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Single-cell analysis reveals that cryptic prophage protease LfgB 
protects Escherichia coli during oxidative stress by cleaving 
antitoxin MqsA
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ABSTRACT Although toxin/antitoxin (TA) systems are ubiquitous, beyond phage 
inhibition and mobile element stabilization, their role in host metabolism is obscure. 
One of the best-characterized TA systems is MqsR/MqsA of Escherichia coli, which 
has been linked previously to protecting gastrointestinal species during the stress it 
encounters from the bile salt deoxycholate as it colonizes humans. However, some recent 
whole-population studies have challenged the role of toxins such as MqsR in bacterial 
physiology since the mqsRA locus is induced over a hundred-fold during stress, but 
a phenotype was not found upon its deletion. Here, we investigate further the role 
of MqsR/MqsA by utilizing single cells and demonstrate that upon oxidative stress, 
the TA system MqsR/MqsA has a heterogeneous effect on the transcriptome of single 
cells. Furthermore, we discovered that MqsR activation leads to induction of the poorly 
characterized yfjXY ypjJ yfjZF operon of cryptic prophage CP4-57. Moreover, deletion of 
yfjY makes the cells sensitive to H2O2, acid, and heat stress, and this phenotype was 
complemented. Hence, we recommend yfjY be renamed to lfgB (less fatality gene B). 
Critically, MqsA represses lfgB by binding the operon promoter, and LfgB is a protease 
that degrades MqsA to derepress rpoS and facilitate the stress response. Therefore, the 
MqsR/MqsA TA system facilitates the stress response through cryptic phage protease 
LfgB.

IMPORTANCE The roles of toxin/antitoxin systems in cell physiology are few and 
include phage inhibition and stabilization of genetic elements; yet, to date, there are no 
single-transcriptome studies for toxin/antitoxin systems and few insights for prokaryotes 
from this novel technique. Therefore, our results with this technique are important since 
we discover and characterize a cryptic prophage protease that is regulated by the MqsR/
MqsA toxin/antitoxin system in order to regulate the host response to oxidative stress.

KEYWORDS toxin/antitoxin systems, cryptic prophage, stress response

T oxin/antitoxin (TA) systems are encoded in the genomes of nearly all archaea 
and bacteria and are classified into eight main types based on how the antitoxin 

inactivates the toxin (1). We discovered that phage inhibition is one of the primary 
physiological roles of TA systems and determined that the mechanism is toxin induction 
via host transcription shutdown by the attacking phage (2); these results were confirmed 
25 years later (3). TA systems also stabilize mobile genetic elements (4–7). Beyond these 
two functions, there is controversy regarding the physiological roles of TA systems (8).

The MqsR/MqsA TA system was discovered as induced in a biofilm transcriptome 
study (9) and shown to be a TA system using the structures of the toxin (MqsR) and 
antitoxin (MqsA) (10). MqsR degrades mRNA with the 5′-GCU site (11), and MqsA was 
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found not only to regulate its own promoter but also to repress the oxidative stress 
response via DNA binding at a palindrome upstream of the stress response sigma factor 
RpoS (12) and to repress curli synthesis by binding to the promoter of the gene that 
encodes the master biofilm regulator CsgD (13). Moreover, MqsR/MqsA controls the TA 
system GhoT/GhoS as a cascade (14) and helps Escherichia coli colonize the gastrointes
tinal (GI) tract by surviving bile acid stress (15); activation of toxin MqsR during bile 
stress leads to degradation of YgiS mRNA, and this transcript encodes a periplasmic 
protein that promotes bile uptake. Furthermore, several groups have linked MqsR/MqsA 
to antibiotic tolerance based upon deletion of mqsR (16–18), and MqsR/MqsA has been 
linked to heat shock (19), biofilm formation (20), nitrogen starvation (21), and nitric oxide 
(22) in E. coli and copper stress (23), vesicles (24), and biofilm formation (25) in Xylella 
fastidiosa as well as biofilm formation in Pseudomonas fluorescens (26) and persistence 
and biofilm formation in Pseudomonas putida (27).

