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Abstract

In pre-disposed individuals, a reprogramming of the hepatic lipid metabolism may support liver 

cancer initiation. We conducted a high-resolution mass spectrometry based untargeted lipidomics 

analysis of pre-diagnostic serum samples from a nested case-control study (219 liver cancer cases 

and 219 controls) within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. 

Out of 462 annotated lipids, 158 (34.2%) were associated with liver cancer risk in a conditional 

logistic regression analysis at a false discovery rate (FDR) < 0.05. A chemical set enrichment 

analysis (ChemRICH) and co-regulatory set analysis suggested that 22/28 lipid classes and 47/83 

correlation modules were significantly associated with liver cancer risk (FDR <0.05). Strong 

positive associations were observed for monounsaturated fatty acids (MUFA), triacylglycerols 

(TAGs), and phosphatidylcholines (PCs) having MUFA acyl chains. Negative associations were 

observed for sphingolipids (ceramides and sphingomyelins), lysophosphatidylcholines, cholesterol 

esters and polyunsaturated fatty acids (PUFA) containing TAGs and PCs. Stearoyl-CoA desaturase 

enzyme 1 (SCD1), a rate limiting enzyme in fatty acid metabolism and ceramidases seems to be 

Corresponding author: Dinesh Kumar Barupal, Department of Environmental Medicine and Public Health, Icahn School of Medicine 
at Mount Sinai, New York, NY, dinesh.barupal@mssm.edu, @dk_barupal.
Author contributions
Conceptualization and methodology (all authors). Data curation (DKB, JLP, AAF, SJW, KAM). Investigation (DKB, JLP, MLR, 
BIG, KAM). Software (DKB, OF, JLP, WAW, MLR). Formal analyses (DKB, JLP, MLR, KAM). Visualization (DKB, JLP, MLR). 
Resources (AAF, SJW, OF, DA, KAM). Writing-original draft (DKB, JLP, MLR, BIG, KAM). Writing-review and editing (all 
authors). The work reported in the paper has been performed by the authors, unless clearly specified in the text.

Conflict of interest: DKB has been a consultant for Brightseed Bio Inc, California. No potential conflicts of interest were disclosed 
by other authors.

Ethics statements: The institutional review boards of the U.S. National Cancer Institute and the National Public Health Institute of 
Finland approved the study. Written informed consent was obtained from all participants.

HHS Public Access
Author manuscript
Int J Cancer. Author manuscript; available in PMC 2024 February 06.

Published in final edited form as:
Int J Cancer. 2024 February 01; 154(3): 454–464. doi:10.1002/ijc.34726.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



critical in this reprogramming. In conclusion, our study reports pre-diagnostic lipid changes that 

provide novel insights into hepatic lipid metabolism reprogramming may contribute to a pro-cell 

growth and anti-apoptotic tissue environment and, in turn, support liver cancer initiation.

Keywords

Liver cancer; lipidomics; ATBC study; ChemRICH; metabolic reprogramming; ceramides

1. Introduction:

Liver cancer is the sixth most frequently occurring cancer in the world and the third most 

common cause of cancer mortality.1 The 5-year survival rate is poor, at only 18%.2 In 

the US, liver cancer incidence rates have started to decline,3 but liver cancer remains the 

sixth leading cause of cancer-related death.2 Etiological factors that contribute to chronic 

hepatic inflammation are major liver cancer risk factors, including chronic hepatitis B virus 

(HBV) or hepatitis C virus (HCV) infection, consumption of aflatoxin contaminated foods, 

excessive alcohol consumption, smoking, and metabolic conditions, including metabolic 

syndrome, obesity, diabetes and non-alcoholic fatty liver disease (NAFLD).4 Treatment 

options for liver cancer are limited as most cases are diagnosed at advanced stages. Curative 

approaches such as surgical resection, liver transplantation and tumor ablation are more 

suitable for early-stage liver cancer and can boost the 5-year survival rate to ~50%.5 

To improve the primary prevention strategies for liver cancer, in addition to identifying 

preventable risk factors, there is a need to characterize the pre-diagnostic molecular 

pathways that may contribute to liver cancer etiology.

Blood-based biomarkers can provide clues to liver biology prior to the development of 

liver cancer. Several circulating molecules, such as lipids, are routinely used as a proxy 

to measure liver health status and whether there are dysregulated metabolic pathways. 

