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Abstract

Machine learning plays an important and growing role in molecular simulation. The newest 

version of the OpenMM molecular dynamics toolkit introduces new features to support the use of 

machine learning potentials. Arbitrary PyTorch models can be added to a simulation and used to 

compute forces and energy. A higher-level interface allows users to easily model their molecules 

of interest with general purpose, pretrained potential functions. A collection of optimized CUDA 

kernels and custom PyTorch operations greatly improves the speed of simulations. We demonstrate 

these features on simulations of cyclin-dependent kinase 8 (CDK8) and the green fluorescent 

protein (GFP) chromophore in water. Taken together, these features make it practical to use 

machine learning to improve the accuracy of simulations at only a modest increase in cost.

Introduction

In recent years, much work in the field of molecular simulation has focused on ways 

to produce more accurate results at lower cost. This includes newer force fields that use 

better functional forms or better parametrization to improve accuracy without significantly 

increasing cost. It also includes semi-empirical and machine learning methods that try to 

approach the accuracy of high-level quantum chemistry (QC) methods at a cost that is 

intermediate between QC and classical force fields. Another important aspect is the use of 

newer sampling methods to reduce the amount of simulation needed to obtain converged 

results for thermodynamic quantities.

In this paper, we describe the newly released version 8 of OpenMM, a popular package for 

molecular simulation that provides excellent performance and high flexibility.1 It contains 

new features to better support these methods, with a particular emphasis on machine 

learning. They make it a powerful tool both for methodological research and for production 

simulations.
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Machine learning potentials (MLPs) have increasingly emerged as a major area of research 

within the field of molecular simulation. They offer a powerful intermediate between 

accurate but slow quantum chemistry methods on the one hand, and fast but less accurate 

force fields on the other. Unlike force fields, which use simple functions chosen by the 

designer to compute interactions, MLPs use highly flexible models that can learn very 

complicated functions, most often implemented as neural networks. The models are trained 

on molecular energies, forces, and other properties computed with a high-level QC method. 

The trained models can approach the accuracy of the method used to generate the training 

data, while being orders of magnitude faster.2

The past few years have seen an explosion of new MLP architectures designed to improve 

their accuracy, speed, transferability, and data efficiency. Many of these architectures try 

to mirror the symmetries obeyed by the physical system, particularly equivariance under 

translations and rotations.3–7 Others try to improve transferability by directly incorporating 

a limited amount of physics into the model, such as explicit terms for Coulomb interactions, 

dispersion, and nuclear repulsion.8–11 Still others take this approach even further, beginning 

with a semi-empirical quantum chemistry method and training a machine learning model 

to correct for its flaws and improve its accuracy.12–14 These approaches provide different 

tradeoffs between speed, accuracy, and range of applicability, with new architectures 

continuing to be introduced.

Another important area of research is ways of combining MLPs with classical force fields. 

Although they are much faster than high-level quantum chemistry algorithms, they are 

still orders of magnitude slower than most force fields. This often makes them impractical 

for simulating macromolecules or other large systems. Just as QM/MM simulations use 

quantum mechanics for only a small piece of a system while simulating the rest with 

classical mechanics, ML/MM simulations can simulate part with machine learning and the 

rest with a classical force field. This can lead to large improvements in accuracy with only a 

modest increase in computational cost.15,16

We have recently released version 8 of the OpenMM simulation package, with a focus on 

supporting machine learning potentials. OpenMM is a widely used piece of software for 

molecular simulation, especially biological macromolecules, and one of the fastest growing 

engines for atomistic molecular simulations17. Its architecture and features provide a unique 

combination of speed, flexibility, and extensibility. Some of the more notable aspects include 

its excellent performance when running on GPUs; the ability to implement entirely new 

algorithms and simulation protocols through Python scripting; and the ability to define 

entirely new functional forms for interactions, which are transparently compiled to machine 

code and executed with no loss of performance on the GPU or CPU.

OpenMM 8 extends this flexibility to MLPs. The new features described below aim to 

achieve two goals. First, they provide a powerful environment for researchers developing 

new MLPs or new simulation protocols. Arbitrary PyTorch models can be easily added 

to a simulation and used to compute forces and energies. Second, they bridge the gap to 

production simulations, allowing end users to select from a set of validated general-purpose 
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MLPs and run simulations with them. With these new features, setting up and running a ML 

or ML/MM simulation is no more difficult than using a conventional force field.

Methods

PyTorch Model Support

The foundation of MLP support is the OpenMM-Torch module. It provides the TorchForce 

class, which allows arbitrary PyTorch18 models to be embedded in a simulation and used 

to calculate forces and energies. PyTorch has emerged as the standard machine learning 

framework within the simulation community, and nearly all MLP models published in recent 

years have been implemented with it. By supporting it, we allow existing models to easily 

interface with OpenMM. It also provides an ideal environment for methodological research, 

since model developers can continue using the same framework they are already accustomed 

to. Interfaces to TensorFlow and TensorRT are also available, but because the community 

has largely standardized on PyTorch, they are not discussed further here.

To create a TorchForce, one simply provides a model that takes atomic positions as input and 

computes potential energy. Forces can be automatically calculated through backpropagation, 

or alternatively, the model can return them explicitly. All features of PyTorch are supported. 

