cancer
cell proliferation, invasion, and metastasis, and tran-
scription factors for these markers (e.g., NF-kB and
STAT3) are up-regulated across most cancers.4–8 Pro-
spective observational studies have reported associations
between circulating inflammatory markers and risk of
cancer across various anatomical sites.9–23 Further,
pharmacological inhibition of key inflammatory medi-
ators (e.g., COX enzymes, interleukin-1β) in clinical
trials has led to reduced risk of site-specific cancers.24,25
www.thelancet.com Vol 100 February, 2024
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Research in context

Evidence before this study
Preclinical and conventional epidemiological studies have
suggested a role of various classes of circulating inflammatory
markers in risk of site-specific cancer. These findings suggest
that pharmacological targeting of inflammatory markers
could be an effective approach for cancer prevention.
However, the current evidence base and, thus, the
translational utility of these findings to cancer prevention
strategies is limited by the unclear relevance of preclinical
studies to humans and the susceptibility of conventional
observational studies to confounding and reverse causation.

Added value of this study
To evaluate the causal relevance of circulating inflammatory
markers in risk of adult cancer, we employed a Mendelian
randomization design, a quasi-experimental approach which
leverages the natural randomization of germline genotype at
conception to strengthen causal inference in observational
studies. We developed genetic instruments for 66 circulating
inflammatory markers by meta-analysing data from 6
genome-wide association studies of these markers in 59,969
participants and tested these for association with risk of 30

adult cancers in 338,294 cancer cases and up to 1,238,345
controls. We found consistent evidence for association of 4
circulating inflammatory markers in risk of 4 site-specific
cancers: positive associations between pro-adrenomedullin
and breast cancer and interleukin-23 receptor and pancreatic
cancer and inverse associations between prothrombin and
basal cell carcinoma and interleukin-1 receptor-like 1 and
triple-negative breast cancer. Importantly, for 22 of 30 cancer
outcomes examined, we found little evidence that any of the
circulating inflammatory markers were causally implicated in
cancer risk.

Implications of all the available evidence
Our comprehensive analyses help to clarify the human biology
of inflammatory markers in cancer risk, prioritise further
evaluation of select inflammatory markers as potential
chemoprevention agents for cancer prevention, and suggest
the likely non-causal role of a large and diverse group of
inflammatory markers in cancer risk across most anatomical
sites examined, deprioritising their further evaluation as
targets for cancer prevention.

Articles
These successful trial results suggest that pharmaco-
logical targeting of other inflammatory markers identi-
fied in the observational epidemiological literature could
be an effective approach for cancer prevention.26

However, there are important challenges that accom-
pany the translation of findings from observational studies
into effective cancer control strategies. This is because of
the susceptibility of conventional observational designs to
various biases such as residual confounding (e.g., due to
unmeasured or imprecisely measured confounders) and
reverse causation.27,28 These biases frequently persist
despite statistical and methodological efforts to address
them,29–31 making it difficult for observational studies to
reliably conclude that a risk factor is causal, and thus a
potentially effective intervention target.32

Mendelian randomization (MR) uses germline ge-
netic variants as instruments (“proxies”) for risk factors
to generate estimates of the effects of these factors on
disease outcomes in observational settings.32,33 Since
germline genetic variants are quasi-randomly assorted at
meiosis and are fixed at conception, MR analyses should
be less susceptible to conventional issues of confound-
ing and cannot be influenced by reverse causation bias.
In addition, MR analysis considers the long-term effect
of risk factors on health outcomes, which is relevant in
the context of diseases like cancer where there may be
long induction periods between exposure to a particular
risk factor and disease initiation.34
www.thelancet.com Vol 100 February, 2024
Previous MR analyses that have examined the asso-
ciation of circulating inflammatory markers with cancer
risk have been restricted to examining single inflam-
matory markers,35–41 individual cancer sites,36,37,42,43 or
have evaluated the effects of specific classes of inflam-
matory markers (i.e., cytokines).44–46 To date, however,
no studies have used a systematic approach to compre-
hensively evaluate different classes of circulating in-
flammatory markers across adult cancers.

We aimed to systematically evaluate the causal
relationship of circulating inflammatory markers with
risk of 30 adult cancers. First, we performed a meta-
analysis of genome-wide association studies (GWAS)
of circulating inflammatory markers to generate novel
and stronger genetic instruments for these markers.
Second, we used the Open Targets Platform to identify
inflammatory markers with prior evidence from pre-
clinical and/or epidemiological studies to support their
aetiological role in site-specific cancers and tested re-
lationships of these inflammatory marker-cancer pairs
using combined Mendelian randomization and coloc-
alisation analysis (“Validation analyses”). Third, for all
remaining inflammatory-marker cancer pairs, we sys-
tematically tested their relationship using combined
Mendelian randomization and colocalisation analysis to
identify potential novel circulating inflammatory
markers implicated in cancer risk (“Discovery
analyses”).
3
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Methods
Identification of inflammatory markers
We compiled a list of all inflammatory markers that
corresponded to one or more of the following classes:
acute phase proteins, chemokines, growth factors, in-
terferons, interleukins, and tumour necrosis factors.47–53

Inflammatory markers were then mapped to their
UniProt ID, resulting in 218 unique markers.54

