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Abstract

The Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) will provide unique 

high temporal frequency observations of the United States coastal waters to quantify processes 

that vary on short temporal and spatial scales. The frequency and coverage of observations from 

geostationary orbit will improve quantification and reduce uncertainty in tracking water quality 

events such as harmful algal blooms and oil spills. This study looks at the potential for GLIMR to 

complement existing satellite platforms from its unique geostationary viewpoint for water quality 

and oil spill monitoring with a focus on temporal and spatial resolution aspects. Water quality 

measures derived from satellite imagery, such as harmful algal blooms, thick oil, and oil emulsions 

are observable with glint <0.005 sr−1, while oil films require glint >10−5 sr−1. Daily imaging hours 

range from 6 to 12 h for water quality measures, and 0 to 6 h for oil film applications throughout 

the year as defined by sun glint strength. Spatial pixel resolution is 300 m at nadir and median 

pixel resolution was 391 m across the entire field of regard, with higher spatial resolution across 

all spectral bands in the Gulf of Mexico than existing satellites, such as MODIS and VIIRS, used 

for oil spill surveillance reports. The potential for beneficial glint use in oil film detection and 

quality flagging for other water quality parameters was greatest at lower latitudes and changed 

location throughout the day from the West and East Coasts of the United States. GLIMR scan 

times can change from the planned ocean color default of 0.763 s depending on the signal-to-noise 

ratio application requirement and can match existing and future satellite mission regions of interest 

to leverage multi-mission observations.
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1. Introduction

The quality of water is an important factor in supporting environmental health, human 

health, and economic prosperity (Cox et al., 2006; Dodds et al., 2009; Schaeffer et al., 

2012; Stroming et al., 2020; Wheeler et al., 2012; Zhang et al., 2022). Water quality is 

defined by biological, physical, and chemical properties to support intended uses, such as 

drinking water, recreation, irrigation, and food production. Measures of biological, physical, 

and chemical indicators may include turbidity, chlorophyll-a, harmful algae, temperature, 

nutrients, and a range of contaminants. Some of these indicators, such as water clarity, 

chlorophyll-a, sediment, colored dissolved organic matter, harmful algae, and surface oil 

slicks, are optically active, meaning that they interact with light through absorption and 

scattering (IOCCG, 2018). These optically active indicators can be directly measured 

using optical satellite sensors, which provide dynamic and ephemeral event information 

across broad spatial and temporal scales. This becomes especially important for monitoring 

extreme events (IPCC, 2012; Seneviratne et al., 2021) where communities need timely 

information regarding changes in water quality.
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Satellite remote sensing of water quality has historically focused on polar orbiting platforms 

such as Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), 

Sentinel-3 Ocean and Land Colour Instrument (OLCI), and Suomi/NOAA-20 Visible 

Infrared Imaging Radiometer Suite (VIIRS) (Groom et al., 2019). There are also several 

planned future polar orbiting missions that continue this trend such as the Plankton, Aerosol, 

Cloud, ocean Ecosystem (PACE) mission, the Surface Biology and Geology (SBG) mission, 

and sequential launches for Sentinel-3 OLCI and Joint Polar Satellite System VIIRS. 

These polar orbiting missions provide global observations but are limited to, at most, one 

acquisition per location per day and are susceptible to cloud contamination at the time 

of acquisition. In addition to these limitations, optical satellite sensors also suffer from 

sun glint, which occurs at varying intensities depending on acquisition characteristics like 

viewing angle, time of year, latitude, and surface wind speed. Sun glint can negatively 

impact water measurements and methods to remove its effects from satellite imagery have 

variable success (Hu, 2011; Wang and Bailey, 2001). However, in some cases, glint can be 

beneficial for monitoring water quality, primarily in the case of detecting surface oil films 

due to the increased surface reflectance caused by oil-induced wave damping (Adamo et al., 

2009; Hu et al., 2009; Hu et al., 2021).

Water quality events, such as oil spills, river plume discharge, tidal effects, and harmful algal 

blooms, are highly dynamic and may evolve on daily to hourly timescales (IOCCG, 2012, 

2018; see Fig. 3.1). Fine-scale temporal and spatial satellite remote sensing observations 

could lead to more comprehensive monitoring by filling spatial and temporal gaps in 

observations from traditional polar orbiting ocean color satellites. The geostationary position 

provides several advantages compared to polar orbiting platforms, such as: higher revisit 

frequencies, longer integration times allowing for improved radiometric accuracy, and 

flexibility in dwell time, which is the amount of time the sensor focuses on a location. 

However, a notable disadvantage is a fixed viewing area, which is referred to as the field of 

regard (Ruddick et al., 2014).

