
 | Microbial Pathogenesis | Research Article

SMR peptide antagonizes Staphylococcus aureus 
biofilm formation

Ming-Bo Huang,1 Dara Brena,1 Jennifer Y. Wu,2 Martin Shelton,1,3 Vincent C. Bond1

AUTHOR AFFILIATIONS See affiliation list on p. 10.

ABSTRACT The emergence and international dissemination of multi-drug resistant 
Staphylococcus aureus (S. aureus) strains challenge current antibiotic-based therapies, 
representing an urgent threat to public health worldwide. In the U.S. alone, S. aureus 
infections are responsible for 11,000 deaths and 500,000 hospitalizations annually. 
Biofilm formation is a major contributor to antibiotic tolerance and resistance-induced 
delays in empirical therapy with increased infection severity, frequency, treatment failure, 
and mortality. Developing novel treatment strategies to prevent and disrupt biofilm 
formation is imperative. In this article, we test the Secretion Modification Region (SMR) 
peptides for inhibitory effects on resistant S. aureus biofilm-forming capacity by targeting 
the molecular chaperone DnaK. The dose effect of SMR peptides on biofilm formation 
was assessed using microtiter plate methods and confocal microscopy. Interaction 
between the antagonist and DnaK was determined by immune precipitation with 
anti-Flag M2 Affinity and Western blot analysis. Increasing SMR peptide concentrations 
exhibited increasing blockade of S. aureus biofilm formation with significant inhibition 
found at 18 µM, 36 µM, and 72 µM. This work supports the potential therapeutic benefit 
of SMR peptides in reducing biofilm viability and could improve the susceptibility to 
antimicrobial agents.

IMPORTANCE The development of anti-biofilm agents is critical to restoring bacterial 
sensitivity, directly combating the evolution of resistance, and overall reducing the 
clinical burden related to pervasive biofilm-mediated infections. Thus, in this study, the 
SMR peptide, a novel small molecule derived from the HIV Nef protein, was preliminarily 
explored for anti-biofilm properties. The SMR peptide was shown to effectively target the 
molecular chaperone DnaK and inhibit biofilm formation in a dose-dependent manner. 
These results support further investigation into the mechanism of SMR peptide-medi
ated biofilm formation and inhibition to benefit rational drug design and the identifica-
tion of therapeutic targets.

KEYWORDS bacterial biofilm, Staphylococcus aureus, SMR peptide, heat shock protein, 
DnaK

Global clinical burden of Staphylococcus aureus

S taphylococcus aureus (S. aureus) is a ubiquitous gram-positive bacterium responsible 
for a plethora of community and nosocomial infections ranging from mild skin 

and soft tissue infections to life-threatening conditions, including pneumonia, meningi
tis, osteomyelitis, endocarditis, bacteremia, and toxic shock syndrome (1–3). The high 
abundance of S. aureus within the environment as well as within the flora of humans 
and animal species contribute to a large reservoir of virulence factors and antibiotic 
resistance tactics (4). Over the years, S. aureus has developed resistance to multiple 
antibiotics and has been designated as an ESKAPE (Enterococcus faecium, Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 
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Enterobacter species) pathogen (5, 6). According to the CDC’s Antibiotic Resistance 
Threats Report, S. aureus is continuing to readily disseminate dangerous antimicro
bial resistance genes through mobile genetic elements (7, 8). The global spread of types 
and subtypes of methicillin-resistant S. aureus (MRSA) has led to an expanding public 
health crisis (9). Patients with MRSA frequently have chronic infections with a high risk for 
bacterial seeding to critical secondary sites resulting in severe acute infections and death 
(9). In a 2019 global mortality study analyzing 33 bacterial pathogens, S. aureus ranked 
within the top five causes of death (10).

S. aureus biofilm formation promotes antimicrobial tolerance and resistance

A large degree of the clinical burden due to S. aureus can be attributed, as Reffuveille 
et al. refer, to the “superstructure” of biofilms (11). Approximately 80% of the S. aureus 
nosocomial infections are biofilm associated (11). S. aureus biofilms inherently exhibit 
recalcitrance to treatment, thereby increasing the severity, recurrence, chronicity, and 
mortality of infections. S. aureus biofilms perpetuate both antimicrobial tolerance and 
resistance by two primary mechanisms as follows: (i) the biofilm acts as a protective 
barrier against physical stress, antibiotics, and host immune response. Bacteria living 
in a biofilm can exhibit a 10- to 1,000-fold increase in antibiotic tolerance compared 
to similar bacteria living in a planktonic state (12). (ii) The biofilm serves as a platform 
for complex microbial communal networking and antimicrobial resistance transmission. 
It is important to distinguish between a biofilm’s capacity for antibiotic tolerance 
vs resistance. Antibiotic tolerance is a temporary state of reduced susceptibility to 
antibiotics, often associated with biofilms, whereas antibiotic resistance involves genetic 
changes that enable bacteria to grow and divide in the presence of antibiotics (13).