Identification of GWAS for inclusion in meta-
analysis
Between March and May 2021, the GWAS catalog
(https://www.ebi.ac.uk/gwas/) and the preprint server
bioRxiv (https://www.biorxiv.org/) were searched for
genome-wide association studies of circulating proteins
for inclusion into the meta-analysis. GWAS of circu-
lating inflammatory markers were included in meta-
analyses if they met the following criteria: i) the study
was performed in individuals of European ancestry, ii)
the study was adjusted for basic covariates only (e.g.,
age, sex, principal components of genetic ancestry) to
avoid issues due to potential collider bias, iii) effect es-
timates were presented in standard deviation (SD) units
or equivalent (e.g., protein concentrations were inverse-
normal rank transformed), and iv) complete summary
genetic association data were available for cis-acting
SNPs (i.e., ±250 kb from the gene encoding each
marker). We did not contact authors for additional data
as our inclusion criteria were to only include studies that
posted complete summary genetic association data from
the analysis online. Where two studies with >50%
sample overlap measured the same protein, we selected
the larger study for inclusion into the meta-analysis. In
total, 6 studies met all inclusion criteria and 8 were
excluded.55–60 A summary of each included study is
presented in Table 1 and a list of excluded studies along
with their justification for exclusion is presented in
Supplementary Table 1.

Data pre-processing and quality control
For each inflammatory marker of interest, UniProt IDs
were mapped to proteomic platform-specific IDs based
on annotations provided by platform vendors and
manual review.61 In quality control, 14 markers with the
following issues were flagged and removed from one or
more studies: those with ambiguous or duplicate Uni-
prot IDs, unique Uniprot IDs with duplicate probes,
genes located on chromosome X, or proteins where
summary genetic association data could not be accessed
from the relevant data repository (Supplementary
Table 2). After removal of problematic inflammatory
markers, genetic association data for 204 of 218 markers
of interest were available in at least one study. For each
of these markers, the relevant protein-coding gene for
the marker was identified using the UniProt ID map-
ping function and genomic coordinates for the gene
(build GRCh37) were extracted using BioMart.62 Of the
204 inflammatory markers, 116 markers were only
measured in one study with the remaining 88 markers
taken forward to meta-analysis.

GWAS meta-analysis to develop genetic
instruments for inflammatory markers
Across all studies, summary genetic association data for
each marker were extracted for cis-acting variants (i.e.,
±250 kb from the gene encoding the protein). Genomic
coordinates in Gilly et al. were converted from build
GRCh38 to GRCh37 prior to data extraction using Lift-
Over.63 All SNPs with a minor allele frequency
(MAF) <0.01 and all palindromic SNPs with a MAF
>0.40 were removed. For inflammatory markers
measured in both Sun et al. and Folkersen et al., sum-
mary genetic association data from Sun et al. were not
included in meta-analyses due to participant overlap
across studies.55,60 Meta-analyses across inflammatory
markers were performed using inverse variance-
weighted fixed-effects models in METAL.64 Of the 88
inflammatory markers included in the meta-analysis, 45
had 1 or more genome-wide significant (P < 5.0 × 10−8)
variants associated with that marker and, therefore,
were included in subsequent MR analyses.

Agreement of SNP effects across studies
To compare agreement of SNP effects across studies
included in meta-analyses, standardised effect estimates
for inflammatory markers were systematically compared
across studies by calculating Pearson correlation co-
efficients and the percentage of SNPs with effects that
were directionally consistent. These analyses were per-
formed by extracting independent cis-acting SNPs
(r2 < 0.01, with reference to the 1000 Genomes Phase 3
CEU Panel) across two P-value thresholds
(P < 5.0 × 10−8, P < 5.0 × 10−4) in PLINK. Pair-wise
correlations and directionality comparisons were not
performed for Folkersen et al. and Sun et al. due to
participant overlap across studies. Comparisons were
performed by aligning effect directions of SNPs to the
protein-increasing allele to prevent inflated Pearson
correlation coefficients.65 When performing pair-wise
correlations of SNP effects across studies, the median
(interquartile range, IQR) agreement in study-level
comparison was r = 0.66 (0.24–0.84) when using a
P < 5.0 × 10−8 threshold and r = 0.65 (0.45–0.85) when
using a P < 5.0 × 10−4 threshold. When comparing the
percentage of SNPs with effects that were directionally
consistent across studies, 93.4% (142/152) were
consistent when using a P < 5.0 × 10−8 threshold and
89.2% (545/611) were consistent when using a
P < 5.0 × 10−4 threshold.

Genetic instrument construction
Following meta-analysis, genome-wide significant
(P < 5.0 × 10−8) SNPs for each inflammatory marker of
interest were extracted and SNPs with evidence of
www.thelancet.com Vol 100 February, 2024
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Study N proteins Participants Units Adjustment Protein assay

Karhunen
et al.58

47
inflammatory
proteins

840-13,365
Finnish

Inverse-normal rank transformation Age, sex, first 10 genetic principal components Bio-Rad Bio-plex
assays, custom
panel

Folkersen
et al.55

90 proteins 30,931
European

NPX values of proteins (on the log2 scale) were rank-based
inverse normal transformed and/or standardised to unit
variance

Variable across studies Olink

Gilly
et al.56

257 proteins 1328 Greek Inverse-normal transformation of the residuals Age, age2, sex, plate number, per-sample mean NPX value
across all assays. Adjustment for season.

Olink

Hillary
et al.57

70
inflammatory
proteins

1936
European
older adults

Standardised residuals from these regression models were
brought forward for all genetic-protein and epigenetic-protein
analyses.