Historically, geostationary satellites have focused on communications and meteorological 

applications, while polar orbiting satellites are typically leveraged for ocean color 

observations. Some geostationary satellites have been repurposed for water quality 

monitoring. Examples include the Japanese Geostationary Meteorological Satellite to derive 

chlorophyll and suspended matter (Ding et al., 2020; Hafeez et al., 2021; Xing et al., 

2021), and the Geostationary Operational Environmental Satellite for cyanobacteria and 

light attenuation (Houskeeper et al., 2022; Hu and Feng, 2014). However, these repurposed 

geostationary missions often lack the spectral resolution and sensitivity required for 

more comprehensive water quality monitoring. In 2010, the Geostationary Ocean Color 

Imager (GOCI) was launched as the first geostationary satellite dedicated to ocean color 

applications and was positioned to monitor the Northeast Asia region (Ryu et al., 2012; 

Yang et al., 2010). GOCI was successfully applied towards monitoring colored dissolved 

organic matter (Seo et al., 2020), phytoplankton biomass indicators such as chlorophyll 

(Feng et al., 2021; Salisbury et al., 2021; Zhao et al., 2022) and cyanobacteria (Li et al., 

2022; Wang et al., 2022), light attenuation (Zhang et al., 2021), photosynthetically active 

radiation (Hwang et al., 2022), particulate organic carbon (Liu et al., 2019; Wang et al., 
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2021), seaweed (Shin et al., 2021), sewage (Hong et al., 2012), and suspended sediment 

(Chau et al., 2021; Choi et al., 2012; Du et al., 2021).

The Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) is a geostationary 

sensor funded by the National Aeronautics and Space Administration (NASA) Earth Venture 

Instrument program anticipated to launch within this decade (Salisbury et al., 2016). 

GLIMR will provide high frequency temporal measures within a day, 300 m spatial pixel 

resolution at the nadir point on Earth’s surface directly below the satellite, and hyperspectral 

observations to quantify coastal ocean processes that vary on short temporal and spatial 

scales. GLIMR spectral resolution will range from ~1 nm to 15 nm for bands between 340 

and 1040 nm. Bands will be aggregated to bandwidths of ~5 nm to 40 nm full width at 

half maximum as required to accommodate algorithm performance. The 2017–2027 Decadal 

Survey for Earth Science and Applications from Space report prioritized the importance 

of understanding changes to the structure, function, and biodiversity of Earth’s aquatic 

ecosystems, surface biology, and changes of biogeochemical fluxes of aquatic ecosystems 

(NAS, 2018). GLIMR data have the potential to advance coastal science and improve 

management and hazard mitigation efforts that benefit human and environmental health 

by quantifying biogeochemical fluxes between and within the coastal zone ecosystems. 

Specifically, GLIMR may be used in response to harmful algal bloom and oil spill events 

of national significance. Harmful algal bloom events of national significance are defined 

by the Harmful Algal Bloom and Hypoxia Research and Control Act (U.S.A. Congress, 

2019) as an “event that has had or will likely have a significant detrimental environmental, 

economic, subsistence use, or public health impact on an affected State.” Considerations 

include toxicity, potential to spread, economic impact, relative size in relation to the past five 

occurrences on a recurrent or annual basis, and geographic scope. An oil spill of national 

significance is defined by the severity, size, location, impact to public and environmental 

health, and scope of the response effort (Coast Guard, 2021).

This study describes the planned technical specifications of GLIMR and focuses on initial 

questions relevant for management applications supporting water quality such as: (1) How 

often may water quality measures be available? (2) What is the spatial coverage given the 

unique geostationary positioning, and how is the spatial resolution relevant for emergency 

event response? (3) What new possibilities, such as event tracking, are offered by GLIMR 

given its unique ability to change dwell times, a feature not previously available with polar 

orbiting satellites?

2. Methodology

2.1. Satellite characteristics

GLIMR is scheduled to launch in the 2027 to 2028 timeframe. The sensor’s planned 

field of regard, viewing geometry, spectral characteristics, and image quality requirements 

were provided by NASA’s Goddard Space Flight Center. These data, in combination with 

information from existing geostationary satellites, were used to determine the usability of 

GLIMR for water quality applications. GLIMR is a geostationary satellite that is planned 

to provide 340–1025 nm hyperspectral data of aquatic ecosystems and sub-daily temporal 

resolution. GLIMR’s angular spatial pixel resolution will be 8.4 μrad, which will result in 
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imagery with a ground sampling distance of 300 m at nadir. Image data captured by GLIMR 

will use a fixed grid projection based on the Geodetic Reference System 1980 ellipsoid and 

the viewing perspective of a satellite in geostationary orbit. The proposed baseline orbital 

position is 98° W, but it could be placed in an orbital position anywhere from 110° W to 

86° W (Fig. 1). GLIMR’s field of regard will be defined by Earth’s limb, which will occur 

~62° from the sub-satellite point. Within this field of regard, planned routine monitoring 

will consist of 1–1.5-h revisits in the Gulf of Mexico, and at least twice daily images of 

the coastal conterminous United States (CONUS), selected Caribbean regions, the Amazon 

River discharge region, equatorial Pacific upwelling features, and the South Pacific clear 

waters. GLIMR’s viewing capabilities afford favorable imaging angles from ~50° N to 50° S 

and 40° to 155° W when positioned at 98° W.

GLIMR’s proposed sampling design was used to determine the rapidity and frequency 

with which a region could be monitored by leveraging diurnal and annual variation in sun 

glint for ocean ecosystem applications. A satellite’s scan time determines the rapidity and 

frequency with which a region can be monitored. GLIMR will not scan the entire field of 

regard multiple times per day and can be tasked to image specific smaller regions at high 

frequency. Each scan that GLIMR makes will take 0.763 s to complete. These scans will 

be comprised of 3072 pixels in the north-south direction and a single pixel in the east-west 

direction. Given that GLIMR’s spatial resolution will be 8.4 μrad, GLIMR’s field of view 

for each scan is up to 25.8 mrad in the north-south direction or 1.48°. The rectilinear area 

covered by each of these scans grows as the distance from nadir increases and with curvature 

of the Earth.