In contrast to these myriad results with MqsR/MqsA, a report based on negative 
results claimed that the E. coli MqsR/MqsA TA system has no role in stress resistance, 
based on a lack of induction of the mqsRA locus and a lack of phenotype upon deleting 
mqsRA (28). Strikingly, these transcription results were invalidated within a few months 
as mqsRA transcription in the wild-type strain was shown to increase by over 181-fold 
during amino acid stress and 90-fold during oxidative stress (29). This work (29) also 
claimed that there was no physiological effect of deleting mqsRA, but, unfortunately, 
they utilized a TA deletion strain that has substantial non-related mutations, including 
large chromosomal inversions (30); utilization of TA deletion strains with many coding 
errors beyond those of the TA systems has led to notorious retractions in the TA 
field, as we have summarized previously (31). Critically, their claim (29) of a lack of 
a physiological role of MqsR/MqsA was undercut by their later results which showed 
MqsR/MqsA/MqsC inhibited T2 phage (32). We have confirmed these results and shown 
that phage inhibition by MqsRAC induces persistence rather than abortive infection (33). 
Furthermore, these groups (28, 29) used strains with “both” MqsR and MqsA inactivated 
rather than studying the effect of either the toxin or antitoxin alone, that is, MqsR and 
MqsA work “together” during the oxidative stress response.

Based on these inconsistencies, we hypothesized that a better approach, due to 
heterogeneous gene expression (34), would be to investigate the impact of MqsR/MqsA 
on cell physiology by monitoring the transcriptome of “single cells” since all previous 
studies have been based on population averages. Single-cell transcriptomic studies 
have been initiated by several labs (34–38), and here, we utilized the high-throughput 
microfluidic approach that relies on labeling each transcript with unique 50-nt single-
stranded DNA probes to determine the impact of inactivation of MqsR/MqsA during 
oxidative stress (38). We chose oxidative stress as the representative insult to cells 
since both anaerobes and aerobes must deal with this nearly universal stress (39), and 
MqsA has been shown to negatively regulate the oxidative stress response (12). Using 
this approach, we determined that the lfgABCDE operon (formerly the uncharacterized 
operon yfjXY ypjJ yfjZF) of cryptic prophage CP4-57 is induced in single cells and that LfgB 
is a protease that is repressed by antitoxin MqsA and degrades MqsA to activate the E. 
coli stress response through sigma factor RpoS.

RESULTS

Antitoxin MqsA reduces the population stress response

We first investigated whether deleting an unmarked mqsRA mutation affected the 
response of E. coli to oxidative stress (20 mM H2O2 for 10 min) and found that, for 
the whole population, the wild-type cells were more sensitive to H2O2 (85% ± 15% 
death for the wild type vs 55% ± 10% for mqsRA). Similar population-wide results were 
seen with acid stress (pH 2.5 for 10 min for four cycles), where the wild-type strain 
was 64 times more sensitive. These results agree well with our previous results showing 
that antitoxin MqsA represses rpoS by binding at a palindrome to help regulate stress 
resistance (12). We note that the H2O2 and acid phenotypes of a mqsRA mutant were 
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complemented previously and production of MqsA reduces peroxidase activity (12). 
Moreover, our results suggest that inactivating toxin MqsR should reduce viability by 
elevating MqsA concentrations since the additional antitoxin MqsA will repress rpoS, and 
as expected, when mqsR is deleted, cells are 14 ± 6 times more sensitive than the wild 
type to oxidative stress. Therefore, the mqsRA mutant is better prepared to withstand 
oxidative and acid stresses as its stress response via RpoS is activated due to the absence 
of the repressor MqsA.

