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Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly individuals and is associated with progressive
neurodegeneration of the human neocortex. Patients with AD have a high prevalence of vitamin D deficiency, which is also
associated with low mood and impaired cognitive performance in older people. Genetic studies have provided the opportunity to
determine which proteins link vitamin D to AD pathology (ie, the major histocompatibility complex class II molecules, vitamin D
receptor, renin–angiotensin system, apolipoprotein E, liver X receptor, Sp1 promoter gene, and the poly(ADP-ribose) poly-
merase-1gene). Vitamin D also exerts its effect on AD through nongenomic factors, that is, L-type voltage-sensitive calcium chan-
nels, nerve growth factor, the prostaglandins, cyclooxygenase 2, reactive oxygen species, and nitric oxide synthase. In conclusion,
vitamin D clearly has a beneficial role in AD and improves cognitive function in some patients with AD. Calcitriol, 1a,25-
dihydroxyvitamin D3, is best used for AD because of its active form of vitamin D3 metabolite and its receptor in the central
nervous system.
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Introduction

Alzheimer’s disease (AD) is the most common form of demen-
tia in the elderly individuals and is associated with the progres-
sive loss of memory and cognitive function. A high incidence of
fractures, especially of the hip, is reported in patients with AD.1

There is evidence of aberrations in the vitamin D-endocrine sys-
tem in patients with AD. Sato et al2 studied bone mineral density
(BMD) and its relation to the biochemical indices of patients
with AD. They reported that the BMD of patients with AD was
significantly less than that of age-matched controls; in 26% of
patients with AD, serum 25-hydroxyvitamin D3 (25OHD) was
at a deficient level (5-10 ng/mL); and in 54%, it was at an osteo-
malacic level (<5 ng/mL). Concentrations of ionized calcium
were significantly lower than in patients, and their concentra-
tions of serum bone Gla-protein and urinary hydroxyproline
were significantly higher than those of controls. In another
study, there was no significant difference in bone density
between participants with mild dementia and normal cognitive
women; however, there were significant differences in parathyr-
oid hormone (PTH) and vitamin D levels between groups.3

Moreover, elevated PTH concentrations are associated with a
5-year cognitive decline in a general aged population, indepen-
dent of ionized calcium concentrations and renal function,4

suggesting that there is a high prevalence of subclinical hypovi-
taminosis D in demented patients. Furthermore, patients with
AD with lower BMD, low concentrations of serum ionized

calcium, and 25OHD with compensatory hyperparathyroidism
were found to have an increased risk of hip fracture.5 Whether
vitamin D deficiency is a cause or consequence of AD is
unknown. In addition, abnormal cellular calcium homeostasis
has been noted in AD. Nuclear microscope analysis revealed
evidence for increased overall levels (free and protein bound)
of calcium in patients with AD,6 in which calcium levels are
greater in neurofibrillary tangle-bearing neurons than in neurons
lacking tangles.7 These findings might suggest a relationship
between vitamin D and AD. In the present article, therefore,
we review the role of vitamin D in patients with AD.

Genetic Factors Related to Vitamin D in AD

Studies have suggested that several genes in the major histo-
compatibility complex (MHC) region promote susceptibility
to AD. Located in the MHC region, human leukocyte antigen
(HLA) genes have been implicated in AD susceptibility.
Increased MHC class II glycoprotein expression on microglial
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cells has been reported in AD brains.8-10 A significantly
increased level of MHC class II expression was also detected
in AD retinae.11 Moreover, the number of HLA-DR and inter-
leukin 2 (IL-2) receptor-positive cells was increased in the post-
mortem brain of patients with AD and correlates with the
number of senile plaques.12 Shalit et al13 observed a slight
increase in HLA-DR levels in the mild stage of AD without
changes in CD4, CD8, and IL-2 levels. In the moderately severe
stage, however, there was a significant increase in HLA-DR and
CD4 and a slight decrease in CD8, suggesting that peripheral
immune reaction in ADmay be correlated with the clinical stage
of the disease. Furthermore, following long-term therapeutic
immunization of an AD mouse model bearing the DRB1*1501
allele, amyloid-β (Aβ) peptide was effectively cleared from the
brain parenchyma, and brain microglial activation was reduced
.14 This suggests that HLA-DR alleles directly associate with
specific Aβ T-cell epitopes with the highly immunogenic prop-
erties of the abundant DRB1*1501 allele in this mouse model of
AD. Conversely, calcitriol is known to stimulate phagocytosis
but suppresses MHC class II antigen expression in human
mononuclear phagocytes.15,16 Calcitriol also decreases inter-
feron-γ-induced HLA-DR antigen expression on normal and
transformed human keratinocytes.17,18