Lipids are a class of hydrophobic or amphipathic molecules that have biological functions 

in energy storage, biological signaling, and cell membrane production.6 Dysregulated 

lipid metabolism has been implicated in cancer development, including liver cancer.7–9 

Lipids can influence cancer risk through effects on oxidative stress, insulin signaling, 

and inflammation or through creating and supporting a pro-oncogenic environment.9, 10 

Hepatic lipids have also been reported to be disturbed in liver diseases11 associated with an 

increased risk of HCC, such as NAFLD, alcoholic liver disease and cirrhosis, suggesting that 

specific lipid metabolic changes might also contribute to HCC etiology. Examination of the 

circulating lipidome may provide unique insights into the complex metabolic pathways and 

pre-diagnostic biochemical processes in liver cancer.12

Previous prospective epidemiologic studies have examined metabolomic panels in relation 

to HCC risk, identifying several associated lipids.13–15 However, none of the panels were 

optimized to detect lipids, thus lacked many circulating lipid classes, such as triacylglycerols 

or cholesteryl esters, that are more hydrophobic and neutral.16, 17 A comprehensive analysis 

of the circulating lipidome requires optimized protocols for lipid extraction, chromatography 

separation, mass spectrometry data collection and lipid annotation.17, 18 To date, no 
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untargeted lipidomic examination of liver cancer etiology has been reported. Thus, we 

conducted a nested case–control study using pre-diagnostic serum samples to evaluate 

associations between relative concentrations of circulating lipids and liver cancer risk using 

an untargeted lipidomics assay and chemical set enrichment analysis.

2. Materials and methods

2.1 Study Population.

The Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) study was a randomized 

controlled trial to test the effects of α-tocopherol and β-carotene on cancer incidence among 

male smokers.19 Males aged 50–69 years, who smoked at least five cigarettes per day, were 

enrolled between 1985 and 1988 in southwestern Finland (n=29,133). Potential participants 

were excluded if they reported prevalent cancer (other than non-melanoma skin cancer), 

cirrhosis, chronic alcoholism, or other conditions that would limit their participation in 

the trial. At study entry, participants provided a blood sample and completed a detailed 

questionnaire about demographics, medical history, diet, and lifestyle factors. The trial 

concluded in 1993, but participants continued to be followed for cancer incidence.

2.2 Outcome Assessment.

For the current analysis, ATBC participants were followed through December 31, 2015, 

for incident cancer via linkage with the Finnish Cancer Registry. The proposed study 

includes 224 confirmed cases of primary liver cancer (defined based on the International 

Classification of Diseases, 9th revision (ICD-9); codes 155.0 and 155.1), who had an 

available serum sample. Controls were matched at a 1:1 ratio with cases based on age at 

randomization (±5 year), date of blood collection (± 30 days), number of freeze-thaw cycles, 

and laboratory where prior aliquoting was conducted, if applicable.20 Controls were selected 

from among individuals with available serum samples who were cancer-free at the time of 

their matched case’s diagnosis.

2.3 Laboratory Methods.

Baseline visit blood samples were collected from ATBC participants after an overnight 

fast (usually at least 12 hours).19 Blood samples were centrifuged and serum 

was aliquoted and stored at −70°C. The lipidome analysis was performed at the 

West Coast Metabolomics Center (University of California Davis Genome Center), 

using 50μL of serum as previously described.21 Briefly, complex lipids were semi-

quantified using an untargeted approach by liquid chromatography with quadrupole 

time of flight mass spectrometry (LC-QTOF-MS). Internal standards were used for 

the calibration of retention times. A total of 462 unique, annotated lipid species were 

identified, after removing poorly detected and duplicate signals. Raw peak heights were 

normalized using systematic error removal using random forest (SERRF) to eliminate 

unwanted systematic variation.22 The major lipid classes covered included acylcarnitines 

(AC), ceramides (CER), cholesterol esters (CE), diacylglycerols (DG), fatty acids 

(FA), lysophosphatidylcholines (LPC), lysophosphatidylethanolamines (LPE), plasmalogen 

phosphatidylcholines (plasmPC), plasmalogen phosphatidylethanolamines (plasmPE), 

phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylcholines (PI), 
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sphinhomyelins (SM), and triacylglycerols (TAG) (Figure 1). Five case-control pairs were 

excluded because lipidomics measurements were not available for them, resulting in a 

dataset of 219 case-control pairs.

2.4 Statistical Analysis.

Conditional logistic regression was used to estimate the odds ratios (ORs) and 95% 

confidence intervals (CIs) of the association between lipid species and liver cancer, adjusting 

for education (elementary school or less, no vocational training; elementary school or less, 

vocational training; more than elementary school), body mass index (<25, 25 to <30, ≥30 

kg/m2), history of diabetes at baseline, age at baseline (<=54, >=55 to <=59, >=60 to 

<= 64, >= 65 years), cigarette smoking (<25, 25 to 34, 35 to 44, ≥45 pack-years), and 

alcohol intake (0, >0 to <1, 1 to <2, ≥2 drinks/day). For analysis, the lipids were modeled 

continuously, comparing the 90th percentile with the 10th percentile of log-transformed lipid 

intensity (i.e., OR = eβ(X90-X10) where β is the coefficient for the lipid species modeled 

continuously and X90 and X10 are lipid values at the 90th and 10th percentiles, respectively). 