Single-cell analysis reveals that LfgB increases cell viability during oxidative 
stress

Using single cells, we further investigated the role of MqsR/MqsA during oxidative 
stress by comparing the wild-type strain vs the unmarked mqsRA mutant in single cells. 
Utilizing 20 mM H2O2 for 10 min, we found (Table 1) that several cryptic prophage genes 
are induced in the wild-type strain relative to the mqsRA mutant, including lfgA of the 
lfgABCDE operon; previously, LfgD (YfjZ) of this operon was shown by us to enhance 
MqsR toxicity (40). Furthermore, the induction of two genes that encode heat-shock 
proteins (ibpAB) and one gene that encodes an osmotic stress response protein (yciF) 
served as positive controls for our single-cell analysis. Note that these results required 
the single-cell approach as changes in the lfg operon were not detected using popula
tion averages (Table S1A).

Based on the single-cell transcriptome results, we tested 10 knockouts of the most 
highly induced genes and found that the lfgA deletion nearly completely prevented 
cells from surviving 20 mM H2O2 for 10 min (99.990% ± 0.004% death), whereas the 
wild-type strain had only 14% ± 13% death. Since we were unable to complement this 
phenotype by producing LfgA in a lfgA deletion mutant, we investigated whether a 
polar mutation was involved via kanamycin insertion into lfgA by investigating the next 
gene downstream of lfgA, lfgB (Fig. S1; Table 2), and found that deletion of lfgB also 
prevents survival with 20 mM H2O2 for 10 min (91% ± 8% death); this phenotype could 
be complemented by producing LfgB from pCA24N-lfgB (Table 2). Moreover, since RpoS 
positively controls the KatG/KatE catalase activity (12), these results were confirmed by 
observing the oxygen bubbles produced from catalase activity after incubating the lfgB 
mutant and complemented strain for 10 min with 20 mM of H2O2 (Fig. S2); quantifying 
the catalase results, the lfgB mutation reduced catalase activity by 60% ± 40%, and 
producing LfgB from pCA24N-lfgB nearly completely restored the catalase activity (95% 
± 5%, Fig. 1A). Hence, we focused on LfgB to determine its role with MqsR/MqsA.

Since RpoS also controls the heat (41) and acid response (42) in E. coli, we hypothe
sized that inactivating LfgB should reduce viability after heat and acid treatments. 
Consistent with the reduction in the oxidative stress response, we found that the lfgB 
deletion reduces survival during acid (pH 4.0 for 10 min) stress (39% ± 5% death for 
lfgB vs 28% ± 4% death for wild type), as well as during heat (30 min at 50°C) stress 
(18% ± 12% death for lfgB vs 0% ± 7% death for wild type). Both phenotypes were 
complemented by producing LfgB from pCA24N-lfgB (Table 1).

Note that LfgB does not play a role in persister cell formation since, for survival after 3 
h with ampicillin at 10× the minimum inhibitory concentration, there was little difference 
in cell viability (0.8% ± 0.4% viable for wild type vs 0.4% ± 0.2% viable for lfgB). Hence, 
LfgB is important for the stress response rather than antibiotic persistence. Also, deleting 
lfgB reduces the growth rate in lysogeny broth (LB) medium by 25% (1.2 ± 0.1/h vs 1.6 ± 
0.2/h), so the dramatic reduction in viability of the lfgB mutant in the presence of H2O2 is 
not a result of poor growth.

LfgB is a poorly characterized protein of cryptic prophage CP4-57 whose production 
previously led to a mutator phenotype (43). To understand the relationship of this 
protein with the MqsR/MqsA TA system, we analyzed the RNA structure of the operon, 
finding two possible 5′-GCU sites accessible to toxin MqsR for lfgB (44) in the predicted 
minimum free energy (MFE) structure for whole operon mRNA (Fig. S3A), which are not 
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available in the MFE-predicted structure of only the transcript containing just lfgB mRNA 
(Fig. S3B). Hence, MqsR may degrade the mRNA containing lfgB.