Genetic studies provide an opportunity to link molecular var-
iations with epidemiological data. DNA sequence variations,
such as polymorphisms, exert both modest and subtle biological
effects. Vitamin D receptor (VDR) and 1α-hydroxylase, the
enzyme responsible for the formation of active vitamin D in the
human brain, were found in both neurons and glial cells in a
regional and layer-specific pattern19; VDR was restricted to the
nucleus while 1α-hydroxylase was distributed throughout the
cytoplasm. In patients with AD, VDR expression has been
reported to be reduced in different layers of the hippocampus,20

which is more vulnerable in AD. The VDR Aa, but not the FokI,
genotype has been reported to associate with AD.21,22

The primary function of the renin–angiotensin system (RAS)
is to maintain fluid homeostasis and regulate blood pressure.
Several components of the RAS and their receptors are found
in the central nervous system (CNS),23-26 suggesting their invol-
vement in brain activity. Angiotensin-converting enzyme (ACE)
activity was reported in homogenates of postmortem brain tis-
sue from patients with AD and was correlated with Aβ plaque
load.27 Increased binding of radioactively labeled ACI inhibitor
to ACE was noted in AD temporal cortex.28 Another report also
demonstrated elevated neuronal and perivascular ACE immu-
noreactivity in AD parietal cortex.29 Recently, ACE activity was
found to be increased in peripheral blood of later-onset AD, but
there was no correlation with the level of Aβ in peripheral
blood.30 The role of ACE in AD remains controversial; ACE
has been shown to inhibit Aβ aggregation and to lower the lev-
els of secreted Aβ in living cells, an effect that was blocked with
ACE inhibitor,31,32 whereas ACE inhibitor was reported not to
have an effect on cerebral Aβ levels and plaque deposition in
vivo in another study.33 Although short-term treatment with
ACE inhibitors failed to increase Aβ formation in the brain,
long-term treatment enhanced Aβ deposition in aged amyloid

precursor protein (APP) transgenic mice.34 The ACE I/I geno-
type and I allele showed an increased risk of AD,35,36 but the
D/D genotype was associated with a reduced risk.37 The I/I gen-
otype has been linked to smaller volumes of the hippocampus
and the amygdale38 and to trends toward increased brain
Aβ42 load compared to the D/D genotype.39 There is also an
interaction between vitamin D and the RAS. The combination
of ACE inhibitors with the ACE DD genotype has been shown
to decrease the level of calcitriol.40 In addition, genetic disrup-
tion of the VDR resulted in overstimulation of the RAS with
increasing renin and angiotensin II productions, leading to high
blood pressure and cardiac hypertrophy. Treatment with capto-
pril reduced cardiac hypertrophy in VDR knockout mice,41 sug-
gesting that calcitriol may function as an endocrine suppressor
of renin biosynthesis. Vitamin D has also been reported to
decrease ACE activity in bovine endothelial cells.42

Apolipoprotein E (ApoE) has important functions in sys-
temic and local lipid transport and is a major genetic factor iden-
tified in AD. Carriers of at least one ApoE ∊4 allele have an
increased risk of developing AD.43,44 Apolipoprotein E has
been shown to be significantly altered in the cerebrospinal fluid
(CSF) of patients with AD.45 In addition, capillary cerebral
amyloid angiopathy has been identified as a distinct ApoE
e4-associated subtype of sporadic AD,46 which may determine
the clinical phenotype of AD.47 Patients expressing this ApoE
genotype are known to have significant impairment in memory
retention. ApoE, however, was not found to be a risk or a pro-
tective factor for AD in an Ecudorian population.48 On the other
hand, calcitriol has been known to induce macrophages to exhi-
bit specific saturable receptors for low-density lipoprotein
(LDL) and acetyl-LDL; the LDL receptor of 1,25OHD-
induced macrophages was found to exhibit specificity for ApoB
and E-containing lipoproteins.49 In ApoE knockout mice, an
animal model with dyslipidemia, high oxidative stress, and pro-
nounced atherosclerosis after uninephrectomy, animals devel-
oped less plaque growth and calcification with vitamin D
analog treatment (paricalcitol) compared to control groups.50,51