P-values were adjusted using the Benjamini-Hochberg false discovery rate (FDR) procedure 

for controlling the FDR at level 0.05.23

The ORs and unadjusted P-values of the lipid species were used as input for the chemical 

similarity enrichment analysis using ChemRICH.24, 25 ChemRICH uses the structure of 

lipid headgroups and the degree of saturation in acyl chains [saturated fatty acids (SFA)=0, 

monounsaturated fatty acids (MUFA)=1, and polyunsaturated fatty acids (PUFA)≥2] to 

cluster lipids into non-overlapping chemical groups. At least three lipids were required to 

form a cluster. Lipids are poorly represented in canonical biochemical pathway databases, 

so a traditional pathway analysis approach is prone to ignore many lipid classes with several 

statistically significant lipid species. Therefore, we chose a lipid set enrichment analysis 

using the ChemRICH software24 to identify the significant lipid classes that were associated 

with liver cancer risk. ChemRICH compares the observed p-value distribution for a lipid set 

against a uniform p-value distribution with an underlying hypothesis that a non-significant 

class will follow a uniform p-value distribution. ChemRICH uses a Kolmogorov–Smirnov 

(KS) test to compare these p-value distributions and does not rely on a background database, 

thus ChemRICH includes all the annotated lipids in the set analysis. Using this reference 

distribution, KS tests were used to determine lipid clusters where P-values showed sufficient 

evidence of departure from the null distribution.26 ChemRICH P-values were adjusted using 

the Benjamini-Hochberg (BH) procedure for false discovery rate control at level 0.05.27

3. Results

3.1 Cohort detail

Baseline characteristics of cases and controls are shown in Table 1. Compared to controls, 

cases were more likely to have greater than an elementary school education, to be obese 

[BMI(kg/m^2) ≥30], to have a history of diabetes, and to smoke and drink more heavily. The 

age distribution (mean =57 years) was similar between cases and controls. The median time 

between the baseline and liver cancer diagnosis was 16 years.
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3.2 Untargeted lipidomics dataset.

The untargeted lipidomics dataset contained 552 annotated and 2,712 unidentified lipid 

species. Results for only the annotated lipids are shown in this report. Because the data 

were generated using both electrospray ionization negative and positive modes, 75 annotated 

lipid species were detected redundantly. We removed those 75 duplicated lipid species based 

on analysis of technical reproducibility using quality control samples. We also removed 

an additional 15 lipid species because of their low analytical reproducibility—a relative 

standard deviation (RSD) less than 20% in the pooled quality control samples (n=49). Mean 

RSD for 24 labelled internal standards lipids was 1.7%. The filtered dataset contained 462 

annotated lipids from 28 lipid classes belonging to 6 super classes (Figure 1 and Table S1).

3.3 Identification of individual lipids associated with liver cancer risk.

Of the total 462 annotated lipids, 158 (34.1%) were significantly associated (FDR-adjusted 

p-value < 0.05) with HCC risk. Out of these significant lipids, 83 were positively and 75 

were negatively associated with risk. The strongest positive association was for PC 42:6 with 

an odds ratio (OR) of 11.3 (95% CI, 4.52–28.57). The strongest negative association was for 

SM d40:2 B with an OR of 0.06 (95% CI, 0.02–0.15). The top five lipid classes with the 

highest number of significant lipids were UFA-TAG (20, 43%), CER (15, 57.7%), UFA-SM 

(14, 70%), SM (12, 80%), and UFA-PC (9, 27.3%). Twenty-three lipid classes had at least 

two lipids that were associated with liver cancer risk (Figure 2). Table S1 contains results of 

conditional logistic regression analyses for all 462 annotated lipids.

3.4 Identification of lipid sets associated with liver cancer risk.

Next, we sought to conduct a functional and structural set enrichment analysis to interpret 

the statistically significant individual lipids. ChemRICH analysis revealed that, out of 

28 total lipid classes, 17 were significantly associated with liver cancer risk at an 

FDR cutoff of 0.05. The top five significantly associated lipid classes were UFA-TAG 

(p=2.66e-15), SM (p=3.18e-12), UFA-SM (p=5.81e-12), SFA-TAG (p=1.03e-11), and 

MUFA-TAG (p=3.29e-11). Table 2 contains the results of the ChemRICH analysis and 

Figure 3 shows the individual lipids within each class. UFA-TAG and UFA-PC were the 

most positive while CER and UFA-SM were the most negatively associated with liver cancer 

risk.