MqsA binds the lfgA promoter

We also considered the possibility that MqsA regulates the lfg operon by binding at 
its palindromic sequence 5′-ACCT N (2, 6) AGGT upstream of the promoter as shown 
previously for the mqsRA, csgD, and rpoS promoters (12, 13, 45). We found a probable 
MqsA palindromic sequence, 5′-ACCG (N5) CGGT, (gray highlight) 162 bp upstream of the 
start codon of lfgA (Fig. S4). Thus, we hypothesized that MqsA represses transcription of 
the operon and overproduced MqsA from pCA24N-mqsA and observed that lfgA and lfgB 
are repressed 4 ± 1- and 3 ± 0.6-fold, respectively (Table S1B). However, using electropho
retic mobility shift assay (EMSA), we found that mutating the lfgA promoter to interrupt 
this MqsA palindrome did not affect MqsA binding (Fig. 1B). Hence, we conducted a 

TABLE 1 Impact on gene expression after inactivating the MqsR/MqsA TA system in E. coli during oxidative 
stressa

Gene Cluster WT ΔmqsRAΔkan Gene Cluster WT ΔmqsRAΔkan

yneL 1 −0.7 −0.9 yciF 1 −0.26 −0.83

2 −4.4 1.5 2 −5.12 2.15

3 2.3 1.9 3 8.76 0.23

4 2.93 0.28 4 3.39 0.39

5 3.08 0.43 5 3.54 0.54

6 9.21 0.53 6 3.89 0.64

7 3.54 7 4

gatR 1 −0.07 1.82 yoeA 1 1.15 −1.57

2 −4.93 −0.51 2 −4.93 2.04

3 2.95 0.93 3 2.95 1.12

4 9.2 1.09 4 3.59 1.28

5 3.73 1.24 5 3.73 1.43

6 4.08 1.34 6 4.08 2.75

7 4.2 7 8.59

lfgA 1 0.74 −0.57 ydiL 1 0.74 0.38

2 −4.12 1.88 2 −4.12 0.56

3 3.76 1.93 3 3.76 0.02

4 4.39 2.09 4 4.39 0.19

5 4.54 2.24 5 8.54 0.33

6 4.89 2.34 6 4.89 1.53

7 9 7 5

yagA 1 0.15 −0.72 ibpA 1 0.162 −0.068

2 −4.71 1.3 2 −0.166 −0.404

3 3.18 1.12 3 0.008 1.272

4 8.98 1.28 4 0.16 1.218

5 4.22 2.65 5 0.196 0.106

6 4.57 1.53 6 0.11 −0.334

7 4.68 7 −0.092

holE 1 −0.43 −2.31 ibpB 1 0.632 −0.55

2 −4.12 3.62 2 −0.666 1.034

3 2.59 1.6 3 0.398 0.974

4 3.22 1.77 4 0.574 0.862

5 3.37 1.92 5 0.466 0.898

6 8.89 2.02 6 0.726 0.896

7 3.83 7 0.322
aGenes with the highest and lowest expressions in the single-cell transcriptomic analysis are indicated after 
treating exponentially growing cells with 20 mM H2O2 for 10 min. WT is BW25113. Largest values indicated by bold 
text.
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DNA-footprinting assay (Fig. S5) and determined that the MqsA-binding site is 245 bp 
upstream of the start codon, with a putative palindromic sequence 5′-ACAT (N2) ACAT 
(green highlight) (Fig. S4). Inactivating this MqsA-binding site in the lfgA promoter region 
via mutation confirmed the DNA-footprinting results since MqsA binding was abolished 
as shown by EMSA (Fig. 1B). Hence, MqsA, a known regulator, binds the promoter of the 
operon containing lfgB.

LfgB controls the H2O2 response likely through MqsA degradation

To gain further insights into how LfgB interacts with the MqsR/MqsA TA system, we 
analyzed the protein structure of lfgB. Critically, LfgB is a putative zinc protease based 
on its predicted structure (UniProtKB: P52140), with a Mpr1, Pad1 N-terminal domain 
(residues 38–160) and a JAB1/MPN/Mov34 metalloenzyme motif (metalloprotease-like 
zinc site) (46, 47) (Fig. 1C). Based on this predicted structure, we purified LfgB and tested 
its protease activity against purified MqsA and found that LfgB degrades MqsA after 
overnight incubation at 37°C (Fig. 1D). In addition, we found that LfgB shows protease 
activity on α-casein using Lon protease as a positive control (Fig. S6), although we 
cannot strictly rule out the other proteases present in the purified LgfB purification. 
Unfortunately, the solubility of LfgB is extremely low, and we were unable to improve its 
solubility after many attempts, including purification under denaturing conditions and 
fusing small ubiquitin-like modifier and glutathione S-transferase tags to LfgB. However, 
mass spectroscopy clearly shows that LfgB was purified successfully, which decreases the 
likelihood of background protease activity, and indicates that LfgB likely digests itself to 
a significant degree (Fig. S7). These results also suggest that LfgB may be a membrane 
protein.