Cholesterol has been reported to link to the pathology of AD.
Ullrich et al52 demonstrated that cholesterol-treated rats showed
impaired learning and long-term memory associated with a
reduced number of cholinergic neurons in the nucleus of Mey-
nert and decreased acetylcholine levels in the cortex. Amyloid
precursor protein levels were also enhanced in the cortex of
treated rats. Statins, inhibitors of cholesterol synthesis, lowered
serum Aβ levels in humans with elevated cholesterol levels.53 In
transgenic AD mouse models, hypercholesterolemia accelerated
cognitive dysfunction and increased APP processing and β-
amyloid accumulation, as well as increasing the inflammatory
response.54 The liver X receptors (LXRs) play a key role in reg-
ulating genes that control cellular cholesterol efflux, membrane
cholesterol efflux, and membrane composition, and are widely
expressed in cells of the CNS. Liver X receptor is expressed
in 2 isoforms, LXRα and LXRβ, but only LXRβ is expressed
in the brain. Liver X receptor β is known to play a key role in
Aβ and cholesterol modulation.55 In mice, expression of
the LXR gene causes a decrease in cellular Aβ secretion.56
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A synthetic LXR agonist is reported to decrease Aβ production
in vitro and in AD mouse models.57 Interestingly, high serum
25OHD concentrations are associated with a favorable serum
lipid profile, for example, total cholesterol and high-density
cholesterol (HDL-C).58 Low levels of active vitamin D, calci-
triol, are also associated with low HDL-C levels.59 Moreover,
calcitriol has been shown to suppress foam cell formation by
reducing acetylated LDL (AcLDL) and oxidized LDL (oxLDL)
cholesterol uptake by macrophage.60 In addition, calcitriol inhi-
bits the activity of 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA reductase), required for cholesterol biosynthesis.61

In male VDR knockout mice, serum total cholesterol and LXRβ
levels were significantly higher than those in wild-type mice.62

There is crosstalk between LXRα and VDR signaling in the
regulation of bile acid metabolism, suggesting a possible contri-
bution of the VDR to the modulation of bile acid and cholesterol
homeostasis.63

Binding sites for the transcription factor Sp1 have been
implicated in the transcription of several genes by hormones.
In cultured human fibroblasts, the level of CYP24 (25-OHD
24-hydroxylase) messenger RNA (mRNA) plays a key role in
the metabolism of 1,25-dihydroxyvitamin D3 (1,25OHD) and
increases up to 20 000-fold in response to calcitriol. Two vita-
min D-responsive elements (VDREs) located upstream of the
CYP24 gene are primarily responsible for the increased mRNA
levels and Sp1 acted synergistically with these VDREs for the
induction.64 The mVDR promoter is controlled by Sp1 sites65

and functions as the transactivation component of the VDR/
Sp1 complex to trigger gene expression.66 Furthermore, abnor-
mal Sp1 transcription factor has been reported in AD.67,68 The
Sp1 transcription factor may be involved in regulating the
expression of several AD-related proteins. The regulatory
region of the APP gene contains sites recognized by the Sp1
transcription factor, which has been shown to be required for the
regulation of APP and Aβ.69 BACE1 , the major β-secretase
involved in cleaving APP, promoter contains a functional Sp1
response element, and overexpression of the Sp1 transcription
factor potentiates BACE gene expression and APP processing
to generate Aβ.70 Sp1 and signaling mother against decapenta-
plegic peptide (Smad) transcription factors cooperate to potenti-
ate transforming growth factor β-dependent activation of APP.71

Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear pro-
tein that contributes to both neuronal death and survival under
stress condition. Poly(ADP-ribose) polymerase cleavage is
enhanced in peripheral blood mononuclear cells from mild cog-
nitive impairment patients.72 Enhanced PARP activity is
reported in AD and has been suggested as a marker for AD.73