Age, sex, four genetic principal components of ancestry,
array plate

Olink

Pietzner
et al.59

179 proteins 10,708
European

Rank-based inverse normal transformation Age, sex, sample collection site, 10 principal components SomaScan

Sun
et al.60

2995 proteins 3600
European

Rank-inverse normalized Age, sex, duration between blood draw and processing, first
three principal components of ancestry from multi-
dimensional scaling

SomaScan

Table 1: Summary of studies included in GWAS meta-analysis of circulating inflammatory markers.

Articles
heterogeneity of effect across studies (Phet < 0.001) were
removed. In total, 45 inflammatory markers included in
meta-analyses were retained and combined with 21
markers measured in a single study (i.e., not included in
the meta-analysis) that had 1 or more cis-acting genome-
wide significant (P < 5.0 × 10−8) variant associated with
the marker.66 Genetic instruments to proxy 66 circu-
lating inflammatory markers were constructed from
SNPs that were permitted to be in weak linkage
disequilibrium (LD, r2 < 0.10), increasing the proportion
of variance in each marker explained by the instrument
and, thus, maximising instrument strength.67

Cancer GWAS study populations
We obtained summary genetic association data from
GWAS of 30 cancer outcomes representing 12
anatomical sites and 18 cancer subtypes within these
sites.68–78 The median (IQR) number of cases across
GWAS of unique anatomical sites was 15,161
(7537–37,344). Analyses in each study were restricted to
individuals of European ancestry. Further information
on statistical analysis, imputation, and quality control
measures for these studies is available in the original
publications. A summary of the numbers of cases and
controls across each cancer outcome is presented in
Supplementary Table 3.

Analytical approach
We employed a two-stage approach to evaluate the effect
of circulating inflammatory markers on cancer risk. We
first attempted to validate previously reported inflam-
matory marker-cancer associations from the preclinical
and/or epidemiological literature using the Open Tar-
gets platform (“Validation analyses”).79 The Open Tar-
gets platform integrates data (e.g., gene expression,
animal models, text mining, pathways and systems
biology) from >20 public sources and uses this data to
www.thelancet.com Vol 100 February, 2024
systematically build an “Overall association score” be-
tween drug targets and disease outcomes (i.e., the Open
Targets platform generates a summary of the overall
evidence implicating a protein-coding gene in a disease
outcome). The score is derived by calculating the har-
monic sum of the association score by data source
weighted by data source weights that aim to calibrate the
relevance of each data source relevant to others, inde-
pendent to their data type categorisation. All inflam-
matory marker-cancer pairs with an “Overall association
score” ≥0.05 were included in validation analyses
(scores range from 0 to 1, where 1 represents strong
evidence that a protein is implicated in a disease
outcome). For the purposes of this analysis, a score of
≥0.05 would suggest, at minimum, some evidence (e.g.,
across studies evaluating gene expression, animal
models, and/or text mining) that a particular inflam-
matory marker is implicated in a cancer outcome eval-
uated. Of all remaining inflammatory marker-cancer
pairs not included in “Validation analyses”, we then
performed a “hypothesis-free” pan-cancer assessment to
identify potential novel inflammatory marker-cancer
associations (termed “Discovery analyses”).

Mendelian randomization can generate unbiased
estimates of causal effects of exposures on disease
outcomes if the following assumptions are met: i) the
instrument is strongly associated with the exposure
(“relevance”), ii) there are no common causes of the
instrument and outcome (“exchangeability”), and iii)
there is no direct effect of the instrument on the
outcome (“exclusion restriction”). Under the
assumption of monotonicity (i.e., the direction of
the effect of the instrument on the exposure is con-
sistent across all individuals), MR can provide valid
point estimates for those participants whose exposure
is influenced by the instrument (i.e., complier average
causal effect).80
5
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For inflammatory markers instrumented by a single
SNP, the Wald ratio was used to generate effect esti-
mates and the delta method was used to approximate
standard errors. For markers instrumented by two or
more SNPs, inverse-variance weighted (IVW) random-
effects models were used to estimate causal effects.81

Standard errors from IVW models were inflated to ac-
count for weak linkage disequilibrium between SNPs by
incorporating a correlation matrix using the 1000 Ge-
nomes Phase 3 CEU reference panel.82,83

We evaluated the “relevance” assumption by gener-
ating estimates of the proportion of variance in each
inflammatory marker explained by the instrument (r2)
and F-statistics. An F-statistic >10 is conventionally used
to indicate that instruments are unlikely to suffer from
weak instrument bias.84 Colocalisation analysis was
performed to evaluate whether circulating inflammatory
markers and cancer outcomes shared the same causal
variant within a locus, necessary but not sufficient to
infer causality between these traits. Such an analysis can
also permit evaluation of whether circulating inflam-
matory markers and cancer endpoints are influenced by
distinct causal variants that are in linkage disequilib-
rium with each other, indicative of horizontal pleiotropy
(an instrument influencing an outcome through path-
ways independent to that of the exposure), a violation of
the exclusion restriction assumption. Colocalisation
analysis was performed by generating ±250 kb windows
from the sentinel SNP used to proxy each inflammatory
marker. We employed a colocalisation posterior proba-
bility (PPH4) of >0.70 to indicate support for shared
causal variants across circulating inflammatory markers
and cancer outcomes. All colocalisation analyses were
performed using GCTA-COJO and the coloc package as
implemented in Pair-Wise Conditional analysis and
Colocalisation analysis (PWCoCo).85–87 We used default
prior probabilities that any SNP within the colocalisation
window was associated exclusively with inflammatory
marker concentrations (p1 = 1 × 10−4), exclusively with
cancer risk (p2 = 1 × 10−4), or both traits (p12 = 1 × 10−5).
Finally, iterative leave-one-out analysis was performed
iteratively removing one SNP at a time from multi-SNP
instruments to examine whether findings were driven
by a single influential SNP.