Further proof of MqsA degradation by LfgB was shown by the threefold induction of 
rpoS when LfgB is produced during H2O2 stress (Table S1C). This induction is likely due 
to the degradation of MqsA by LfgB, which allows for the production of RpoS since MqsA 
represses the rpoS promoter by binding at a conserved palindrome (12). Corroborating 
this, inactivating RpoS reduced the impact of LfgB on catalase activity (Fig. 1A).

DISCUSSION

Here, using the single-cell transcriptome for the first time to study TA systems, we 
determined additional insights into how the MqsR/MqsA Type II TA system is physiologi
cally important for the growth of E. coli during exposure to H2O2 stress. Specifically, we 
(i) identified that the lfg operon of cryptic prophage CP4-57 is induced during oxidative 
stress in single cells, (ii) found that MqsA represses the lfg operon, and (iii) characterized 
LfgB as a protease that degrades antitoxin MqsA. Remarkably, our results demonstrate 
that the cell combines the tools of its former enemy, prophage CP4-57, with those of the 
MqsR/MqsA TA system, to regulate its stress response.

TABLE 2 Phenotypes of BW25113 (WT) and BW25113 ΔlfgB under different stressesa

Condition Strain % death SD Ratio

H2O2 WT 14 10 1
ΔlfgB 91 8 6.4
ΔlfgB/pCA24N 64 20 4.6
ΔlfgB/pCA24N-lfgB 26 20 1.8

Acid WT 28 4 1
ΔlfgB 39 5 1.4
ΔlfgB/pCA24N 35 4 1.3
ΔlfgB/pCA24N-lfgB 25 2 0.9

Heat WT −13 7 1
ΔlfgB 18 11 −1.4
ΔlfgB/pCA24N 21 3 −1.6
ΔlfgB/pCA24N-lfgB −14 3 1.0

aSD indicates standard deviation
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Cryptic prophage CP4-57 has been linked to E. coli cell growth, biofilm formation, 
motility, and carbohydrate metabolism (48), and we previously found that the lfgB 
and lfgA deletions increase biofilm formation sixfold and twofold, respectively (48). In 

FIG 1 (A) LfgB increases catalase activity. LfgB was produced using 1 mM IPTG for 1 h and assayed with 15 mM H2O2. For the effect of RpoS (last two bars), cells 

were contacted with 20 mM H2O2 for 10 min to induce a stress response, prior to assaying for catalase activity. (B) MqsA purification via His tag (I) and EMSA 

results (II) showing that DNA-binding regulator MqsA binds the lfg operon. Mutating the lfgA promoter to interrupt the MqsA palindrome 5′-ACCG (N5) CGGT 

did not affect MqsA binding (left and middle, mutant probe 1), but mutating the region identified by the DNA-footprinting assay (bold red in Fig. S4) 252 bp 

upstream of the start codon, with nearby putative palindromic sequence 5′-ACAT (N2) ACAT (green highlight in Fig. S4), abolishes MqsA binding (right). (C) Two 

views of the predicted LfgB structure (UniProtKB: P52140). (D) SDS-PAGE demonstrating protease activity of LfgB toward MqsA. Purified proteins were mixed in 

enzyme reaction buffer and incubated overnight at 37°C. “M” indicates ladder.
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addition, we found that the lfgD mutation reduces MqsR toxicity (40). Therefore, by 
characterizing protease LfgB, our results provide additional proof that cryptic proph
ages are beneficial and are involved in stress response (49). Note that the host has 
a tenuous relationship with its cryptic prophages since they increase environmental 
fitness (48, 49), including providing protection from acid stress through cryptic prophage 
CP4-57 (54-fold), as well as help cells resuscitate from the persister state by monitoring 
phosphate concentrations through CP4-57 regulator AlpA (50), and their lysis capabilities 
have to be silenced through CRISPR-Cas (51).