2.2. Computing sun glint

Normalized sun glint (LGN) is the sun glint radiance received by a sensor regardless of 

incident solar radiance. It provides a comparative measure of sun glint intensity given 

sea surface roughness and the position of satellite relative to the sun (see Table 1 for a 

summary of symbols and definitions). LGN, in units of sr−1, was computed at 0.25° intervals 

across GLIMR’s viewing extent to quantify its influence on future image acquisition 

efforts. Following the Cox and Munk (1954) method to calculate normalized sun glint, 

the slope probability density function (PDF, p) of the facets that contribute to sun glint were 

multiplied by functions that incorporate the sensor zenith angle θ, the surface tilt expression 

tan2β , and the Fresnel reflection coefficient ρ ω  of the water surface for unpolarized light:

LGN = ρ(ω)
4 p

1 + tan2β 2

cosθ

(1)

The slope PDF of the facets that contribute to sun glint was expressed as a function of the 

surface tilt viewing geometry and sea surface roughness variance:

p = 1
πσ2exp −tan2β

σ2
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(2)

where σ2 is sea surface roughness variance as a linear function of wind speed W  in m s−1, 

and tan2β is an expression of the surface tilt of a facet that reflects sunlight to the satellite 

sensor relative to a horizontal plane. Sea surface roughness variance is computed as:

σ2 = 0.003 + 0.00512⋆W

(3)

The expression of surface tilt is computed as:

tan2β = sin2θ0 + sin2θ + 2 sinθ0 sinθ cosϕ
cosθ0 + cosθ 2

(4)

where θ is the sensor zenith angle, θ0 is the solar zenith angle, and ϕ is the relative azimuth 

angle between the sensor and the sun.

2.2.1. Wind speed—Observed sun glint patterns are dependent on sea surface roughness, 

which has a linear relationship with wind speed (Eq. 3). Empirical wind speed data was 

acquired from the European Centre for Medium-Range Weather Forecasts (ECMWF) 

Reanalysis v5 (ERA5) product offered by the Copernicus Climate Change Service 

(Hersbach et al., 2023). Hourly estimates of the eastward (u) and northward (v) components 

of wind at an altitude of 10 m were acquired from ERA5 at 0.25° spatial resolution. Wind 

speed W  in m s−1 was calculated from these components as:

W = u2 + v2

(5)

2.2.2. Sun and satellite position—The position of the sun and satellite were required 

to calculate normalized sun glint. The sun’s position was defined in terms of solar zenith 

and solar azimuth angles relative to a point on the Earth’s surface following the method 

described by Meeus (1998) and outlined by Reda and Andreas (2004). Solar zenith 

angle was corrected for atmospheric refraction under average conditions (Meeus, 1998; 

Saimundsson, 1986; Wittman, 1997). The satellite’s position was defined in terms of sensor 

zenith and sensor azimuth angles relative to a point on the Earth’s surface following the 

spherical approximation presented in Soler and Eisemann (1994).

2.3. Minimum event area

An event area may be defined as a harmful algal bloom or oil spill event of national 

significance. The relationship between satellite spatial resolution and minimum observable 

event area was explored by scraping the marine pollution surveillance reports from 2011 

through 2021 that were generated by the National Oceanic and Atmospheric Administration 
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(NOAA) National Environmental Satellite, Data, and Information Service (NESDIS). These 

reports use low to high temporal resolution satellite imagery to manually delineate the extent 

and, in some cases, estimate the thickness of oil slicks and emulsions. Each report includes 

the observed oil slick surface area and the satellite sensor that was used. This analysis was 

limited to reports that were generated using imagery from satellites with optical sensors, 

omitting those generated via synthetic aperture radar. Additionally, Planet’s Planet-Scope 

satellite data were used to demonstrate impacts of pixel size on resolving an event at the 

Mississippi Canyon Block 20 Saratoga Platform (MC20) site in the Gulf of Mexico (28.94° 

N, 88.97° W). During Hurricane Ivan in September 2004, 28 wells at the MC20 site were 

destroyed, which led to persistent oil plumes and surface slicks. Planet data were collected 

at 3.7 m spatial resolution at nadir (Schaeffer et al., 2022) and rescaled to match the spatial 

resolution of various coarser resolution satellites, including GLIMR.

3. Results and discussion

3.1. Spatial resolution and viewing extent

GLIMR’s spatial sampling is presently defined as ground sampling distance, which captures 

the expected maximum pixel resolution and determines the amount of detail within the 

imagery. GLIMR’s finest resolution is 300 m, which occurs at its nadir viewing point at the 

equator. This increases with distance from the nadir point due to changes in viewing angle 

and curvature of the Earth (Fig. 2). Median pixel resolution in the Gulf of Mexico is 330 m 

and along the East and West Coasts of the United States increases to 363 m. Resolution is 

>1 km along the field of regard edge, with limited capability at Alaska due to the increased 

air mass factor (AMF) resulting from the extreme viewing and solar zenith angles through 

the atmosphere. Previous validation studies using data from the Aerosol Robotic Network 

limited AMF to below 3.1 and ocean color studies for the Geostationary Coastal and Air 

Pollution (GEOCAPE) mission recommended a restriction of AMF ≤ 5 (Pahlevan et al., 

2014). Performance of atmospheric correction schemes are dependent on AMF values lower 

than 5, and error typically increases with increased AMF (IOCCG, 2010; Ruddick et al., 

2014). Therefore, the AMF was conservatively limited to ≤4 in this study, similar to how 

polar orbiting ocean color data can measure at sensor zenith up to 70°, approximately 

corresponding to an AMF > 5 above 70°, but validation data are excluded beyond 60° sensor 

zenith due to potential for decreased data quality (Bailey and Werdell, 2006; Barnes and Hu, 

2016). Similarly, missing observations due to cloud cover are more prevalent at high sensor 

zenith angles as cloud cover viewed at an oblique angle obstructs more of the Earth’s surface 

than cloud cover viewed from directly overhead. The AMF ≤ 4 in this study was used to 

constrain the viewing extent of GLIMR for sun glint quantification.