To account for multiple testing, a Benjamini-
Hochberg false discovery rate (FDR) correction was
applied across “Validation” and “Discovery” analyses
separately.88 We used an FDR-corrected P-value (termed
“q-value”) threshold of <0.05 to define “strong evidence”
to support analyses, with findings between q-value ≥0.05
and q-value <0.20 defined as “suggestive evidence”.

Sensitivity analyses to explore potential aptamer or
epitope binding effects
Genetic instruments may be associated with circulating
protein concentrations due to aptamer or epitope bind-
ing artefacts when using protein assays that rely on
binding (e.g., SomaScan).89 SNP associations in GWAS
that employ aptamer-based protein platforms may
therefore represent associations with protein measures
due to differential binding rather than differences in
protein abundance. As variants sensitive to aptamer or
epitope binding effects tend to be missense variants, for
two studies that used the aptamer-based SomaScan
assay (i.e., Sun et al., Pietzner et al.), we flagged all in-
struments that were missense variants or variants that
were in high LD (r2 > 0.80) with a missense variant
using functional consequence data from the Open Tar-
gets platform and the LDlinkR package.59,60,79,90 For top
findings from “Validation” and “Discovery” analyses
generated using multi-SNP instruments, as sensitivity
analyses we then re-calculated MR estimates dropping
missense variants or variants in high LD with missense
variants from instruments. For top findings consisting
of single-SNP instruments that were missense variants
or in high LD with a missense variant, we explored
whether these instruments were also expression quan-
titative trait loci (eQTL) or splicing quantitative trait loci
(sQTL) for the gene encoding the relevant inflammatory
marker in the Genotype-Tissue Expression (GTEx)
project V8. If missense variants (or variants in high LD
with missense variants) also influence expression or
alternative splicing of pre-mRNA of the gene encoding
the relevant inflammatory marker, causal inference us-
ing these variants as instruments is unlikely to be biased
even if effect estimates are invalid.91

Replication analysis in the FinnGen study and
meta-analysis of results
Replication analyses of findings from “Validation” and
“Discovery” analyses were performed using summary
genetic association data from the FinnGen study.92

FinnGen is a large-scale research project with com-
bined genomic and clinical data on 377,277 participants
(release 9). The numbers of cancer cases across repli-
cation analyses ranged from 1416 to 15,680 and are
presented in Supplementary Table 3. Fixed and random-
effects meta-analysis was performed across MR esti-
mates obtained from primary (i.e., “discovery” and
“validation” analyses) and replication analyses.

Expression quantitative trait loci enrichment to
examine tissue-specific regulatory mechanisms of
effects
For all top findings from “Discovery” and “Validation”
analyses we examined whether instruments overlapped
with eQTL (P < 5.0 × 10−8) to identify potential tissue-
specific regulatory effects of instruments using data on
15,201 RNA-sequencing samples from 49 tissues of 838
post-mortem donors in the GTEx project V8 and 1544
RNA-sequencing samples from 13 immune cells of 91
healthy subjects in the Database for Immune Cell
Expression (DICE).93,94 Where there was eQTL overlap, we
then used multiple trait colocalisation (“moloc”) to
www.thelancet.com Vol 100 February, 2024
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evaluate colocalisation across circulating inflammatory
marker concentrations, tissue-specific or immune cell-
specific gene expression, and cancer risk.95 The primary
objective of these analyses is to identify whether putative
effects of circulating inflammatory markers on cancer risk
are driven through tissue-specific or immune cell-specific
effects of expression of the genes encoding these markers
(i.e., facilitating identification of tissue or immune cell-
specific regulatory mechanisms that may account for
these associations). We employed a colocalisation poste-
rior probability >0.70 to indicate support for shared causal
variants across all three traits. We used default prior
probabilities that any SNP within the colocalisation win-
dow was associated exclusively with inflammatory marker
concentrations, tissue-specific or immune cell-specific
gene expression, or cancer risk (p1 = 1 × 10−4); associ-
ated with two of these traits (p2 = 1 × 10−6); or associated
with all three traits (p3 = 1 × 10−7).

Evaluation of drug repurposing opportunities using
DrugBank and clinicaltrials.gov
For all findings showing “strong” or “suggestive evi-
dence” in MR analysis and evidence of colocalisation, we
used DrugBank to identify investigational and/or
approved drugs targeting these inflammatory markers.96

In post-hoc analyses, a clinical trials registry (https://
clinicaltrials.gov) was also searched (accessed on 28
November 2023). The availability of drugs targeting
these markers could suggest potential for their repur-
posing as pharmacological agents for cancer prevention.

A step-by-step overview of GWAS selection, instru-
ment construction, and statistical analysis stages is
presented in Fig. 1.
Fig. 1: A step-by-step overview of genome-wide association study s
GWAS = genome-wide association study, QC = quality control, SNP
pQTL = protein quantitative trait locus, LD = linkage disequilibrium, eQT
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Ethics
This work used summary genetic association data from
previously published GWAS. All studies contributing
data to these analyses had the relevant institutional re-
view board approval from each country and all partici-
pants provided informed consent.