Our results also add another facet to MqsA regulation by finding a new protease 
that degrades MqsA. As previously demonstrated, Lon protease can degrade MqsA 
as well as other antitoxins under oxidative stress (12). In addition, ClpXP degrades 
MqsA in the absence of zinc that is used to stabilize the structure of MqsA, that is, 
when it is unfolded (52). It was proposed that the ClpX recognition site is accessible 
under non-stress conditions; however, under oxidative conditions, cysteine residues are 
oxidized, preventing the correct folding and the binding of zinc and allowing ClpXP to 
degrade MqsA (52). Hence, our results with protease LfgB provide additional evidence for 
the selective degradation of free antitoxins under stress conditions (12, 29, 52).

Our proposed mechanism is shown in Fig. 2. In the absence of stress, one physio
logical role of MqsA is to inhibit rpoS transcription (12), which is important for rapid 
growth. However, under stress conditions (H2O2, acid, and heat), Lon protease (12), ClpXP 
protease (52), and LfgB protease degrade antitoxin MqsA, facilitating the formation of 
RpoS and activation of the stress response. This also shifts the balance to MqsR (9, 12), 
which then performs differential mRNA decay (53), based on the presence of single-
stranded, 5′-GCU sites (44). One example of differential mRNA decay is the degradation 
of the transcript for antitoxin GhoS, which results in activation of toxin GhoT (whose 
transcript lacks 5′-GCU sites) (14); this then allows toxin GhoT to reduce ATP and growth 
(54).

FIG 2 Scheme for the MqsR/MqsA TA/LfgB protease stress response mechanism and its relationship with MqsA. Green arrows indicate activation, and red lines 

indicate inhibition.
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Therefore, the type II TA system MqsR/MqsA is a multi-faceted regulator that 
facilitates growth of E. coli populations residing in the gut during exposure to bile 
(oxidative) stress. Since bile plays an important role as an interkingdom signal in the 
GI tract (55), our results also illustrate how a TA system can play an important role in 
host-microbe interactions by ensuring the survival of a commensal bacterium.

MATERIALS AND METHODS

Bacterial strains and growth conditions

The E. coli K-12 strains and plasmids used in this study are listed in Table 3. All cultures 
were grown in LB medium (56) at 37°C with 30 µg/mL of chloramphenicol to maintain 
the pCA24N plasmids.

Single-cell transcriptome analysis

BW25113 and its unmarked isogenic mutant ΔmqsRA were harvested during exponential 
growth (turbidity of 0.8 at 600 nm), treated with 20 mM H2O2 for 10 min, and fixed 
with formaldehyde (1%) for 30 min. After centrifugation, cell pellets were washed with 
phosphate-buffered saline (PBS) and resuspended in 4:1 vol% methanol:glacial acetic 
acid and analyzed at the single-cell level as described previously (38).

Viability assays with hydrogen peroxide, acid, and heat

Cells were cultured in LB to a turbidity of 0.8 at 600 nm and then exposed to 20 mM 
H2O2 for 10 min, acid conditions (pH 4) for 10 min, or heat (50°C) for 30 min. For cyclic 
exposure to acid (pH 2.5), cells were exposed four times for 10 min/cycle with 1-h growth 
in between each treatment.