3.5 Identification of co-regulatory lipid sets associated with liver cancer risk.

We observed that there were associations in both positive and negative directions within few 

lipid classes in the ChemRICH enrichment analysis, indicating a sub-class level regulation 

of lipid metabolic pathways. To identify these specifically coregulated lipids, we conducted 

a co-regulatory set analysis28 using a pair-wise correlation matrix among all the individual 

lipids. A correlation module is a group of lipids whose levels show stronger and distinct 

inter-chemical correlation patterns, reflecting a sub-class. It complements the chemical 

structure-based grouping of lipids. A total of 83 co-regulatory lipid modules were detected 

by this approach. Of those, 47 modules were significantly associated (FDR < 0.05) with liver 

cancer risk in a set analysis using the same p-value distribution comparison approach, based 

on use of a KS-test, that was used for the ChemRICH analysis (Table 3).
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3.6 Sensitivity analysis:

Results for individual, chemical class and co-regulatory set analyses did not change after 

excluding the cases diagnosed within 5 years of study randomization (Table S1–S3).

4. Discussion

Improved understanding of the hepatic metabolic reprogramming that may predispose 

individuals to liver cancer initiation can enable novel prevention strategies.29, 30 In our 

analysis, we found that several lipid classes were strongly and significantly associated 

with the development of liver cancer, suggesting that a pro-cancerous modification in 

lipid biochemistry may increase the initiation of hepatocarcinogenesis. Overall, we have 

found that smoking men who go on to develop liver cancer have more saturated and 

mono-unsaturated triacylglycerols and phospholipids and fewer sphingolipids in circulation. 

These patterns can support a pro-proliferation state in the liver which may, in turn, support 

liver cancer initiation. These results, for the first time, implicate stearoyl-CoA desaturase 

(SCD1) and the ceramidase enzymes in pro-hepatocarcinogenesis metabolic programming in 

liver.

4.1 Epidemiologic evidence:

In comparison to prior epidemiology studies,14, 29–41 the majority of which have utilized 

generic and broad metabolic extraction and data collection protocols, this study, to the best 

of our knowledge, is the first liver cancer study to characterize the pre-diagnostic circulating 

lipidome using an untargeted lipidomics method. We tested over 400 annotated lipids from 

28 lipid classes using chemical set enrichment analysis methods to identify structural and 

functional lipid sets that were associated with liver cancer. In prior prospective cohort 

studies from Europe and Asia, higher pre-diagnostic levels of bile acids13, 14, 34, 38, 39 and 

triglycerides35, 36 have been shown to increase risk, suggesting changes in liver metabolic 

pathways are perturbed to create a pro-carcinogenic environment.

A recent report from an international, multicenter study used a broad metabolomic profile, 

comprising 1,295 metabolites, in 295 patients to examine differences between NAFLD-

associated HCC (n=43), alcohol and viral hepatitis-associated HCC (n=32), NAFLD cases 

(n=130) and healthy controls (n=44).37 The study reported that NAFLD-associated HCC 

was characterized by a rearrangement of the serum lipidome, which distinguished NAFLD-

associated HCC from the other patients. Further, the study showed serum PUFA depletion 

in the NAFLD-associated HCC cases.37 Herein, we documented an inverse association 

between PUFA lipids (acylglycerols, cholesterol esters and phospholipids) and liver cancer 

risk.

Our study also observed a notable link between sphingolipid metabolism and liver cancer 

risk. In prior epidemiologic studies, ceramides and sphingomyelins have been positively 

associated with the risk of NAFLD,42, 43 CVD,42, 43 and diabetes.44, 45 Two prior studies 

from the European Prospective Investigation into Cancer and Nutrition cohort identified an 

inverse association between sphingomyelin levels and liver cancer risk, using an untargeted 

metabolomic platform (118 metabolites, n=121 HCC cases)40 and a targeted platform (132 
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metabolites, n=147 HCC cases).41 These results suggest that a disturbed sphingolipids 

metabolism may be a critical event in hepatocarcinogenesis.

4.2 Mechanistic evidence:

Mechanistically, our results can be interpreted for lipids that promote cell survival and 

growth and that suppress cell death mechanisms (Figure 4).