The PARP polymers increased with age in the brains of an Alz-
heimer’s mouse model, and Aβ-activated PARP polymers
induced astrocytic metabolic failure and neuronal death in
response to oxidative stress.74 Poly(ADP-ribose) polymerase 1
polymorphism is shown to modify the risk of AD in both an
independent manner and through interaction with proinflamma-
tory IL-1A.75 The PARP-1 gene is highly associated with AD
susceptibility. The PARP haplotypes, Ht3-TT and Ht4-CC, were
significantly associated with an increased risk of AD, whereas

the Ht1-TC haplotype showed a protective effect against AD
when compared with control participants.76 Furthermore,
PARP-1 levels decreased in NB4 acute promyelocytic leukemia
cells in response to calcitriol treatment.77 Vitamin D exerts a
concentration-dependent inhibitory effect on PARP-1 in human
keratinocyte cells.78 Vitamin D-induced downregulation of
PARP was also enhanced by nicotinamide in human myeloblas-
tic leukemia cells.79 Furthermore, PARP was attenuated in hip-
pocampal tissue from rats that received dexamethasone and
vitamin D,80 suggesting that the anti-inflammatory effect of
dexamethasone and vitamin D derives from their ability to
downregulate microglial activation.

The Nongenetic Role of Vitamin D in AD

Disturbance of glucose metabolism is a prominent characteristic
in the brains of patients with AD, and type 2 diabetes mellitus
(DM) has been identified as a risk factor for AD.81-83 Moderate
hyperinsulinemia can elevate inflammatory markers and β-amy-
loid in the periphery and the brain,84 suggesting that hyperinsu-
linemia is a risk factor for AD. Human and experimental animal
studies have demonstrated that neurodegeneration is associated
with peripheral insulin resistance.85 Moreover, metabolic syn-
drome, a clustering of cardiovascular risk factors including obe-
sity, hypertension, dyslipidemia, and hyperglycemia has been
reported to be associated with AD, especially in women.86

Metabolic syndrome is more frequent among patients with
AD than controls.87 Pasinetti et al88 demonstrated that high-
caloric intake based on saturated fat promoted AD type β-amy-
loidosis, and conversely, that dietary restriction based on
reduced carbohydrate intake was able to prevent it. In a
C57BL/6 mouse model of obesity and type 2 DM, high-fat diet
feeding for 16 weeks doubled mean body weight, caused type 2
DM, marginally reduced mean brain weight, and was associated
with significantly increased levels of tau,89 suggesting that obe-
sity and type 2 DM may contribute to AD. In both AD and mild
cognitive impairment groups, higher BMI was associated with
brain volume deficits in frontal, parietal, and occipital lobes.90

In addition, central obesity in the elderly individuals is related
to late-onset AD.91 In a meta-analysis of prospective studies,
BMI in midlife and late life was shown to increase dementia
risk.92 In addition, serum 1,25OHD and 25OHD levels were
low in diabetic patients,93-95 and diabetic rats had an increased
metabolic clearance rate of 1,25OHD.96 Similarly, vitamin
25OHD3 concentrations in subcutaneous fat tissue and serum
were inversely and correlated with body weight.97 Decreased
25OHD3 levels were observed during obesity and may have
been secondary to alterations in tissue distribution resulting
from increases in adipose mass.98 The percentage body fat con-
tent was independently inversely related to the serum 25OHD3

levels in healthy women, regardless of dietary vitamin D intake,
season, age, and race.99 The association between 25OHD3 con-
centrations and adiposity was stronger for visceral than for sub-
cutaneous abdominal adiposity.100 Interestingly, a significant
high prevalence of vitamin D insufficiency has been reported
in patients with AD.101 Elderly women with AD have an
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increased prevalence of vitamin D deficiency,2 which is also
associated with low mood and impaired cognitive performance
in older adults.102 There is an association between Mini-Mental
State Examination (MMSE) test scores and serum 25OHD lev-
els, vitamin D-sufficient patients had significantly higher
MMSE scores compared to vitamin D-insufficient ones.103 In
another study, vitamin D deficiency was associated with
increased odds of cognitive impairment in the elderly popula-
tion of the United States104 Avitamin D-free regimen intensified
the spatial learning deficit in Alzheimer’s animal models.105

Conversely, vitamin D3 -enriched diet was correlated with a
decrease in the number of amyloid plaque, a decrease in Aβ pep-
tides, a decrease in inflammation, and an increase in nerve
growth factor (NGF) in the brains of APP transgenic mice.106

Furthermore, long-term treatment with calcitriol resulted in a
higher density of CA1 neurons in the middle regions of the hip-
pocampus in aging rats,107 suggesting that vitamin D can mod-
ulate markers of brain aging.