TABLE 3 Bacterial strains and plasmids used in this studya

Strain Genotype Source

BW25113 rrnB3 ΔlacZ4787 hsdR514 Δ(araBAD)567 Δ(rha
BAD)568 rph-1

(57)

BW25113 ΔmqsRA Δkan BW25113 ∆mqsRA ΔKmR (53)
BW25113 ΔlfgA BW25113 ∆lfgA Ω KmR (57)
BW25113 ΔgatR BW25113 ∆gatR Ω KmR (57)
BW25113 ΔyneL BW25113 ∆yneL Ω KmR (57)
BW25113 ΔynfP BW25113 ∆ynfP Ω KmR (57)
BW25113 ΔyagA BW25113 ∆yagA Ω KmR (57)
BW25113 ΔholE BW25113 ∆holE Ω KmR (57)
BW25113 ΔyoeA BW25113 ∆yoeA Ω KmR (57)
BW25113 ΔyidL BW25113 ∆yidL Ω KmR (57)
BW25113 ΔibpA BW25113 ∆ibpA Ω KmR (57)
BW25113 ΔibpB BW25113 ∆ibpB Ω KmR (57)
BW25113 ΔlfgB BW25113 ∆lfgB Ω KmR (57)
BW25113 ΔypjJ BW25113 ∆ypjJ Ω KmR (57)
Plasmid
pCA24N CmR; lacIq, pCA24N (58)
pCA24N-lfgA CmR; lacIq, pCA24N PT5-lac::lfgA (58)
pCA24N-lfgB CmR; lacIq, pCA24N PT5-lac::lfgB (58)
pCA24N-mqsA CmR; lacIq, pCA24N PT5-lac::mqsA (58)
pET28b KmR, expression vector with T7 promoter Novagen
pET28b-mqsA KmR, lacIq, pET28b PT7−lac:: mqsA with mqsA 

C-terminus His-tagged
This study

aKmR indicates kanamycin resistance, and CmR indicates chloramphenicol resistance.
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Persister cell formation

Overnight cultures were grown to a turbidity of 0.8 at 600 nm, and then cells were 
resuspended in LB-ampicillin (100 µg/mL, 10 MIC) and incubated for 3 hour. Cells were 
washed twice with PBS, and viable cells were quantified using serial dilution and spot 
plating onto LB agar plates. Experiments were performed with at least three independ
ent cultures (59).

RNA structure prediction and DNA palindrome search

The RNA-predicted structures and palindrome search were obtained using the NCBI 
E. coli BW25113 genome sequence (NZ_CP009273.1), and the MFE RNA structures 
were predicted by the RNAfold webserver (http://rna.tbi.univie.ac.at/cgi-bin/RNAWeb
Suite/RNAfold.cgi).

Quantitative real-time reverse-transcription PCR

Overnight cultures of ΔmqsRA/pCA24N and ΔmqsRA/pCA24N-mqsA were grown to a 
turbidity of 0.1 at 600 nm in LB/chloramphenicol medium, and then 1 mM of isopropyl 
β-D-thiogalactopyranoside (IPTG) for 30 min was used to induce expression of mqsA. In 
addition, overnight cultures of ΔlfgB/pCA24N and ΔlfgB/pCA24N-lfgB were grown to a 
turbidity of 0.5, and then 1 mM of IPTG was added for 1 hour to induce expression of 
lfgB to see the impact on rpoS. Then, cultures were incubated for 10 min with 20 mM 
hydrogen peroxide. Also, BW25113 and ΔmqsRA Δkan were grown to a turbidity of 0.5, 
and then 20 mM H2O2 was added for 10 min. Cells were rapidly cooled in ethanol/dry 
ice and then centrifuged, and the pellets were collected with RNALater Buffer (Applied 
Biosystems, Foster City, CA, USA) to stabilize RNA. RNA was purified using the RNA 
Purification Kit (Roche). Quantitative real-time reverse transcription-PCR (qRT-PCR) was 
performed following the manufacturer’s instructions for the iTaq Universal SYBR Green 
One-Step Kit (Bio-Rad) using 100 ng of total RNA as template. Primers were annealed at 
60°C, and data were normalized against the housekeeping gene rrsG (13). The specificity 
of the qRT-PCR primers (Table S3) was verified via standard PCR, and fold changes were 
calculated using the method of Pfaffl (60) using the 2-ΔΔCT.