4.2.1 Cell growth and survival promotion.—A cancer cell needs building blocks 

to support its rapid growth, thus a tissue microenvironment with higher de-novo lipid 

production can favor growth.9, 46 In this study, we observed that MUFA and associated lipids 

are positively linked with liver cancer. This pattern points toward an increase in activity 

of the Stearoyl-CoA desaturase 1 (SCD1) enzyme in liver cells to convert SFA to MUFA, 

which are then converted into PUFA to create lipids that support membrane fluidity (Figure 

4). MUFA fatty acids are the preferred substrate for membrane lipid synthesis. SCD1 is a 

rate limiting enzyme and has been shown to be critical for rapid cell growth, cancer cell 

initiation, cell survival and malignant transformation.47 Inhibition of SCD1 by aramchol, 

a targeted inhibitor that is currently in a phase 3 trial, or other candidate drugs, has been 

shown to slow lipid production in the livers of persons with NAFLD and the most severe 

form of NAFLD, non-alcoholic steatohepatitis (NASH).48, 49 SCD1 inhibition may also 

promote cell death by increasing cellular stress imposed by SFA and associated lipids.50 

This evidence base, and our results, underscore the roles of SCD1 in hepatic metabolic 

programming that may support liver cancer initiation.

4.2.2 Anti-apoptotic mechanisms.—Our observations that ceramides are inversely 

associated with liver cancer risk may be related to their pro-apoptotic properties. It is more 

favorable for cancer cells when the generation of pro-apoptotic molecules are suppressed. 

Ceramides can be converted to sphingosine 1 phosphate (S1P) and sphingosine via ceramide 

catabolic pathway that involves N-acylsphingosine amidohydrolase (ASAHs) and Alkaline 

ceramidases (ACERs) enzymes.51 They are also precursors for sphingomyelins biosynthesis. 

Ceramides are known to induce apoptotic mechanisms52 whereas S1P promotes cell 

growth.53 Negative associations with both ceramides and sphingomyelins suggest that 

ceramides are probably diverted to the catabolic pathway to generate more pro-growth 

signaling molecules. Blocking of key enzymes, such as sphingosine kinase 2 (SphK2)54 and 

S1P lyase (SPL)55 in sphingolipids metabolism,53 has also been shown to block liver cancer 

growth in cell and animal bioassays. Our results point to a higher activity of ceramidases 

in liver that can serve to both promote cell survival and to suppress the ceramide dependent 

apoptotic cascade.

4.3. Limitations and strengths:

Our study had notable strengths, a major one being that it is the largest and most 

comprehensive lipidomics study to date on liver cancer risk. The ATBC cohort collected 

blood prospectively from all participants after an overnight fast. For studying endogenous 

lipids in particular, fasting samples are preferred, as dietary factors are known to affect 

detected lipid metabolite levels56 and reproducibility of results.57 In addition, for the 

current analysis, individuals enrolled in the cohort were followed up to 30 years, which 
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has yielded a substantial number of liver cancer cases (n=224). Blood samples and covariate 

data were collected from the cohort at baseline, when height and weight were measured 

by a trained staff member. As we proposed to determine if ceramides accounted for the 

increased risk of liver cancer, having accurate anthropometry measures was crucial given 

the known relationships between obesity and lipid metabolism.51, 58 We utilized a chemical 

set enrichment analysis approach which is a more sensitive approach in comparison to a 

traditional pathway analysis to facilitate the interpretation of all significant lipid associations 

with liver cancer risk. By utilizing this approach for a comprehensive, untargeted lipidomics 

dataset in a nested case-control study, we have identified the perturbed lipid pathways in 

the hepatic lipid metabolism reprogramming that play a significant role in liver cancer 

etiology. In addition to these strengths, there were also several limitations. The study only 

included smoking men and the liver cancer cases were identified using ICD codes so the 

findings could not be associated with liver cancer histologic subtypes. In addition, we did 

not have access to clinical data, although men with self-reported cirrhosis were not eligible 

to participate in the trial.

5. Conclusions

In this prospective study of male smokers, we observed significant, inverse associations 

between sphingolipids and direct associations between MUFA-containing lipids and liver 

cancer development. These results suggest that a hepatic lipid metabolism reprogramming, 

resulting in lower circulating levels of sphingolipids and higher MUFA-containing lipids, 

may predispose individuals to liver cancer. The underlying biochemical reactions and 

enzymes involved in this reprogramming expands our understanding of roles of endogenous 

molecular pathways in liver cancer etiology. Although our results are strong in terms of 

effect size, replications of these findings in other nested case control studies using the 

untargeted lipidomics methods will increase the strength of evidence to implicate hepatic 

metabolic reprogramming in liver cancer etiology. Future studies are also needed to detangle 

the pre-diagnostic lipid metabolic reprogramming specific to different subtypes of liver 