3.2. Sun glint

The optimal bands for oil detection are dependent on oil type, where blue and ultraviolet 

wavebands are best for oil sheen and crude oil, and near-infrared and short-wave infrared 

are best for emulsified oil. GLIMR is proposed to provide hyperspectral remote-sensing 

reflectance at 15 nm bandwidths from 340 to 400 nm, 10 nm bandwidths from 400 to 

720 nm and 40 nm bandwidths from 720 to 1025 nm. Minimum sun glint thresholds for 

detecting surface oil films of 10−5 to 10−6sr−1 were needed to detect oil film presence using 
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MODIS and those above 10−6 to 10−7sr−1 using VIIRS (Sun and Hu, 2016). This study 

used the lower limit threshold of >10−5 sr−1 normalized sun glint defined by Sun and Hu 

(2016) for surface oil film detection and normalized sun glint <0.005 sr−1 for water quality 

products other than oil. NASA’s Seaviewing Wide Field-of-view Sensor (SeaWiFS) Data 

Analysis System (SeaDAS) (Baith et al., 2001) is a comprehensive software package for 

the processing and quality control of a wide array of satellite data. The SeaDAS level 2 

generator (L2gen) processing software implements a high glint quality flag using a threshold 

>0.005 sr−1 for any water quality derived measure (Hu et al., 2020; Wang and Bailey, 

2001). Glint thresholds were mapped in two-hour increments for the December solstice (Fig. 

3), June solstice (Fig. 4), and March and September equinoxes (Fig. 5). Geographic areas 

within the white dashed line met the glint requirements for detecting oil films, and areas 

represented in yellow were above the ocean color glint quality flag for deriving water quality 

measures. Areas without color within the field of regard were experiencing darkness.

December solstice glint (Fig. 3) dominated the southwest Pacific Ocean from zero to 6:00 

Coordinated Universal Time (UTC), then the southern Atlantic Ocean, near the Brazil Basin, 

from 8:00 to 12:00 UTC, and finally the eastern Pacific Ocean from 14:00 to 22:00 UTC. 

June solstice glint (Fig. 4) dominated the northern Pacific Ocean from zero to 6:00 UTC 

and then the northern Atlantic Ocean from 8:00 to 14:00 UTC. The glint area moved into 

the Gulf of Mexico and southern Pacific Ocean from 16:00 to 20:00 UTC and then back 

to solely the Pacific Ocean at 22:00 UTC. March and September equinoxes (Fig. 5) had 

glint from zero to 22:00 UTC along the equator primarily in the Pacific Ocean, except 

from 8:00 to 14:00 UTC when glint was in the Atlantic Ocean. During the March and 

September equinoxes, only the hours from 4:00 to 8:00 UTC supported ocean color glint 

quality flag requirements. These areas were, as expected, along the equator, first in the 

western Pacific Ocean at 4:00 UTC and shifting to the Atlantic Ocean by 8:00 UTC. These 

results were supported by a previous study preparing for GEOCAPE, where summer months 

were influenced by greater sun glint than winter months and at lower latitudes (Feng et al., 

2017). This study is unique from Feng et al. (2017) in that the present study area was the 

planned field of regard for geostationary orbit, inclusive of the entire western United States, 

and provided detailed time of day maps where glint was most likely to occur. The results 

from this study complement Feng et al. (2017) for water quality management applications 

by mapping areas most likely to be impacted by the glint quality flag, which is useful for 

assessing capabilities for oil film monitoring throughout the day. If glint was present in areas 

to the east during GLIMR’s early morning, or to the west late in day, then scans of those 

areas would be possible without impacting the predefined observational schedule of 5–6 

images per day of the Gulf of Mexico and 2–3 images per day of the East and West Coasts 

of the United States.

3.3. Minimum event size

NOAA NESDIS marine pollution surveillance reports were used to quantify the spatial 

resolution of the satellites used to report oil spill area and quantify if GLIMR’s 

spatial resolution would be valuable for monitoring oil spills. NESDIS used a range of 

optical satellite sensors with various spatial resolution configurations, including 1.24 m 

WorldView-3, 1.8 m WorldView-2, 3 m PlanetScope, 10 m Sentinel-2, 15 m Advanced 
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Spaceborne Thermal Emission and Reflection Radiometer, 20 m Sentinel-1, 30 m Landsat, 

250 m Terra and Aqua, and 375 m VIIRS. At the MC20 site, the median oil area from 

NOAA NESDIS marine pollution surveillance reports was 2.28 km2 from 2016 through 

2021 (Schaeffer et al., 2022). Oil slick widths are often reported <10 m wide (Brown and 

Fingas, 2001), with the largest slicks typically <30 m wide and up to 100 m long (Sun 

et al., 2016; Svejkovsky et al., 2016). Including all marine pollution surveillance reports 

from optical satellite sensors with up to 375 m spatial resolution, oil spill area ranged 

from 2 km2 to ~100 km2 from 2011 to 2021 (Fig. 6A). Locations of marine pollution 

surveillance reports were previously reported in Schaeffer et al. (2022; see Fig. 1). Based 

on this assessment of NESDIS marine pollution surveillance reports, the spatial resolution 

of GLIMR is well-suited for observing oil spills, particularly in the Gulf of Mexico (Fig. 