During biofilm formation, bacteria produce and surround themselves in an extrac
ellular polymeric substance (EPS) consisting of polysaccharides, lipids, nucleic acids, 
and protein (14). EPS establishes the functional and structural integrity of a biofilm, 
acting as a key mediator for physiochemical interactions. Antimicrobial tolerance at the 
biofilm surface is due in part to this EPS matrix that limits antibiotic diffusion. Further
more, any antibiotics that penetrate the biofilm are unlikely to maintain functionality. 
Proteolytic enzymes, metabolic byproducts, and other environmental factors of the 
biofilm compromise antibiotic structure and action (15). For example, low oxygen levels 
reduce the bactericidal effects of antibiotics tobramycin and ciprofloxacin, whereas pH 
changes can negatively impact aminoglycoside action. Persister or dormant bacterial 
subpopulations within the biofilm enter a “spore-like” state and are tolerant to extreme 
conditions, such as chemical treatment and antibiotic activity that act by targeting cell 
division. The survival of these persister cells is not due to any genetic changes; upon 
release from the biofilm, they begin dividing again and return to their pre-persister 
susceptibility profiles (16–31). Antimicrobial tolerance and resistance within the biofilm 
are attributed to the heterogeneity of the bacterial populations and the proximity of the 
bacterial cells that facilitate a highly active transmission of resistant genetic elements. 
Conjugation and horizontal gene transfer are the predominant modes that reinforce 
pervasive phenotypic traits throughout the bacterial populations. For example, efflux 
pumps are readily disseminated through horizontal gene transfer. Despite the health 
burden due to S. aureus biofilms, many antibiotic assays for susceptibility and resistance 
are based on planktonic cells, and there are few therapies that prevent and/or disrupt 
biofilm formation (32, 33).

Clinical relevance of antimicrobial peptides (AMPs)

AMPs are considered a promising alternative to conventional antibiotics (34). AMPs 
exhibit broad-spectrum activity and a robust bactericidal effect on multi-drug resist
ant (MDR) microorganisms (34). However, the use of AMPs requires a comprehensive 
understanding of the complex interactions between peptides, bacterial resistance 
mechanisms, and host factors (34, 35). Notable disadvantages that limit the clinical 
application of AMPs include difficulties in maintaining effective levels (e.g., proteolytic 
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degradation, fast clearance by the kidney and liver, etc.) and toxicity (34). Additionally, 
AMPs are subject to bacterial resistance development (36). For example, bacteria can 
alter their membrane composition, charge, or surface molecules to prevent effective 
targeting by AMPs (36). Synergistic approaches that combine AMPs with therapeutic 
agents such as antibiotics or other AMPs may offer a more effective strategy to prevent 
resistance development and enhance antimicrobial activity (36). Continued research 
efforts into AMPs to improve efficacy and bioavailability, reduce toxicity, and limit the 
acquisition of resistance will aid in combatting the antimicrobial-resistance health crisis 
(34).

Rationale of SMR peptide targeting of DnaK for biofilm disruption

DnaK is a molecular chaperone within the heat shock protein 70 family. DnaK acts by 
binding nascent polypeptide chains and assists in protein assembly, refolding, main
tenance, and degradation (37). Although the mechanism is unclear, DnaK has been 
identified as important to biofilm formation and is predicted to be critical for the 
appropriate folding of biofilm scaffolding proteins. For example, in Escherichia coli, DnaK 
contributed to amyloid curli expression. In turn, DnaK represents a potential therapeutic 
target for inhibition to disrupt and prevent the formation of biofilms (38, 39).