cancer.
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Abbreviations

AC Acylcarnitine

ALD Alcoholic Liver Disease

ATBC Alpha-Tocopherol, Beta-Carotene Cancer Prevention study

CE Cholesterol esters

CER Ceramides

CVD Cardiovascular disease

DG Diacylglycerols

FA Fatty acids

HCC Hepatocellular carcinoma

LC-QTOF-MS Liquid Chromatography quadrupole time-of-flight mass 

spectrometry

LPC Lysophosphatidylcholines

LPE Lysophosphatidylethanolamines

MUFA Monounsaturated Fatty Acids

NAFLD Nonalcoholic fatty liver disease

NASH Nonalcoholic steatohepatitis

PC Phosphatidylcholines

PE Phosphatidylethanolamines

PI Phosphatidylinositol

p-PC Plasmalogen phosphatidylcholines

p-PE Plasmalogen phosphatidylethanolamines

PUFA Polyunsaturated Fatty Acids

RSD Relative Standard Deviation

SCD1 Stearoyl-CoA desaturase 1

SERRF Systematic error removal by random forest
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SFA Saturated Fatty Acids

SM Sphingomyelins

TAG Triacylglycerols

UFA Unsaturated Fatty Acids
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What’s new?

Hepatic lipid metabolic reprogramming is a critical hallmark in liver cancer etiology. 

In this study, untargeted lipidomics, paired with lipid set enrichment analysis found 

several circulating lipid classes and functional modules that are associated with liver 

cancer risk in the ATBC cohort. MUFA-containing lipids showed a strong positive 

association and PUFA-containing lipids showed an inverse association with liver cancer 

risk. Sphingolipids (ceramides and sphingomyelins) were also negatively associated with 

liver cancer risk, an opposite trend than observed for metabolic diseases (diabetes, non-

alcoholic fatty liver disease, and cardiovascular disease). These lipids newly associated 

with liver cancer may advance our understanding about pro-hepatocarcinogenesis lipid 

perturbations and can be useful for improving the primary prevention strategies for liver 

cancer.
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Figure 1. 
Overview of detected lipid classes by the untargeted lipidomics assay. Shaded labels 

are major lipid categories. The number is parentheses indicate the lipid species 

count. UFA-TAG (Triacylglycerol) ,SM (Sphingomyelin),UFA-SM (Sphingomyelin),SFA-

TAG (Triacylglycerol),MUFA-TAG (Triacylglycerol),CER (Ceramide),CE (Cholesterol 

ester),UFA-PC (Phosphatidylcholine),plasmPC (Plasmalogen phosphatidylcholine),PUFA-

TAG (Triacylglycerol),UFA-LPC (Lysophosphatidylcholine),MUFA (Monounsaturated 

fatty acid),MUFA-PC(Phosphatidylcholine),PUFA-PC (Phosphatidylcholine),PUFA-

LPC (Lysophosphatidylcholine),SFA-LPC (Lysophosphatidylcholine),PE 

(Phosphatidylethanolamine),AC (Acylcarnitine),SFA-PC (Phosphatidylcholine),DG 

(Diglyceride),PI (Phosphatidylinositol), GlcCer (Glucosylceramide), 

MUFA(monounsaturated fatty acid), PUFA(polyunsaturated fatty acid), SFA(saturated fatty 

acid), UFA(unsaturated fatty acid).
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Figure 2. 
Proportion of lipids significantly associated (FDR-adjusted p-value < 0.05) with liver cancer 

risk within each lipid class. Black means positive, dotted means negative, and white means 

null associations.
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Figure 3. 
Significantly associated individual lipids within classes. Red color indicates positive, and the 

green color indicates negative associations.
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Figure 4. 
An overview of major lipid metabolic pathways in liver. Blue stars show the lipid classes 

negatively associated with liver cancer risk whereas red stars are positive ones.
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Table 1.

Participant characteristics in a nested case-control study of the Alpha-Tocopherol, Beta-Carotene Cancer 

Prevention (ATBC) cohort.

Cases Controls

(n=219) (n=219)

Age at randomization (%)

 ≤ 54 61 (27.9) 65 (29.7)

 55 – 59 90 (41.1) 99 (45.2)

 60 – 64 48 (21.9) 42 (19.1)

 ≥ 65 20 (9.1) 13 (5.9)

Body mass index (kg/m^2) (%)

 < 25 61 (27.8) 84 (38.3)

 25 – <30 108 (49.3) 106 (48.4)

 ≥ 30 50 (22.8) 29 (13.2)

Education (%)

 Elementary school or less, no vocational training 45 (20.5) 69 (31.5)

 Elementary school or less, vocational training 112 (51.1) 104 (47.9)

 More than elementary school 62 (28.3) 45 (20.5)

Cigarette smoking (pack-years) (%)

 < 25 52 (23.7) 70 (31.9)

 25 – 34 44 (20.0) 51 (23.2)

 35 – 44 49 (22.3) 52 (23.7)

 ≥ 45 74 (33.7) 46 (21)

Drinks of alcohol (per day) (%)

 0 14 (6.3) 14 (6.3)

 >0 – <1 68 (31.0) 105 (47.9)

 1 – <2 60 (27.4) 54 (24.7)

 ≥ 2 62 (28.3) 35 (16.4)

 missing 15 (6.8) 10 (4.6)

Diabetes (%)

 No 198 (90.4) 214 (97.7)

 Yes 21 (9.6) 5 (2.3)
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Table 2.