6B). The increase of oiled area with coarser resolution satellites was also due to the coverage 

area difference, where high-resolution satellites only covered a small area, so the detected 

oil areas were smaller. Across GLIMR’s entire field of regard with AMF ≤ 4.0, median 

pixel resolution was 391 m (25th quantile was 337 m and 75th quantile was 465 m). Across 

CONUS, median pixel resolution was 363 m (25th quantile was 345 m and 75th quantile 

was 385 m), and within the Gulf of Mexico, median pixel resolution was 330 m (25th 

quantile was 324 m and 75th quantile was 337 m). These median pixel sizes were similar 

to the spatial resolution of VIIRS, which has been frequently used for oil spill monitoring 

(Hu et al., 2015a; Sun et al., 2018). Coastal waters adjacent to CONUS would also likely 

be adequate in pixel resolution but may decline in utility as the monitoring location moves 

further away from the sensor nadir and pixel resolution approaches >400 m. GLIMR could 

potentially resolve 50 % of CONUS estuaries and 79 % of sub-estuaries, with a minimum 

of three pixels across and at the CONUS median pixel resolution of 363 m (Schaeffer and 

Myer, 2020). Oil spill monitoring was not limited in the field of regard to just areas meeting 

sun glint requirements because thick oil and oil emulsions were observable with glint below 

the 10−5 sr−1 threshold.

Resampled true color images from PlanetScope were used as a demonstration of spatial 

resolution on the observability of an oil slick at the MC20 site in the Gulf of Mexico 

(Fig. 7). The 3.7 m native resolution PlanetScope imagery was resampled to 4 m and 

then expanded by approximate orders of magnitude representing spatial resolutions similar 

to those from commercial sensors (4 m), land imagers (40 m), GLIMR within the field 

of regard (400 to 800 m), and for various other missions with coarser spatial resolution 

(2000 m). These images show how the pixel resolution affects the ability to observe surface 

oil slicks or other water quality events. While there is a clear distinction in the level of 

detail discernable with spatial resolutions increasing from 3.7 m to 400 m, GLIMR’s pixel 

resolution still allows oil and non-oiled waters to be differentiated. Pixel scales at ≥800 m 

may not be appropriate spatial resolutions for smaller scale water quality events.

Coastal water quality spatial gradients are a fractal problem depending on the application 

need (Seuront and Lagadeuc, 1997). Previous studies have supported spatial resolutions 

similar to that of GLIMR up to 500 m as adequate for various coastal water quality 

applications (IOCCG, 1999, 2012). However, there are additional application needs 

spanning a range of resolutions, including finer spatial resolutions than that offered through 

GLIMR (Niemi et al., 2004; Schaeffer and Myer, 2020). Estuarine spatial gradient studies 
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of chlorophyll, colored dissolved organic matter, and dissolved organic carbon had the 

greatest changes within 300 m of coastal marsh (Tzortziou et al., 2011). Other studies 

indicated optimal resolution is <200 m within 10 km of land and expands to 1 km resolution 

offshore (Bissett et al., 2004; Moses et al., 2016). However, resolutions <1 km are still 

desired offshore to capture heterogeneous events such as frontal boundaries. GLIMR median 

pixel resolution of 363 m may allow resolution of these gradients at land-ocean exchanges 

and will improve the ability to quantify ephemeral and heterogenous events. For example, 

Aurin et al. (2013) demonstrated that >90 % of river plume dynamics were resolved with 

520 m resolution, well within GLIMR specifications. GLIMR’s increased resolution will 

also reduce uncertainties because traditional ocean color 1 km water quality measures are 

potentially underestimated in heterogenous waters such as ocean fronts, river plumes, and 

eddy features (Lee et al., 2012a).

3.4. Temporal considerations

Despite coarser spatial resolution than some polar orbiting platforms currently used for 

water quality applications (i.e., 300 m Sentinel-3 and ≤ 60 m Sentinel-2), geostationary 

satellites provide improved temporal resolution and the potential for dynamic signal-to-noise 

ratios (SNR) across spectral bands by altering the integration (i.e., dwell) time (Hu et al., 

2012). The time in which GLIMR may acquire an image with similar spatial coverage of 

a polar orbiting platform depends on the swath width of that satellite. Table 2 provides 

estimated GLIMR scan times based on swath widths for existing and future polar orbiting 

platforms ranging from the largest swath of 3000 km with VIIRS to the smallest swath of 

9 km with Maxar’s WorldView Legion satellite constellation, launched in early 2023. The 

larger the swath width, the longer it would take GLIMR to rescan the equivalent width; it 

would take GLIMR 125.07 min to reproduce a VIIRS swath and 0.39 min to reproduce a 

WorldView Legion swath. The region of interest location impacts GLIMR’s scan time—the 

further from GLIMR’s nadir point (north/south or east/west), the shorter the scan time 

(Table 2). This was a result of viewing geometry where pixel size increased and, as a result, 

rectilinear area covered increased further from the nadir viewing point. It takes GLIMR 

0.763 s to complete one scan, which consists of a single pixel in the east-west direction 

and 3072 pixels in the north-south direction using the ocean color default settings with 

a target SNR of 1000:1 spanning wavelengths from 415 nm to 580 nm at typical ocean 

top-of-atmosphere radiances.