Role of funders
The funding institutions had no role in the design and
conduct of the study; collection, management, analysis,
and interpretation of the data; preparation, review, or
approval of the manuscript; and decision to submit the
manuscript for publication.

Results
Across 66 circulating inflammatory markers, F-statistics
for their instruments ranged from 30.0 to 7608.0, sug-
gesting that instruments were unlikely to suffer from
weak instrument bias. Characteristics of genetic variants
used to proxy circulating inflammatory markers are
presented in Supplementary Table 4. Estimates of r2 and
F-statistics for each marker are presented in
Supplementary Table 5.

Validation Mendelian randomization analyses
56 of the 66 inflammatory markers were included in
validation analyses (i.e., markers with at least one cancer
outcome with an overall association score ≥0.05 in
Open Targets). In total, 260 target–cancer associations
were tested. In Mendelian randomization analysis, there
was suggestive evidence to support 6 inflammatory
marker-cancer associations. Though categorised as
suggestive evidence, the strongest associations observed
election, instrument construction, and statistical analysis stages.
= single-nucleotide polymorphism, MAF = minor allele frequency,
L = expression quantitative trait locus.
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in this group were for tumour necrosis factor ligand
superfamily member 10 (TRAIL) concentrations and
breast cancer risk (OR 0.90 per SD increase, 95% CI
0.85–0.95, q-value = 0.072), circulating macrophage
migration inhibitory factor (MIF) concentrations and
bladder cancer risk (OR 2.46, 95% CI 1.48–4.10, q-
value = 0.072), and interleukin-7 receptor subunit alpha
concentrations and colon cancer risk (OR 0.83, 95% CI
0.74–0.93, q-value = 0.093). Findings for all inflamma-
tory marker-cancer associations that employed IVW
models were robust to iterative leave-one-out analysis. In
colocalisation analysis, there was evidence to support
shared causal variants across circulating MIF concen-
trations and bladder cancer risk in the MIF locus
(PPH4 = 76.1%), but little evidence to suggest shared
causal variants across 5 other inflammatory marker-
cancer associations. Complete results from primary
Mendelian randomization, iterative leave-one-out, and
colocalisation analyses are presented in Supplementary
Tables 6–8.

Discovery Mendelian randomization analyses
Among the 66 circulating inflammatory markers
included in Discovery analyses, there was strong or
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Fig. 2: Scatter plot of associations of single-nucleotide polymorphism
SNP = single-nucleotide polymorphism.
suggestive evidence for 6 inflammatory marker-cancer
associations. The strongest association observed was
for circulating pro-adrenomedullin concentrations and
breast cancer risk (OR 1.19, 95% CI 1.10–1.29; q-
value = 0.033). Though categorised as suggestive evi-
dence, the other strongest associations observed in this
group were for interleukin-23 receptor concentrations
and pancreatic cancer risk (OR 1.42, 95% CI 1.20–1.69;
q-value = 0.055), prothrombin concentrations and basal
cell carcinoma risk (OR 0.66, 95% CI 0.53–0.81; q-
value = 0.067), serum amyloid P component concen-
trations and low grade serous ovarian cancer risk (OR
1.86, 95% CI 1.34–2.59; q-value = 0.084), and
interleukin-1 receptor-like 1 concentrations and triple-
negative breast cancer risk (OR 0.92, 95% CI
0.88–0.97, q-value = 0.15). Findings for all inflammatory
marker-cancer associations that employed IVW models
were robust to iterative leave-one-out analysis. In
colocalisation analysis, pro-adrenomedullin and breast
cancer risk (PPH4 = 94.4%), interleukin-23 receptor and
pancreatic cancer risk (PPH4 = 73.9%), prothrombin
and basal cell carcinoma risk (PPH4 = 81.8%), and
interleukin-1 receptor-like 1 and triple-negative breast
cancer risk (PPH4 = 85.6%) showed evidence of shared
0.15 0.20 0.25
nomedullin concentrations

s with pro-adrenomedullin concentrations and breast cancer risk.
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causal variants across traits. Complete findings from
primary Mendelian randomization, iterative leave-one-
out, and colocalisation analyses are presented in
Supplementary Tables 7–9. Scatterplots for analyses of
pro-adrenomedullin and breast cancer risk, interleukin-
23 receptor and pancreatic cancer risk, and interleukin-1
receptor-like 1 and triple-negative breast cancer risk are
presented in Figs. 2–4.

Replication in FinnGen study and meta-analysis of
results
Replication analyses were performed for all circulating
inflammatory marker-cancer associations with strong or
suggestive evidence except for interleukin-1 receptor-like 1
and triple-negative breast cancer risk where summary
genetic association data could not be identified for this
cancer outcome in the FinnGen study or in alternate in-
dependent datasets. For 3 of 4 circulating inflammatory
markers evaluated in replication analyses, there was
consistent evidence of association in pooled analysis with
the FinnGen study with either no or low-to-moderate ev-
idence of heterogeneity (I2 = 0.0–39.9%) across studies
(Figs. 5–7). In replication analysis of the association of
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Fig. 3: Scatter plot of associations of single-nucleotide polymorphisms w
SNP = single-nucleotide polymorphism.
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macrophage migration inhibitory factor with bladder
cancer risk, there was little evidence of association with
large heterogeneity (I2 = 83.6%) across studies (Fig. 8).