Our lab group has designed and developed a series of SMR peptides to target 
Mortalin, a heat shock protein with a high degree of homology to DnaK (37, 40, 41). 
In this study, we aim to explore the effects on biofilms from targeting DnaK with 
the SMR peptides. The SMRwt and SMRmut peptide sequences are depicted in Fig. 1. 
SMRmut, a negative control, has an alanine substitution that inactivates the function of 
the antagonist peptide. Modification of the SMR peptide with a 13-mer cell-penetrating 
peptide (CPP) derived from the HIV-1 Tat protein in C-terminus enables penetration 
through bacterial cell membranes. The SMR-FLAG is the same as the SMR-CPPtat with a 
FLAG sequence replacing the CPP (42, 43).

In our previous studies, we have found multiple novel effects of the SMR peptides 
through targeting mortalin in HIV/AIDS and breast cancer (28). Similar to DnaK, mortalin 
is involved in the translocation and folding of proteins to regulate many processes, 
including cell growth, apoptosis, and autophagy. Mortalin also interacts with proteins, 
such as Nef, to elicit the secretion of extracellular vesicles (EV) that mediate intercellu
lar communication and environmental response coordination. Both antibody inhibition 
and miRNA knockdown experiments confirmed that blocking mortalin blocks Nef-EV 

FIG 1 Design and development of the SMR peptides. (A) The difference between SMRwt-CPPtat and SMRmut-CPPtat is that SMRwt-CPPtat contains a valine, 

whereas SMRmut-CPPtat contains an alanine at the first position from the N-terminus. CPPtat stands for Cell-Penetrating Peptide Tat and comprises arginine and 

lysine residues. CPPtat is a potent transduction agent that can penetrate cell membranes and efficiently transport cargo into cells. (B) The SMRwt-FLAG peptide 

has an N-terminus histidine and a C-terminus hydroxylamine, followed by the FLAG epitope tag. The SMRmut-FLAG peptide is the same as the wild-type peptide, 

but with a point mutation at the first amino acid from the N-terminus, changing the valine to an alanine.
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secretion in Nef-transfected cells, as well as disrupts mortalin/Nef interactions occurring 
through the SMR domain (28). Our recent research demonstrated that SMR peptide 
treatment in breast cancer cells blocked EV secretion, induced cell cycle arrest at the 
G2/M phase, and reduced cellular proliferation (40, 41). We hypothesized that SMR 
peptide treatment of resistant S. aureus will interact with DnaK, like mortalin, and block 
both the folding of scaffolding proteins and EV release, to compromise the structural 
integrity of the biofilm and the EV-mediated intercellular networking, respectively. We 
addressed this hypothesis by microtiter plate (MtP) assays, immunoprecipitation assays, 
and confocal microscopy. This study offers insights into the development of novel 
treatment strategies to mitigate the impact of this versatile and resilient pathogen.

RESULTS

SMRwt peptide interacts with DnaK in E. coli and S. aureus strains

The interaction between the SMRwt peptide and DnaK was studied using an immuno
precipitation assay. In brief, E. coli (Invitrogen MAX Efficiency Stbl2 Competent cells), 
S. aureus (SH1000), and S. aureus (SC01) cell lysates were screened with an anti-flag 
M2 affinity gel under three different conditions as follows: SMRwt vs SMRmut vs no 
peptide. The bound proteins were eluted and subsequently separated using SDS-PAGE. 
The Western blot analysis with the DnaK antibody revealed a SMRwt band, which was 
absent under the SMRmut and no peptide conditions (Fig. 2A). A significantly higher 
elution percentage was observed for SMRwt compared to SMRmut (Fig. 2B). Specifically, 
the P-values were as follows: E. coli (Invitrogen MAX Efficiency Stbl2 Competent cells) 

FIG 2 SMR peptides interact with target DnaK in E. coli and S. aureus strains. (A) Western blot analysis of the DnaK antibody depicted the interaction between 

the SMRwt and DnaK following an immunoprecipitation assay. E. coli (Invitrogen MAX efficiency Stbl2 competent), S. aureus (SH1000), and S. aureus (SC01) were 

grown in media without antibiotics. The cells were lysed and the resultant lysate was screened by an Anti-Flag M2 affinity under three conditions as follows: 

SMRwt, SMRmut, and the absence of both peptides. (B) Bar graphs depict the SMRwt and SMRmut elute band percentage intensity. Results are presented as 

means ± standard deviations (n = 3).
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P-value < 0.01, S. aureus (SH1000) P-value < 0.000001, and S. aureus (SC01) P-value < 
0.00001. This indicated that the SMRwt peptide was interacting with DnaK in a manner 
that increased its retention in the affinity gel that was not seen for SMRmut.