Proteolytic assay

Purified Lon, α-casein, MqsA, and LfgB were mixed in an enzyme reaction buffer (40 
mM HEPES-KOH, 25 mM Tris-HCl, 4% sucrose, 4 mM dithiothreitol, 11 mM magnesium 
acetate, and 4 mM ATP) and incubated at 37°C for 3 h for α-casein degradation and 
overnight for MqsA degradation. SDS-PAGE was conducted using 5% stacking and 18% 
acrylamide resolving sections and staining following the manufacturer’s instructions 
(Pierce Silver Stain Kit, Thermo Scientific).

MqsA purification and EMSA

The mqsA coding region was amplified with primer pair pET28b-mqsA-F/R using MG1655 
genomic DNA as the template. The amplified DNA fragment was purified, quantified, 
and ligated into pET28b digested with NcoI/HindIII. pET28b-mqsA was used to purify 
MqsA using standard methods (61). For DNA probes to investigate MqsA binding, the 
promoter region of yfjY was amplified with primer pair yfjY-P-F and yfjY-P-R, and the two 
mutant probes were also amplified with primer pairs yfjY-MP-F/yfjY-P-F and yfjY-MP2-F/
yfjY-P-F (Table S3). The probes were purified and labeled with biotin by using the Biotin 
30-End DNA Labeling Kit (Thermo Scientific, Rockford, USA), and 0.25 pmol was used to 
assay the binding reaction with a series of concentrations of MqsA (62). The stopped 
reaction mixtures were run on a 6% polyacrylamide gel in Tris-borate EDTA and were 
then transferred to nylon membranes. The Chemiluminescence Nucleic Acid Detection 
Module Kit (Thermo Scientific) was used to observe the shift of the DNA probes on the 
membranes.
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DNase I footprinting assay

This assay was conducted as reported previously (62). The FAM-labeled probe covering 
the promoter region of yfjY was amplified with primer pair FAM-yfjY-P-F and yfjY-P-R, and 
the products were purified with QIAEX II Gel Extraction Kit (Qiagen, Hilden, Germany). 
The labeled probes (200 ng) were mixed with varying amounts of MqsA, and the 
mixtures were incubated for 30 min at 25°C. An orthogonal combination of DNase I 
(NEB, M0303S) and incubation time were used to achieve the best cutting efficiency. 
A final concentration of 200 mM EDTA was added to the reaction mixture to stop the 
reaction. The DNA was purified again with a QIAEX II Gel Extraction Kit (Qiagen, Hilden, 
Germany), and the generated products were screened and analyzed as reported (62).

Catalase assay

LfgB was produced in exponentially growing cells (turbidity of 0.1 at 600 nm) using 1 
mM IPTG for 1 hour. For the effect of RpoS, cells were contacted with 20 mM H2O2 
prior to performing the catalase assay to induce a stress response. Catalase activity 
was determined spectrophotometrically by recording the decrease in the absorbance of 
H2O2 at 240 nm in a UV/visible spectrophotometer as described previously (63). Briefly, 
five independent cultures per strain were grown overnight, 1 mL aliquots were taken, 
and cells were collected by centrifugation for 1 min at 13,000 rpm, washed with sterile 
HEPES buffer (50 mM, pH 7.5), centrifuged again, frozen with liquid nitrogen, and stored 
at −70°C. Thawed pellets were resuspended in 1 mL of sterile cold HEPES buffer (50 mM, 
pH 7.5) with MgCl2 10 mM and 0.025% Triton X-100 and disrupted by sonication using 
two pulses of 20 sec with 1-min pause between cycles. Catalase activity was determined 
using 15 mM H2O2 as substrate and normalized based on the protein level in the cell 
extracts as determined using the Bradford method.

Mass spectroscopy

Mass spectroscopy was used to identify the sequences of purified LfgB as previously 
described (64). In brief, the putative LfgB bands were excised from the SDS-PAGE gel and 
digested with trypsin. The peptide fragments were then analyzed with liquid chroma
tography tandem mass spectrometry, and the data were compared against the LfgB 
sequence.
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