While not explicitly assessed here, the spectral resolution of GLIMR will provide one 

of the most detailed space-based spectral datasets with a range of potential water quality 

applications. Lassalle et al. (2020) emphasized the need to make hyperspectral remote 

sensing an operational tool for monitoring oil contamination, as hyperspectral observations 

may allow for the characterization of oil slick thickness (Lennon et al., 2005) and 

perhaps even the differentiation of emulsified oil from surrounding waters. Vegetation 

health in impacted habitats can also be better characterized using hyperspectral remote 

sensing, although the relatively coarse spatial resolution of GLIMR may prevent adequate 

measurements in highly heterogenous systems (Lassalle et al., 2020). Dierssen et al. 

(2021) reviews potential improvements in aquatic remote sensing via hyperspectral imagery, 
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including phytoplankton pigment differentiation, wetland ecosystem fragmentation, and 

improved characterization of benthic communities.

Collectively, observations from both geostationary and polar orbiting satellites may be 

leveraged to provide multiple image acquisitions within a day to enhance temporal coverage 

of a water quality event (Minghelli et al., 2021). For example, a harmful algal bloom event 

could initially be identified with a polar orbiting platform. GLIMR could then be targeted 

to track that event until the next polar orbit provides a follow-up measurement either the 

following day, in the case of VIIRS or PACE, or several days later, such as with Sentinel-2 

or Landsat.

While the ocean color default scan time is planned for 0.763 s for a default SNR specific 

to ocean color measurement requirements, alternative SNRs may be valuable depending on 

the application. Demonstrations of two alternate application scenarios were developed by 

creating a relative index of the scan time to represent a desired SNR through either doubling 

the scan time to 1.526 s or reducing the scan time by a factor of 0.7 which then reduces the 

default value to 0.534 s (Fig. 8). The default scan time yielded SNR of 1000:1 from 415 

nm to 580 nm and between 750:1 and 500:1 from 650 nm to 800 nm. Doubling the scan 

time increased the SNR to 2000:1 from 415 nm to 580 nm and between 1160:1 and 1000:1 

from 650 nm to 800 nm. Doubling the scan time may be beneficial for low signal events 

or to reduce uncertainties in ocean color measures. Reducing the scan time by a factor of 

0.7 decreased SNR to 700:1 from 415 nm to 580 nm and 406:1 from 650 nm to 700 nm. 

A reduced scan time that retains an SNR near 400:1 in the visible spectrum would provide 

a binary detect or non-detect capability for events such as oil films (Qi et al., 2017) or 

Sargassum slicks (Hu et al., 2015b) while providing rapid targeted observations that may 

limit disruption of GLIMR planned operations. Managers may calculate the time required to 

reproduce the swath of another polar orbiting platform by multiplying the time reported in 

Table 2, in minutes, by the relative index factor shown in Fig. 8 to leverage both GLIMR 

and polar orbiting missions such as for the hypothetical management scenario described in 

the previous paragraph. For example, an oil spill or Sargassum event may be identified with 

PACE at GLIMR’s sub-satellite point and GLIMR could be targeted to rescan that portion 

of the PACE swath for confirmation in that location. The GLIMR scan time may be reduced 

by a factor of 0.7 if only a detect and non-detect classification was required. Where GLIMR 

would take 111.36 min to reproduce the PACE swath using default ocean color scan time 

and SNR, the reduction of a 0.7 scan time reduced the amount of time GLIMR requires to 

reproduce the PACE swath to 77.95 min. The reduction in scan time may serve as a dual 

benefit either to allow for more measurements throughout the day to track a given event, or 

to allow for a return to the GLIMR predefined observational schedule of 5–6 images per day 

of the Gulf of Mexico and 2–3 images per day of the East and West Coasts of the United 

States. This is particularly beneficial when monitoring the extent of water quality events, 

which can change rapidly.

High sampling frequency is critical for monitoring coastal ocean biogeochemical processes 

and physically driven changes. Multi-day observations improve cloud avoidance and the 

number of water quality observations (Salisbury et al., 2016), and temporal uncertainties 

may be reduced in temporal composites with increased data coverage (Barnes and Hu, 
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2015). Repeated daily measures will improve resolution of particulate matter, dissolved 

matter, and carbon exchange budgets influenced by tidal transport (Cao et al., 2018). Diurnal 

dynamics of harmful algal blooms due to diel vertical migration and physical advection 

will be improved, as demonstrated by a study tracking the impacted area of a Prorocentrum 
harmful algal bloom using GOCI images (Lou and Hu, 2014). In a similar approach, 

Trichodesmium bloom size was reported to nearly quadruple in size within an eight-hour 

time frame (Hu and Feng, 2014). Primary productivity models will also improve with 

diurnal measures of physiology and irradiance (Lee et al., 2012b; Wu et al., 2022).