SMRwt peptide significantly inhibits S. aureus biofilm formation

The SMRwt peptide effectively blocked biofilm formation of S. aureus (SC01) as shown 
through MtP methods and confocal microscopy (Fig. 3 and 4). For the MtP assays, 
S. aureus (SC01) was seeded with either SMRwt or SMRmut, and biofilm formation 
was measured using the crystal violet staining method (OD570). The data were 
normalized for growth (OD600). A clear inhibitory effect was identified with increas
ing SMRwt concentrations contributing to significantly decreased biofilm formation 
(Fig. 3). Significant differences relative to the negative control were noted at SMR 
peptide concentrations of 36 µM with a P-value < 0.022 and 72 µM with a P-value < 
0.015. Three-dimensional confocal microscopy findings reinforced this premise of SMR 
peptide-mediated biofilm formation (Fig. 4B). The dose effect observed through confocal 
microscopy aligned strongly with the crystal violet staining findings. Specifically, SMR 
dosages 18 µM, 36 µM, and 72 µM resulted in significantly decreased biofilm formation of 
75.39%, 38.76%, and 19.68%, respectively (Fig. 4C).

DISCUSSION

S. aureus biofilms facilitate life-threatening infections recalcitrant to antibiotic therapy, 
contributing to a substantial burden on healthcare systems worldwide (44–47). The 
intrinsic and acquired biofilm-specific mechanisms for tolerance and resistance against 
antimicrobial agents, host immune response, and environmental stressors reinforce 
persistent and severe nosocomial infections (45). Despite these clinical threats of S. 

FIG 3 SMR peptides inhibit S. aureus biofilm formation in a dose-dependent manner. S. aureus (SC01) was grown at 37°C to the stationary phase. The cultures 

were diluted 100-fold in fresh medium and seeded into a 96-well microtiter plate with either SMRwt or SMRmut at the indicated concentrations. After 24 hours, 

biofilm formation was measured using the crystal violet staining method (OD570). The data were normalized for growth (OD600). Error bars represent the mean 

± SD of two independent experiments. Significant differences relative to the negative control were noted at SMR peptide concentrations of 36 µM with a P-value 

< 0.022 and 72 µM with a P-value < 0.015.
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aureus biofilm-associated infections, currently, there are no anti-biofilm treatments 
available (48). Thus, there have been intensive research efforts on the discovery and 
development of agents to prevent and/or disrupt biofilms. DnaK has been identified as a 
promising target with its chemical inhibition resulting in effective biofilm prevention (38, 
49). Elimination of DnaK functionality through either gene deletion or direct inhibition 
has been found to reduce adherence, the production of amyloid curli, as well as the 
robustness of the biofilm in both E. coli and S. aureus (38). Furthermore, in a murine 
model, DnaK blockade diminished S. aureus resistance to unfavorable environmental 
factors and overall survivability (50, 51).

In this study, SMRwt peptide was shown to physically interact with DnaK in E. coli 
(Invitrogen MAX Efficiency Stbl2 Competent cells), S. aureus (SH1000), and S. aureus 
(SC01) using an immune-precipitation assay with western blotting (Fig. 2A). There was 
a significant difference between the band percentage intensity of the SMRwt elute 
compared with the SMRmut elute (Fig. 2B). As SMRwt was shown to interact with DnaK, 
it likely could interfere with its activity. This would have implications for the regulation 
of various cellular processes in the bacterium and catalyzed the proposed model for 

FIG 4 Confocal microscopy and three-dimensional (3D) views of S. aureus biofilms reveal effective SMR peptide antagonism. S. aureus (SC01) was grown at 37°C 

to the stationary phase. The cultures were diluted 100-fold in fresh media and seeded onto a MatTek glass bottom plate. After 24 hours, the biofilms were stained 

with SYTO9, observed by Leica confocal microscopy, and analyzed with ImageJ. (A) Confocal images, (B) 3D images, and (C) bar graphs depict the inhibitory 

effect of SMR peptides on S. aureus biofilm formation. Error bars represent the mean ± SD of three independent experiments. Significant differences relative to 

the negative control were noted at SMR peptide concentrations of 18 µM with a P-value < 0.05 as well as 36 µM and 72 µM with a P-value < 0.005.
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the effect of SMR peptide-mediated DnaK inhibition on biofilm structure and intercel
lular communication in S. aureus (Fig. 5). Given previous studies on the potential of 
DnaK inhibition, our lab theorized that SMRwt could disrupt S. aureus biofilm formation 
through two primary mechanisms (Fig. 5) as follows: (1) the structural integrity of the 
biofilm could be compromised through a loss of appropriate folding of scaffolding 
proteins like amyloid curli. (2) As the SMRwt peptide is capable of EV blockade in both 
viral infected cells and cancer cells, we postulated that it could similarly affect bacterial 
intercellular communication networking that is reliant upon EV transmission (52, 53).