Evaluation of aptamer or epitope binding effects of
instruments
In sensitivity analyses exploring potential aptamer or
epitope binding effects of instruments for Mendelian
randomization findings showing evidence of colocali-
sation, one of two SNPs used to instrument interleukin-
23 receptor concentrations (rs11581607) was in perfect
LD (r2 = 1.0) with a missense variant (rs11209026).
Mendelian randomization findings were consistent
when dropping this SNP from the instrument and
calculating a revised causal estimate (OR 1.40, 95% CI
1.10–1.78). In colocalisation analysis employing condi-
tional analysis adjusting for rs11581607, evidence of
shared causal variants across interleukin-23 receptor
and pancreatic cancer risk associations persisted
(PPH4 = 69.8%). The SNP used to instrument pro-
thrombin (rs3136516) was in high LD (r2 = 0.83) with a
missense variant (rs2306029). There was evidence that
rs3136516 is a sQTL for F2 (gene encoding
0.4 0.6
23 receptor concentrations

ith interleukin-23 receptor concentrations and pancreatic cancer risk.
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prothrombin) in liver tissue (normalised effect size per
copy of circulating prothrombin-increasing allele: 0.63,
P = 3.1 × 10−12). Functional annotation of SNPs used to
instrument inflammatory markers along with SNPs in
high LD with these variants is presented in
Supplementary Table 10.

Expression quantitative trait loci overlap and
multi-trait colocalisation analysis
Across 4 inflammatory markers with consistent evi-
dence of association with cancer outcomes, there was
little evidence of eQTL overlap for SNPs used to in-
strument these markers. Though the association with
bladder cancer risk was not consistent in replication
analyses in FinnGen, there was evidence that the SNP
used to instrument macrophage migration inhibitory
factor concentrations (rs2330634) was an eQTL for MIF
in 35 tissue types. In multiple trait colocalisation anal-
ysis, there were low posterior probabilities of shared
causal variants across circulating macrophage migration
inhibitory factor, tissue-level MIF expression, and
bladder cancer risk (a summary of eQTL overlap and
findings from multiple trait colocalisation analysis is
presented in Supplementary Table 11).

Genetic findings support drug repurposing
opportunities in DrugBank and ClinicalTrials.gov
In DrugBank, of the 4 inflammatory markers showing
consistent evidence of a causal relationship with site-
specific cancer, 3 of these markers (or related markers)
are targets of approved or investigational medications.
Though there are no approved medications that target the
interleukin-23 receptor, three interleukin-23 inhibitors or
antagonists (i.e., ustekinumab, tildrakizumab, risankizu-
mab) have been approved to treat autoimmune conditions
including moderate-to-severe plaque psoriasis.97,98 Several
prothrombin activators or agonists have been approved for
the treatment and prevention of bleeding in individuals
with haemophilia A (e.g., Moroctocog alfa, Lonoctocog
alfa).99,100 Adrecizumab, a monoclonal anti-adrenomedullin
antibody, has been evaluated in clinical trials for efficacy in
early septic shock (ClinialTrials.gov identifier:
NCT03085758), cardiogenic shock (NCT03989531), and
coronavirus-19 (NCT05156671). There were no
www.thelancet.com Vol 100 February, 2024
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Fig. 5: Forest plot of associations of pro-adrenomedullin concentrations and breast cancer risk across Zhang et al. and FinnGen. RE = random
effects. Fixed-effects model OR 1.19 (95% CI 1.10–1.28).
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investigational or approved medications targeting
interleukin-1 receptor like-1 or the interleukin-1 receptor
like-1 ligand interleukin-33 in DrugBank. A summary of
investigational and approved medications targeting the 4
inflammatory markers is presented in Supplementary
Table 12.
Discussion
Our systematic Mendelian randomization and colocali-
sation analysis of 66 circulating inflammatory markers
in risk of 30 cancers found consistent evidence for po-
tential roles of 4 markers in risk of 4 site-specific can-
cers. We identified potential novel associations between
four inflammatory markers (pro-adrenomedullin,
interleukin-23 receptor, prothrombin, and interleukin-1
receptor-like 1) and risk of site-specific cancers. For 22
of 30 cancer outcomes examined (e.g., overall and
subtype-specific lung, ovarian, and endometrial cancer),
we found little evidence for association of circulating
inflammatory markers with cancer risk despite evidence
from conventional epidemiological studies suggesting
roles of various markers evaluated in their
aetiology.14,18,21,22,101,102 We also found little evidence that
www.thelancet.com Vol 100 February, 2024
several putative key inflammatory mediators in cancer
development (e.g., epidermal growth factor, interleukin-
6 receptor, interleukin-8) were associated with cancer
risk.103–105