Variation in sensor view angle, solar position, AMF, wind speed, and time of year all impact 

the number of observation hours per day during which a quality image could be acquired 

for water quality monitoring applications. Temporally, ocean color water quality observation 

hours increased from January through April from an average of 7 to 10 h per day, with a 

peak average of 11 h per day along all United States’ coasts from May through August (Fig. 

9). Observation hours declined from September through December from an average of 10 

to 7 h per day. The minimum observation hours occurred in December and the maximum 

occurred in July, corresponding to the December and June solstices. Spatially, ocean color 

water quality observation hours were an average of 1 h greater in the Gulf of Mexico 

and lower latitudes of the United States from December through April compared to higher 

latitudes. Higher latitudes on both United States East and West Coasts had fewer hours 

available for observation, especially approaching the northern United States and Canada 

border where viewing hours were negligible November through January. Overall, oil film 

observation hours were fewer than water quality hours, ranging from 0 to 7 h throughout the 

year (Fig. 10). Temporally, oil film quality observation hours increased March to April from 

an average of 3 to 6 h, with a peak average of 7 h in May and June. Optimal peak hours for 

oil film observation in the Gulf of Mexico were from 16:00 UTC through 18:00 UTC during 

the June solstice. Observation hours declined from 6 h in July to 2 h in September. No oil 

film observation hours were available from November to February.

3.5. Limitations

GLIMR may be considered a part of a larger, comprehensive management toolbox for water 

quality monitoring (El Serafy et al., 2021). There are technical limitations, as with any 

instrument, to be considered. For example, quantification of oil thickness is desired in many 

response applications, but optical satellites are limited in their ability to derive oil thickness, 

especially when compared to synthetic aperture radar. Cloud cover, smoke, and adverse 

weather conditions will still limit optical measures in geostationary orbit (Temitope Yekeen 

and Balogun, 2020). This study did not consider cloud cover interference as this has been 

adequately addressed in previous studies (Feng et al., 2017; Mercury et al., 2012; Schaeffer 

et al., 2022). The results presented in this study were based on current GLIMR designs and 

plans that may deviate within mission baseline and threshold ranges. Although the technical 

design has been completed, GLIMR could still face operational challenges. Faster scans 

are not likely an issue, nor are repeat scans of the same small region in rapid succession 

to increase scan time and SNR. Slower scans may be limited due to gimbal stability; an 

alternative solution may be to step and stare so integration time could be extended. Data 

latency is a consideration, especially for emergency management operations, such as during 
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oil spill and harmful algal bloom events. Finally, tasking requests must be prioritized by 

the science team; thus, tasking does not guarantee a given image acquisition request will be 

fulfilled.

4. Conclusions

This study details the technical specifications of GLIMR, the United States’ first 

geostationary satellite for ocean color observations, and provides a framework for potential 

applications regarding water quality characterization and oil film monitoring following its 

launch later this decade. The spatial, temporal, and radiometric resolutions of GLIMR 

were evaluated and compared to currently operating satellites. GLIMR offers its best pixel 

resolution of 300 m directly below the satellite, median 391 m within an area with an 

AMF ≤ 4, and median 330 m spatial resolution across the Gulf of Mexico. GLIMR’s 

spatial resolution is at the coarser end of the distribution of some satellite platforms used 

for water quality measurements but is within the range necessary for resolving oil spills, 

half of CONUS estuaries, and a majority of sub-estuaries. Meanwhile, temporal resolution 

is unmatched compared to polar orbiting sensors, with possible revisits up to six times 

per day and planned twice daily acquisitions of the coastal CONUS, among other regions. 

Radiometric resolution was assessed through SNR at the default scan time as well as at 

alternate scan times for replication of potential use cases. Across the visible wavelengths, 

SNR is expected to be sufficient for classifying oil detect and non-detect at the default scan 

time (0.763 s) as well as at double and 0.7 times this scan time.

Based on previously published sun glint thresholds, GLIMR is well suited for thick oil, oil 

emulsion, oil film detection, and water quality characterization across the Gulf of Mexico 

and the United States’ East and West Coasts, particularly in the months surrounding the June 

solstice. Upon its launch into orbit, GLIMR can complement existing remote sensing efforts 

to identify oil spills in coastal waters, adding sub-daily observations to the suite of satellites 

currently leveraged by NOAA NESDIS for their marine pollution surveillance reports. 

Previous studies using imagery from GOCI demonstrate the benefits of sub-daily water 

quality measurements, including an improved understanding of spatiotemporal algal bloom 

dynamics (Choi et al., 2014). Sub-daily, hyperspectral observations from GLIMR may 

supplement existing water quality observations of lower latitude coastal areas. GLIMR has 

the potential to provide unprecedented observations of ocean color dynamics valuable for 

management applications, particularly when combined with current polar orbiting platforms.
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Fig. 1. 
GLIMR field of regard centered at 110°, 98°, and 86° W longitude. Results throughout are 

based on a field of regard centered at 98°.
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Fig. 2. 
GLIMR spatial pixel resolution for 98° W longitude position where highest resolution was 

300 m at nadir and increased above 1 km along the field of regard perimeter. GLIMR 

instantaneous field of view on detector is 300 m × 300 m with a 27-μm slit at 12.6 μrad in E 

to W direction. Overall spatial resolution performance is predicted to be 14.5 × 11.5 μrad.
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Fig. 3. 
GLIMR December solstice sun glint with climatological winds. White dashed line 

represents glint threshold above 10−5 sr−1, a threshold previously defined for oil spill film 

detection. The area in yellow represents where a high glint quality flag >0.005 sr−1 would 

mask observations of other water quality derived measures. Tiles (a) through (l) are 2-h 

increments of Coordinate Universal Time (UTC) starting with GLIMR sunrise at (a) 08:00 

UTC through 24:00 UTC (i) and concludes before sunrise the next day at (l) 06:00 UTC. 
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(For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 4. 
GLIMR June solstice sun glint with climatological winds. White dashed line represents 

glint threshold above 10−5 sr−1, a threshold previously defined for oil spill film detection. 