ChemRICH set enrichment analysis to identify lipid set associated with liver cancer risk.

Lipid Class p-value 
(ChemRICH)

FDR 
(ChemRICH)

Significant 
lipids 

(FDR < 
0.05)

Significant 
lipids (%)

Set 
Size

Positive 
associations 
(FDR <0.05)

Negative 
Associations 
(FDR < 0.05)

UFA-TAG (Triacylglycerol) 2.7E-15 7.5E-14 20 43% 47 17 3

SM (Sphingomyelin) 3.2E-12 4.4E-11 12 80% 15 1 11

UFA-SM (Sphingomyelin 5.8E-12 5.4E-11 14 70% 20 0 14

SFA-TAG (Triacylglycerol) 1.0E-11 7.2E-11 7 58% 12 7 0

MUFA-TAG (Triacylglycerol) 3.3E-11 1.8E-10 12 57% 21 12 0

CER (Ceramide) 7.9E-11 3.7E-10 15 58% 26 2 13

CE (Cholesterol ester) 3.2E-10 1.3E-09 7 64% 11 1 6

UFA-PC 
(Phosphatidylcholine 2.0E-09 6.9E-09 9 27% 33 8 1

plasmPC (Plasmalogen 
phosphatidylcholine) 3.2E-08 1.0E-07 7 16% 44 1 6

PUFA-TAG (Triacylglycerol) 1.9E-07 5.2E-07 7 16% 44 4 3

UFA-LPC 
(Lysophosphatidylcholine) 3.0E-06 7.7E-06 3 75% 4 0 3

MUFA (Monounsaturated 
fatty acid) 1.8E-05 4.1E-05 4 57% 7 4 0

MUFA-
PC(Phosphatidylcholine) 9.8E-05 2.1E-04 5 56% 9 5 0

PUFA-PC 
(Phosphatidylcholine) 1.1E-04 2.1E-04 8 21% 38 5 3

PUFA-LPC 
(Lysophosphatidylcholine) 4.3E-04 8.0E-04 4 80% 5 0 4

SFA-LPC 
(Lysophosphatidylcholine) 5.5E-04 9.6E-04 3 30% 10 0 3

PE 
(Phosphatidylethanolamine) 1.0E-02 1.7E-02 2 20% 10 2 0

AC (Acylcarnitine) 1.3E-02 2.0E-02 2 18% 11 2 0

SFA-PC 
(Phosphatidylcholine) 2.2E-02 3.3E-02 2 25% 8 2 0

DG (Diglyceride) 2.6E-02 3.6E-02 4 44% 9 2 2

PI (Phosphatidylinositol) 3.1E-02 4.1E-02 3 38% 8 3 0

GlcCer (Glucosylceramide) 3.5E-02 4.4E-02 3 38% 8 1 2

MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid, UFA, unsaturated fatty acid.
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Table 3.

Co-regulatory lipid modules associated with liver cancer risk.