Some of the disagreement between our findings and
those reported in the epidemiological literature could
reflect the relatively limited sample size of some cancer
outcomes included in our analyses (i.e., 13 of 30 out-
comes were restricted to <10,000 cases). Alternatively,
conflicting findings could reflect the susceptibility of
conventional epidemiological studies to unmeasured or
residual confounding (e.g., due to imprecisely measured
confounders) and reverse causation (e.g., latent, undi-
agnosed cancer influencing circulating inflammatory
marker concentrations). Assuming that strong and un-
verifiable assumptions of exchangeability and exclusion
restriction hold, our findings therefore do not support
widespread effects of those circulating inflammatory
markers evaluated on cancer risk across several
anatomical sites, though we cannot rule out small to
modest or potential time-varying effects of these
markers or potential heterogeneity of effects across
participant subgroups (e.g., long-term smokers, in-
dividuals with autoimmune conditions).
11
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Fig. 6: Forest plot of associations of interleukin-23 receptor concentrations and pancreatic risk across Klein et al. and FinnGen. RE = random
effects. Fixed-effects model OR 1.35 (95% CI 1.16–1.57).
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In “Validation analyses” appraising previously re-
ported inflammatory marker-cancer risk relationships,
we found suggestive evidence for an association of
genetically-proxied macrophage migration inhibitory
factor concentrations with bladder cancer risk. MIF is a
pleiotropic inflammatory cytokine and critical upstream
mediator of innate immunity.106,107 In vitro studies of
human bladder tissue have supported a role of MIF in
tumour cell proliferation.108 Further, in animal models
of bladder cancer, MIF knockout mice displayed
decreased angiogenesis and invasion as compared with
wild-type mice and those administered oral MIF in-
hibitors had decreased growth and progression of tu-
mours as compared to controls.109,110 However, our
findings did not replicate when pooled with the Finn-
Gen study. This could reflect potential differences in LD
structure across participants included in primary and
replication analyses (i.e., individuals of Dutch and
Finnish ancestry, respectively), or the role of gene-
environment interaction or sampling variability across
studies. Consequently, the putative role of MIF in
development of bladder cancer is unclear and requires
further evaluation in future studies.
In “Discovery analyses” examining potential novel
inflammatory marker-cancer pairs, we found strong
evidence for an association of genetically-proxied pro-
adrenomedullin concentrations with breast cancer risk.
Pro-adrenomedullin undergoes proteolysis and amida-
tion to yield adrenomedullin and proadrenomedullin N-
20 terminal peptide.111 Adrenomedullin is a potent
vasodilator that is expressed in breast cancer cells,
upregulated by hypoxia in these cells, and has been
shown to stimulate angiogenesis and tumour
proliferation.112–114 Breast cancer cells overexpressing
adrenomedullin show lower levels of various apoptotic
factors (e.g., Bax, Bid, caspase 8) and murine models of
breast cancer with adrenomedullin overexpression have
accelerated bone metastasis and lower rates of sur-
vival.114,115 In addition, breast tumour cell-secreted
adrenomedullin has been shown to modify cancer-
associated adipocytes through paracrine signalling,
leading to metabolic changes and lipolysis.116

We also found suggestive evidence for an association
of genetically-proxied interleukin-23 receptor concen-
trations with pancreatic cancer risk. The interleukin-23
receptor pairs with the interleukin-12 receptor β-1
www.thelancet.com Vol 100 February, 2024
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Fig. 7: Forest plot of associations of prothrombin concentrations and basal cell carcinoma risk across Adolphe et al. and FinnGen. RE = random
effects. Fixed-effects model OR 0.73 (95% CI 0.62–0.85).
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subunit to mediate signalling of interleukin-23, a
“master regulator” of innate and adaptive immunity and
promoter of inflammatory mediators in the tumour
microenvironment.117,118 Preclinical studies have re-
ported that interleukin-23 can promote tumour metas-
tasis through up-regulation of angiogenic factors and
that interleukin-23 receptor blockade may confer pro-
tection against tumour growth.119,120 However, compari-
son of findings from this Mendelian randomization
analysis to these preclinical studies can be complicated
by the restriction of the former to evaluation of the effect
of interleukin-23 receptor concentrations on pancreatic
cancer onset while the latter evaluated the role of
interleukin-23 in later stages of tumorigenesis (i.e.,
tumour growth and metastasis). In addition, serum
interleukin-23 concentrations are elevated in patients
with pancreatic cancer as compared to controls and
higher expression of interleukin-23 in tumour tissues of
patients is associated with advanced clinical stage.121,122

Four interleukin-23 inhibitors (i.e., ustekinumab,
risankizumab, guselkumab, tildrakizumab) are
currently approved for the treatment of immune-
mediated inflammatory diseases such as plaque
www.thelancet.com Vol 100 February, 2024
psoriasis.97,98 To date, clinical trials of these medications
have not reported links with pancreatic cancer, though
sample size (≤1306 participants included in trials) and
duration of follow-up of studies (i.e., median 24 weeks
to 2.9 years follow-up across studies) have been
limited.123–127 Though further preclinical and epidemio-
logical work is required to validate and clarify potential
mechanisms governing this effect, our findings sug-
gesting an adverse association of genetically-proxied
interleukin-23 receptor concentrations with pancreatic
cancer risk provide tentative support for a potential role
for interleukin-23 inhibition or antagonism as a phar-
macological approach for pancreatic cancer prevention.