The area in yellow represents where a high glint quality flag >0.005 sr−1 would mask 

observations of other water quality derived measures. Tiles (a) through (l) are 2-h increments 

of Coordinate Universal Time (UTC) starting with GLIMR sunrise at (a) 08:00 UTC 

through 24:00 UTC (i) and concludes before sunrise the next day at (l) 06:00 UTC. (For 
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interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 5. 
GLIMR March and September equinox sun glint with climatological winds. White dashed 

line represents glint threshold above 10−5 sr−1, a threshold previously defined for oil spill 

film detection. The area in yellow represents where a high glint quality flag >0.005 sr−1 

would mask observations of other water quality derived measures. Tiles (a) through (l) are 

2-h increments of Coordinate Universal Time (UTC) starting at 00:00 UTC through 22:00 

UTC. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.)

Schaeffer et al. Page 25

Mar Pollut Bull. Author manuscript; available in PMC 2024 November 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Fig. 6. 
(a) Spatial resolution of optical satellites and reported oil spill areas from 1325 NOAA 

marine pollution surveillance reports between 2011 and 2021. Increase oiled area with 

coarser resolution satellites was due to the coverage area difference, where coarser 

resolution satellites covered larger areas than higher resolution satellites. (b) The spatial 

resolution for the favorable viewing area of 50° N to 50° S and 40° W to 155° W at the 

geostationary orbit of 98° W, CONUS, and Gulf of Mexico.
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Fig. 7. 
True color image (© Planet Labs Inc. 2019 all rights reserved) from PlanetScope at the 

Mississippi Canyon Block 20 Saratoga Platform (MC20) site near the Mississippi River 

Delta and 18 km off the coast of Louisiana, on August 6th, 2017. Decreasing spatial 

resolution was computed through resampling of a (a) 3.7 m PlanetScope image to (b) 4 m, 

(c) 40 m, (d) 400 m, (e) 800 m, and (f) 2000 m resolution at the MC20 site.
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Fig. 8. 
The current signal-to-noise ratio (SNR) as a function of wavelength given various SNR 

cases, where 1.0 is the default ocean color scan time requirement of 0.763 s. A factor of 0.7 

would reduce the SNR to 400:1 from 650 to 700 nm, sufficient for the presence and absence 

detection of oil films and Sargassum. A doubling factor of the scan time increased SNR for 

low signal water quality events or to reduce observation uncertainty.
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Fig. 9. 
Average number of hours per day that a quality observation could theoretically be captured 

for ocean color water quality applications given climatological wind speed, sun glint, and 

an air mass fraction within 4.0 each month. Cloud interference was not considered in this 

analysis and has been previously reported by Feng et al. (2017), Mercury et al. (2012), 

and Schaeffer et al. (2022). Concentric pattern was a result of the 1-h model interval. 

Observation area was smaller than original field of regard because of 70° viewing angle cut 

off.
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Fig. 10. 
Average number of hours per day that a quality observation could theoretically be captured 

for oil film applications given climatological wind speed, sun glint, and an air mass fraction 

within 4.0 each month. Cloud interference was not considered in this analysis and has been 

previously reported by Feng et al. (2017), Mercury et al. (2012), and Schaeffer et al. (2022). 

Concentric pattern was a result of the 1-h model interval. Observation area was smaller than 

original field of regard because of 70° viewing angle cut off.
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Table 1

Summary of symbols and definitions in calculating normalized sun glint for GLIMR.

Symbol Units Name Definition

LGN sr−1 Normalized sun glint Sun glint radiance received by a sensor regardless of incident solar radiance.

p Slope probability density 
function

A function of the viewing geometry and sea surface 
roughness variance that contribute to sun glint.

θ Degrees Sensor zenith angle Angle of the satellite relative to a vertical line above the observation point.

ρ ω Unitless Fresnel reflection 
coefficient

Fixed coefficient describing the interaction between unpolarized light and the water 
surface.

β Degrees Surface tilt The angle of reflection on a facet on the sea surface with a particular orientation that 
reflects sunlight to the satellite

σ2 Unitless Sea surface roughness 
variance

sensor relative to a horizontal plane. Measure of waves at the sea surface.

θ0 Degrees Solar zenith angle Angle of the sun relative to a vertical line above the observation point.

ϕ Degrees Azimuth angle Angle between the sensor and the sun

W m s−1 Wind speed relative to the observation point. 
The horizontal speed of air moving in any direction at an altitude of 10 m

μ m s−1 Eastward wind above the Earth. 
The horizontal speed of air moving towards the east at an altitude of 10 m

υ m s−1 Northward wind above the Earth. 
The horizontal speed of air moving towards the north at an altitude of 10 m above the 
Earth.
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