Module Size FDR Lipids DIR

M10 9 1.8E-18 SM (36:1,37:1,38:1,39:1,40:1,41:1,41:2,41:4,43:4) ↓

M52 4 9.2E-15 SM (36:3,38:2,40:2 B,40:3) ↓

M54 4 1.0E-12 Cer 43:1 SM (43:1, 43:2,41:1) ↓

M18 7 6.1E-12 DG (34:1,36:1) TAG(52:1,54:1,54:2,56:2,56:3) ↑

M36 5 7.1E-11 TAG (44:0,44:1,46:0,48:0,50:0,40:0) ↑

M12 9 1.2E-10 TAG(54:0,55:1,57:1,57:2,58:0,59:2,59:3,60:1,62:2) ↑

M11 9 1.7E-10 TAG (56:1,58:1,58:2,58:3,58:4,58:5,60:2,60:3,60:4) ↑

M25 7 9.0E-08 PC (40:5 B,38:2,40:4,42:5,42:6) TAG (46:5,60:6) ↑

M61 4 2.1E-07 Cer 34:2 SM(32:2,34:2,36:2) ↓

M69 4 3.2E-07 Cer 44:1, GlcCer14:14E/20:02OH,SM(42:1, 42:2 B) ↓

M13 8 9.7E-07 CE 16:1, LPC 16:1, PC (32:1,34:1,36:1,36:4 B,38:4 B) PI 36:1 ↑

M9 9 1.0E-06 Cer (38:1,39:1,40:1,40:2,41:1,38:1,40:1,41:1) SM 40:4 ↓

M43 5 5.3E-06 PC 28:0,PC 30:0,PC 30:1,PC 32:0,PC 32:3 ↑

M20 7 9.3E-06 FA (14:0,14:1,16:0,16:1,18:1,20:1,20:3) ↑

M2 10 1.4E-05 DG (36:3,36:4 A) TAG(51:5,52:3,52:4,52:5,54:4,54:5 A,54:6 A,54:7 A) ↓

M65 4 1.4E-05 plams PC(34:1e,38:4e,32:0,32:0) ↑

M26 6 1.6E-05 TAG(40:0,40:1,42:0,42:1,42:2,44:2) ↑

M73 3 1.0E-04 plasmPC(34:2,34:2,36:2) ↓

M31 6 3.5E-04 CE(16:0,18:1,18:2,18:3,20:3,20:4) ↓

M59 4 9.4E-04 LPC(15:0,16:0), plasmLPC(16:0,18:0) ↓

M72 3 9.4E-04 Cer (34:0,40:0,42:0) ↑

M14 8 9.4E-04 Cer (32:1,33:1) SM (30:1,32:0,32:1,33:1,40:2 A,41:2 A) ↓

M45 5 1.1E-03 PC(35:2,33:2,35:2 A,35:2 B,37:2) ↓

M7 10 1.1E-03 plasmPC (38:3,40:3,40:4,34:0e,38:2,38:3,40:3,40:4,42:3) GlcCer d34:1 ↓

M17 7 1.1E-03 TAG(45:1,53:1,47:0, 47:0,49:0,50:1,51:0, 51:0,51:1,53:1) ↑

M37 5 1.1E-03 TAG (51:3,51:4,53:3,53:4,53:5) ↓

M40 5 1.5E-03 plasmPC (34:1,36:1,36:2,34:1,36:1) ↓

M83 3 3.7E-03 TAG (62:1, 62:3, 62:4) ↑

M8 9 4.0E-03 TAG(46:1,46:2,47:2, 47:2,48:1,48:2,49:1,49:2,49:3,50:2) ↑

M48 5 7.7E-03 PC 34:0,PC 35:4,PC 37:4,PC 39:4,TAG 55:5 TAG 17:0–18:1–20:4 ↑

M60 4 1.1E-02 Cer (42:1,42:2 B,42:1,42:2 B) ↓

M76 3 1.1E-02 PC(37:6,39:6,42:6) ↓

M67 4 1.1E-02 CE 22:6 plasmPC(38:5,38:6,40:6) ↓

M79 3 1.2E-02 PC(34:2,34:3 A,36:3 A) ↑

M3 10 1.3E-02 DG 36:2 PC (35:1,37:3,38:4 A) TAG (51:2,52:2, 52:2,53:2,54:3,55:2,55:3) ↑

M27 6 1.4E-02 AC(10:0,12:0,12:1,14:1,16:0,18:0) ↑

M19 7 1.6E-02 PI 34:2 PC (34:3 C,36:2,36:3 B,38:3,38:5,38:5,38:6 C) ↑
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M71 4 1.7E-02 SM d39:2 CE(18:0,22:2) TAG(52:2,52:2) ↓

M4 10 2.3E-02 TAG(47:1,54:8,56:7 B,56:8, B,56:9,56:9,58:10,58:8,58:9,60:11) ↓

M23 7 2.5E-02 PE (34:1,36:2,36:3,38:4 B,34:2,36:1,38:4) ↑

M1 10 2.6E-02 CE 20:5 LPC 20:5 PC(36:5 B, 34:5,35:5,36:5,36:5D,37:5,38:5 B,38:7) ↓

M53 4 2.6E-02 plasmPC(36:5,38:5 B,36:5,38:5 B) ↓

M39 5 3.8E-02 TAG(42:3,46:3 A,46:4 A,48:4 A,48:5) ↑

M15 7 4.0E-02 LPC(18:0 A,18:0 B,20:1, 20:0, 20:1, 20:2,18:0) ↓

M6 10 4.0E-02 TAG (50:6,50:6,52:6,52:6,53:5,54:6 C,54:7,55:6,58:10,58:7) ↑

M80 3 4.7E-02 PC(40:7,40:7 B,42:7) ↑

M46 5 4.7E-02 LPC (17:1,22:6,18:1,18:3,22:5) ↓

Note: DIR column shows the overall direction of most lipids in the correlation module.
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