In alignment with the proposed DnaK inhibition model, the data illustrated an 
inhibitory effect of the SMRwt peptide on the biofilm formation of drug-resistant S. 
aureus (SC01) in a dose-dependent manner using the crystal violet staining method and 
confocal microscopy (Fig. 3 and 4). These inhibitory effects on biofilm formation were not 
observed with the SMRmut peptide. This supports the expectation that the valine at the 
first position of the SMRwt peptide is essential for its functionality. Other chemical DnaK 

FIG 5 Proposed model for the impact of DnaK inhibition, using SMR peptide, on biofilm structure and 

intercellular communication. DnaK, a molecular chaperone, is essential to biofilm formation. Although 

there is a lack of knowledge on the specific mechanism of DnaK, previous studies have identified DnaK 

as key to amyloid curli expression within the biofilms of E. coli. We propose that DnaK is required to 

appropriately fold functional scaffolding proteins that contribute to the structural integrity of a biofilm. 

Therefore, we propose that therapeutic inhibition of DnaK with the SMRwt peptide resulted in an 

accumulation of misfolded proteins with subsequent biofilm degradation. In addition, we theorize that 

the intercellular communication transit of extracellular vesicles was blocked, by SMRwt targeting of DnaK, 

further exacerbating dysfunction within the biofilm. Created with BioRender.
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inhibitors, such as Myr, have shown a similar inhibitory effect on biofilm formation with 
a corresponding decrease in amyloid curli (38). SMRwt peptide could serve as a possible 
anti-bacterial therapeutic by DnaK targeting or as a model for rational drug design to 
inhibit MDR S. aureus biofilm formation (50, 54–70).

In most clinical cases, biofilms are already established (71). Thus, an effective 
anti-biofilm agent should be capable of disrupting a preformed biofilm (71). We aim 
to further explore the SMRwt peptide’s impact against preformed biofilms. In preliminary 
experiments, we observed biofilm disruption following SMRwt-CPP peptide application 
to a preformed S. aureus biofilm. Although the precise mechanism by which SMRwt-CPP 
disrupts biofilms and the specific bacterial target(s) involved remains unclear, these 
results provide evidence that this peptide may be a promising anti-biofilm candidate. 
This research is significant in the broader context of addressing biofilm-related infections, 
highlighting targets for inhibition, and offering potential solutions with less selective 
pressure for antibiotic resistance emergence.

Conclusion

These findings and other data suggest that DnaK antagonism with SMRwt peptide 
should be investigated further for therapeutic applications. As biofilms act as a platform 
for promoting antimicrobial resistant tactics, generating anti-biofilm agents will aid in 
addressing the global threat regarding a dried-up antibiotic discovery pipeline and 
increasing the prevalence of antibiotic resistance. The SMRwt peptide may be a viable 
alternative to traditional antibiotics for treating drug-resistant bacteria. However, the 
exact mechanism of action of the SMRwt peptide is unclear. Determining the mechanism 
of action for SMRwt peptide biofilm antagonism as well as other clinically relevant 
parameters, such as in vivo efficacy, optimal dosage, and delivery method, will be critical 
to future development efforts.

MATERIALS AND METHODS

Strains and growth conditions

The S. aureus SC01 (MRSA) and SH1000 strains were kindly provided by Dr. Jorge 
Antonio Benitez’s Laboratory and were grown on Mueller–Hinton agar plates with 
glucose and without antibiotics at 37°C overnight. The E. coli (Invitrogen MAX Efficiency 
Stbl2 Competent cells) strains cells were grown overnight at 30°C in LB Broth without 
antibiotics.

Synthesis of SMR-CPPtat and SMR-FLAG peptides

The SMR-CPPtat and SMR-FLAG peptides were custom-made by InnoPep Inc. (San Diego, 
CA). The amino acid (aa) sequence for the four peptides used in this study is as shown 
in Fig. 1. SMRwt and SMRmut differ at the first position aa: SMRwt contains a valine, 
whereas SMRmut contains an alanine. CPPtat is a peptide of arginine and lysine residues 
that can penetrate the cell membrane. The SMR-FLAG peptides are identical to the 
SMR-CPP peptides except for the FLAG sequence replacing the CPP sequence.