Finally, there was suggestive evidence to support
protective associations of genetically-proxied prothrom-
bin concentrations with basal cell carcinoma and
interleukin-1 receptor-like 1 concentrations with triple-
negative breast cancer risk. Prothrombin is proteolyti-
cally cleaved to form thrombin, the end-product of the
coagulation cascade that converts soluble fibrinogen to a
fibrin clot. Preclinical studies have reported that
thrombin can induce tumour growth, metastasis, and
angiogenesis and that thrombin inhibitors suppress
13
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Fig. 8: Forest plot of associations of macrophage migration inhibitory factor concentrations and bladder cancer risk across Galesloot et al. and
FinnGen. RE = random effects. Fixed-effects model OR 1.50 (95% CI 1.08–2.07).
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tumour growth and metastasis in some cancer cell
lines.128–130 Our analyses evaluated the effect of circu-
lating prothrombin in onset of basal cell carcinoma and,
therefore, are not necessarily inconsistent with a
possible role of prothrombin in driving later stages of
tumorigenesis (e.g., akin to the hypothesised opposing
roles of folate in cancer development and progres-
sion).131,132 In our analyses, the SNP used to instrument
prothrombin was in high LD with a missense variant
which could influence aptamer binding and produce
biased effect estimates. Though the SNP used to in-
strument prothrombin was also a sQTL for F2 (gene
encoding prothrombin) in liver tissue, confident causal
conclusions about the direction and magnitude of an
effect of genetically-proxied prothrombin concentrations
on cancer risk mediated via this variant cannot be made.
Interleukin-1 receptor-like 1 is the cognate receptor for
interleukin-33, an epithelial-derived cytokine which has
been reported to confer both pro- and anti-tumorigenic
effects, depending on the tumour and cellular context,
expression levels, and the nature of the inflammatory
environment.133,134 Few studies have examined a poten-
tial role of interleukin-33 in triple-negative breast cancer
risk and findings from these studies have variably found
that interleukin-33 expression is higher in triple-
negative breast cancer cell lines as compared to
luminal cell lines and that increased expression of this
marker is associated with improved survival in triple-
negative breast cancer risk.135,136 The potential protec-
tive role of circulating interleukin-33 concentrations in
triple-negative breast cancer risk requires further ex-
amination in future studies.

Strengths of this analysis include the comprehensive
and systematic evaluation of a large number of circu-
lating inflammatory markers, representative of different
classes of inflammatory markers, in risk of 30 adult
cancers. We used a dual “hypothesis-validating” and
“hypothesis-generating” approach to attempt to validate
previously reported inflammatory marker-cancer pairs
and to identify potential novel inflammatory marker-
cancer pairs. By performing a meta-analysis of 6 prior
GWAS of circulating inflammatory marker concentra-
tions we were able to generate stronger cis-acting in-
struments for inflammatory markers examined and to
develop novel instruments for some markers, increasing
statistical power and the breadth of analyses performed.
www.thelancet.com Vol 100 February, 2024
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The use of colocalisation as a sensitivity analysis
permitted us to test the robustness of Mendelian
randomization findings to confounding through linkage
disequilibrium. Only 5 of 12 Mendelian randomization
findings with “strong” or “suggestive” evidence of as-
sociation were consistent in colocalisation analyses,
highlighting the importance of evaluation of shared
causal variants as further support for causality of traits
examined, though we cannot rule out low power influ-
encing findings from some of these analyses.

There are several limitations to these analyses. First,
the presence or absence of associations of circulating
inflammatory markers may not reflect potential tissue-
specific effects of these markers in cancer develop-
ment. While we examined tissue-specific regulatory
mechanisms underpinning effects of inflammatory
markers showing strong or suggestive evidence of as-
sociation with cancer risk, we did not systematically
evaluate potential tissue-specific effects of genes
encoding inflammatory markers across all cancer end-
points. Second, Mendelian randomization estimates
represent the effect of long-term genetically-proxied in-
flammatory marker concentrations on cancer risk which
may not correspond to the effect of pharmacological
inhibition of these markers over relatively limited pe-
riods of time in clinical trials. Third, effect estimates
presented assume no gene-environment or gene–gene
interactions and linear and time-fixed effects of
markers on cancer risk. Fourth, our analyses were
restricted to cancer risk and not progression and
therefore may not be informative of the utility of tar-
geting inflammatory markers examined in the context of
cancer treatment. Fifth, our analyses were performed in
individuals of European ancestry and therefore the
generalisability of these findings to non-European pop-
ulations is unclear. Sixth, statistical power was likely
limited for some rarer cancers and select cancer sub-
types. Seventh, though various sensitivity analyses were
employed to test robustness of our findings to potential
violations of exchangeability and exclusion restriction
assumptions, these assumptions are unverifiable.
Eighth, we cannot rule out the possibility that the as-
sociation of genetically-proxied prothrombin concentra-
tions with basal cell carcinoma risk is driven through
aptamer-binding effects given that the variant used to
instrument this marker is in high LD with a missense
variant. Ninth, though F-statistics calculated across in-
struments suggest that weak instrument bias is unlikely,
the use of LD pruning for instrument construction can
lead to less reliable inferences in the presence of weak
instruments as compared to, e.g., factor analysis or
Bayesian variable selection approaches.137 Finally, the
inflammatory markers included in this analysis consti-
tute a non-exhaustive list of inflammation-related
markers which may influence cancer risk.

We found limited overlap of instruments for circu-
lating inflammatory markers with tissue-specific or
www.thelancet.com Vol 100 February, 2024
immune cell-specific eQTLs for the genes encoding
these proteins which could plausibly reflect genetic ef-
fects on processes other than transcription, including
protein degradation, binding, secretion, or clearance
from circulation.60 Systematic evaluation of the role of
tissue-specific eQTLs for inflammation-related genes in
cancer risk could provide further insight into tissue-level
regulatory mechanisms influencing cancer develop-
ment. There is a need to further replicate and validate
findings, particularly for novel associations linking in-
flammatory markers to cancer risk identified in “Dis-
covery” analyses. Future studies restricted to participant
sub-groups with elevated risk of cancer (e.g., life-long
smokers, individuals with chronic inflammatory condi-
tions) could aid in identification of inflammatory
markers mediating cancer risk in these groups. Finally,
evaluation of the potential role of circulating inflam-
matory markers in cancer prognosis could inform on
the possible utility of the pharmacological targeting of
these markers as cancer treatment.
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