Acetylcholine (ACh) and norepinephrine (NorEpi) are the
most common neurotransmitters associated with the pathophy-
siological conditions observed in AD. It is hypothesized that
these neurotransmitters are hypoactive in AD. Alterations in the
density of cholinergic and noncholinergic receptors for gluta-
mate, noradrenaline, and serotonin have been reported in trans-
genic Tg2576 mice with Aβ plaque pathology.108 Decreases in
the number of NorEpi-containing neurons in the locus coeruleus
suggest reduced NorEpi activity in patients with AD.109 More-
over, Kumar et al110 demonstrated the neuroprotective role of
vitamin D in cerebral cortex by normalizing the altered choliner-
gic synaptic transmission in streptozocin-induced diabetic rats.
Altered pressor to NorEpi is also noted in vitamin D-deficient
rats111,112 and increased in hypotensive response to ACh,
L-dopamine, histamine, and 5-hydroxytryptamine.112 The
pressor responses to NorEpi and angiotensin II were augmented
by vitamin D and its analogs.113

Normal calcium homeostasis is critical to neuronal survival
in AD. Elevated intracellular calcium levels have been observed
in neurons in AD. The remaining neurons in the hippocampus
were demonstrated to have increased L-type voltage-sensitive
calcium channels (L-VSCCs) in patients with AD,114 resulting
in increased in calcium influx. Aβ protein is reported to trigger
neurodegeneration not only by inducing L-VSCC expression
but also by suppressing VDR expression; treatment with vita-
min D in this model protected neurons by preventing cytotoxi-
city and apoptosis and also by downregulating L-VSCCs and
upregulating VDRs.115 Calcitriol decreased L-VSCC activity
in aged rats and in vulnerable neurons with particularly impact
on reducing age-related changes associated with Ca2+ dysregu-
lation.116,117 24R, 25 dihydroxyvitamin D3 also reduced
L-VSCC in vascular smooth muscle in rats.118 These findings
suggested that calcitriol may have a role in regulating the abnor-
mal intracellular calcium levels in neurons in AD.

Nerve growth factor is a small secreted protein that is impor-
tant for the growth, maintenance, and survival of certain target
neurons (nerve cells). It has been implicated in maintaining and
regulating the normal functioning of the septohippocampal

pathway, which is involved in learning and memory119-121

Mature NGF levels are substantially decreased in the forebrain
of aged animals and patients with AD.122 In vitro, NGF has been
shown to modulate APP gene expression,123 and its withdrawal
induced an increase in APP expression in neuronal PC12
cells.124 In in vivo studies, intranasal administration of NGF res-
cued recognition memory deficits in AD11 anti-NGF transgenic
mice.125 Moreover, implantation of autologous fibroblasts
genetically modified to express human NGF into the forebrain
of patients with mild AD demonstrated a marked reduction in
the rate of cognitive decline and an increase in cortical glucose
metabolic uptake in treated participants.126 Interestingly, brains
of newborn rats from vitamin D-deficient dams displayed
reduced expression of NGF and glial cell-line-derived neuro-
trophic factor.127 In vitro, calcitriol regulated the expression of
the VDR gene and stimulated the expression of the NGF gene
in Schwann cells.128 In mouse fibroblasts, calcitriol and vitamin
D analogs were reported to enhance NGF induction by increas-
ing AP-1 binding activity in the NGF promoter.129,130 These
findings suggest a protective role for vitamin D in the CNS.