Evaluation of biofilm-forming capacity

Strains treated with SMR peptides were screened for their biofilm-forming capacity using 
MtP methods and a crystal violet assay described by Stepanovic et al. (72). In triplicate, 
one colony was inoculated to 5 mL of LB or 5 mL of BHI medium and incubated at 37°C 
overnight with agitation (250 rpm). For evaluating the dose effect of SMR peptides, 20 µL 
of the overnight cultures to 1 mL LB with 0.5% glucose for E. coli or BHI with 2% glucose 
for S. aureus medium with the appropriate concentration of the SMR peptide were mixed 
well and transferred (100 µL) to 5 wells of the 96 well of the MtP. Negative controls were 
the SMRmut peptides as well as medium without strains. Plates were incubated at 37°C 
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for S. aureus 24 hours without shaking. After the incubation time, the OD at 600 nm was 
determined using the SpectraMax M5 Microplate Reader. The plates were washed three 
times with phosphate-buffered saline (PBS) pH 7.4, and adherent bacteria were stained 
with 0.1% crystal violet. After 30 minutes, the plates were washed three times with PBS, 
the crystal violet-stained biofilm re-dissolved in dimethylsulfoxide, and the plates read at 
an OD of 570 nm (OD570). Biofilm production was normalized for growth and expressed 
as the OD570/OD600 ratio for each well.

Confocal microscopy

Confocal microscopy was used to visualize biofilm formation. Samples were grown 
on glass slides and stained with SYTO 9 (Invitrogen, Carlsbad, CA). The biofilms 
were prepped for confocal microscopy by first growing them in appropriate media 
for the respective strains with different concentrations of the SMR peptides. After 
the biofilm formation, the biofilms were stained with 10 µM SYTO9 and incubated 
at 30°C for 30 minutes in the dark. The biofilms were then washed to remove any 
extra dye and immediately observed using a TCS-SP2 microscope (Leica Microsystems, 
Heidelberg, Germany), equipped with a 63 × oil immersion objective. The SYTO9 dye 
was excited at 483 nm and the fluorescence emission was detected at 503 nm. 3D 
images were captured every micrometer throughout the biofilm depth. The images 
were then visualized and processed using the Leica LAS AF software (Leica Micro
systems). Quantitative analyses of the images were performed using the COMSTAT 
software (http://www.imageanalysis.dk/; Heydorn et al., 2000). At least three images 
were collected from each of the three independent experiments (nine stacks in total) for 
analysis.

Immunoprecipitation and Western blot analysis

The interaction between the antagonist and DnaK was determined by immune 
precipitation with anti-Flag M2 Affinity and Western blot analysis. E. coli (Invitrogen 
MAX Efficiency Stbl2 Competent cells), S. aureus (SH1000), and S. aureus (SC01) were 
grown in media without antibiotics and then lysed. The lysate was then screened using 
anti-flag M2 affinity gel and either the SMRwt or SMRmut peptide, or in the absence of 
both peptides. The eluted protein samples were separated using SDS-PAGE on 4–20% 
or 8–16% Tris-HCl Criterion precast gels (Bio-Rad) and transferred to the nitrocellulose 
membrane, 0.45 µm. The membrane was washed in Tris-Buffered Saline (TBS; Bio-Rad) 
for 5 minutes, blocked with 5% nonfat milk in TTBS (TBS with 0.1% Tween 20) for 1 hour 
by shaking at room temperature, processed for immunoblotting using a specific primary 
mouse DnaK antibody by shaking at 4°C overnight, followed by a secondary HRP-con
jugated IgG (H + L) antibody. Protein bands were detected using Western Blotting 
Luminol Reagent (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) followed by exposure 
to Image Quant LAS 4000 (FUJIFILM Medical Systems USA, Inc). Densitometry analysis 
was performed using ImageJ software (National Institutes of Health, Bethesda, MD).

Statistical analysis

Experiments were performed in three biological replicates with the exception of Figure 
3 (n=2). Data obtained from the static biofilm assay were log-transformed to stabilize 
the variance and to make the approximation to the normal distribution. The statistical 
analysis was performed using the student’s t-test (73–77).
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