Prostaglandins (PGs) play a role in inflammatory pro-
cesses.131 Cyclooxygenase (COX) participates in the conver-
sion of arachidonic acid into PGs. Prostaglandin receptors are
found in the hypothalamus, thalamus, and limbic system,132 and
COX-2 is expressed by excitatory neurons at postsynaptic sites
in rat cerebral cortex.133 Overexpression of COX-2 has been
demonstrated in the perinuclear, dendritic, and axonal areas of
pyramidal neurons as well as in subregions of the hippocampal
formation in AD.134,135 The COX-2 potentiated Aβ protein
generation through mechanisms that involve γ-secretase
activity.136,137 Long-term treatment with nonsteroidal anti-
inflammatory drugs has been shown to benefit in the improvement
of theADprocess138,139Calcitriol has been reported to regulate the
expression of several key genes involved in the PG pathways,
causing a decrease in PG synthesis.140 Calcitriol and its analogs
have also been shown to selectively inhibit the activity of COX-
2.141

Reactive oxygen species (ROS) have been implicated in the
pathogenesis of neuronal death in AD. Increased levels of ROS
have been reported in AD.142,143 Oxygen-free radical injury has
been reported to cause some AD-type molecular abnormalities
in human neuronal cells.144 Cultured skin fibroblasts from
patients with AD had increased superoxide dismutase (SOD)
activity and were more susceptible to free radical damage.145,146

Calcitriol has been reported to exert a receptor-mediated effect
on the secretion of hydrogen peroxide by human monocytes147

and regulated adipocyte ROS production.148 Human monocytes
in culture gradually lose their capability to produce superoxide
when stimulated; the addition of calcitriol, lipopolysaccharide
(LPS), or lipoteichoic acid (LTA) restored the ability of stimu-
lated monocytes to produce superoxide and increased the oxida-
tive capacity compared with unstimulated monocytes.149

Calcitriol could also protect nonmalignant prostate cells from
oxidative stress-induced cell death by eliminating ROS-
induced cellular injuries.150 Vitamin D metabolites and vitamin
D analogs were reported to induce lipoxygenase mRNA
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expression, lipoxygenase activity, and ROS production in a
human bone cell line.151 Vitamin D could also reduce the extent
of lipid peroxidation and induce the SOD activity of the hepatic
antioxidant system in rats.152 These findings suggested a role of
vitamin D in modulating oxidative stress in AD.

Nitric oxide synthase (NOS) has a role in generating nitric
oxide (NO), which has been shown to be a critical signaling
molecule involved in synaptic plasticity and memory.153,154

Nitric oxide synthase activity was reported to increase signifi-
cantly in leukocytes and brain microvessels of patients with
AD.155,156 Moreover, NOS has been suggested to contribute
to the pathogenesis of AD. In AD and APP transgenic mice,
astrocytes with high NOS levels were associated with Aβ pro-
tein deposits.157 Nitric oxide synthase deficiency protected the
AD-like mice from premature mortality, cerebral plaque forma-
tion, increased Aβ protein levels, astrocytosis, and microglio-
sis.158 The activation of macrophages by 1α-hydroxylase
resulted in an increase in 1,25OHD, which inhibited inducible
NOS (iNOS) expression and reduces NO production by LPS-
stimulated macrophages.159 This calcitriol production by
macrophages may provide protection against oxidative injuries
caused by the NO burst. Calcitriol is known to inhibit LPS-
induced immune activation in human endothelial cells.160 In
experimental allergic encephalomyelitis, calcitriol inhibited the
expression of iNOS in the rat central nervous system (CNS).161

Astrocytes play a pivotal role in CNS detoxification pathways,
in which glutathione (GSH) is involved in the elimination of
oxygen and nitrogen reactive species, such as nitric oxide. Cal-
citriol also enhances intracellular GSH pools and significantly
reduces nitrite production induced by LPS.162

Conclusion

The relationship between vitamin D and AD has been discussed.
Vitamin D clearly has a beneficial role in AD and improved cog-
nitive function in some patients with AD. Genetic studies have
provided the opportunity to determine what proteins link vita-
min D to AD pathology. Vitamin D also exerts its effect on
AD through nongenomic mechanisms. It is necessary to check
the vitamin D status in patients with AD. Calcitriol is best used
for AD because of its active form of vitamin D3 metabolite, and
its receptor in the CNS. Adjusting dose for calcitriol depends on
serum calcium and PTH levels. However, monitor of serum
25OHD after taking calcitriol is not necessary because calcitriol
inhibits the production of serum 25OHD in the liver163,164 Cal-
citriol can cause hypercalcemia and also suppress PTH levels in
vitamin D deficiency-induced secondary hyperparathyroidism.
Further investigation with calcitriol in AD would be needed.
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