The only restriction on the model is that it must be possible to compile it to TorchScript. 

The following code is a minimalist example that illustrates how to apply a potential function 

computed with PyTorch, in this case a harmonic potential attracting every particle to the 

origin.

Class ForceModule(torch.nn.Module):

    def forward(self, positions): 

        return torch.sum(positions**2) 

module = torch.jit.script(ForceModule()) 

force = TorchForce(module) 

OpenMM-ML

The next level in the stack is the OpenMM-ML module, which provides a convenient 

mechanism for running simulations with pretrained potentials. It makes MLPs as simple to 

use as conventional force fields. For example, given a Topology object (a description of the 

atoms and chemical bonds making up a system to be simulated), the following code prepares 

a simulation of it with the ANI-2x19 potential function.

potential = MLPotential(‘ani2x’) 

system = potential.createSystem(topology) 

Mixed simulations, in which a system is modeled partly with a conventional force field and 

partly with a MLP, are just as easy to prepare. One simply provides a version that is modeled 

entirely with the force field, and a list of which atoms make up the subset to model with 
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ML. All details of setting up the mixed system, including handling the interaction of the two 

regions through mechanical embedding, are handled automatically.

forcefield = ForceField(‘amber14-all.xml’, ‘amber14/tip3pfb.xml’) 

mm_system = forcefield.createSystem(topology) 

potential = MLPotential(‘ani2x’) 

ml_system = potential.createMixedSystem(topology, mm_system, ml_atoms) 

At present, the only supported MLPs are ANI-1ccx20 and ANI-2x19. These potentials are 

fast and have reasonably good accuracy, but their range of applicability is limited. They 

support only a limited set of elements (seven for ANI-2x, four for ANI-1ccx), and do not 

support charged molecules. We intend that the list of potentials will grow with time as new 

pretrained MLPs are developed and made available to the community.

To facilitate the development of new models, we have created the SPICE (Small-Molecule/

Protein Interaction Chemical Energies) dataset21, a large collection of molecular forces and 

energies calculated at the highly accurate ωB97M-D3BJ/def2-TZVPPD22 level of theory. It 

incorporates a wide selection of molecules relevant to simulating drug-like small molecules 

interacting with proteins. It includes 15 elements, both charged and neutral molecules, both 

low and high energy conformations, and a wide assortment of covalent and non-covalent 

interactions. We hope that with time it will lead to the creation of many new pretrained 

MLPs that can be made available for use by the simulation community.

Optimization Through NNPOps

For MLPs to be useful, they must be fast. For this reason, we created the NNPOps 

module with the goal of accelerating machine learning models. It contains optimized CUDA 

kernels and PyTorch code for bottleneck operations in important MLPs. Examples include 

computing the atom-centered symmetry functions used in the ANI family of potentials, 

building neighbor lists, and computing electrostatic interactions with the Particle Mesh 

Ewald method. Benchmarks demonstrating the speedup from NNPOps are in the next 

section.

Other Features

While OpenMM 8 includes important new features for machine learning, numerous other 

new features have been added in the years since version 7 was released in 2016. We 

highlight here a few of the more significant ones.

Enhanced Sampling Methods—Enhanced sampling algorithms allow a simulation to 

explore conformation space more efficiently and produce converged results in less time. A 

number of methods are available for use with OpenMM.

Metadynamics23 is supported through two different mechanisms. One is based on the 

popular PLUMED library24, which offers a wide selection of useful collective variables 

(CVs) along which to accelerate exploration. The other is a native implementation that uses 

a novel mechanism to define CVs. Any energy term that can be defined with OpenMM’s 
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force classes can be used as a CV. Given OpenMM’s flexible custom forces supporting 

arbitrary user-defined functional forms, this is a very powerful mechanism.

To illustrate the flexibility of this approach, we present a few examples of how common CVs 

can be defined. One common choice is a weighted sum of distances between particular pairs 

of atoms. This is easily defined with OpenMM’s CustomBondForce.

cv = CustomBondForce(‘weight*r’) 

cv.addPerBondParameter(‘weight’) 

for atom1, atom2, weight in pairs: 

    cv.addBond(atom1, atom2, [weight]) 

In other cases a weighted sum of dihedral angles could be more appropriate. This is 

implemented just as easily with CustomTorsionForce.

cv = CustomTorsionForce(‘weight*theta’) 

cv.addPerTorsionParameter(‘weight’) 

for atom1, atom2, atom3, atom4, weight in dihedrals: 

    cv.addTorsion(atom1, atom2, atom3, atom4, [weight]) 

More complicated functions of distances, angles, and dihedrals can be defined just as easily, 

as can terms that depend on the centroids of groups of atoms, root mean squared deviations 

(RMSD) between sets of atoms, and many other functions. One can even use the TorchForce 

class described above to define CVs through PyTorch code.

For situations when specific CVs are not known in advance, an implementation of 

simulated tempering25 has been added. It accelerates transitions across barriers by allowing 

a simulation to temporarily increase its temperature. It joins other methods that were already 

available in OpenMM and its associated packages, including aMD26, replica exchange27, 

and Replica Exchange with Solute Tempering (REST)28.

Another new algorithm is the Alchemical Transfer Method29 (ATM), which provides a 

convenient and efficient method of computing free energy differences. Interaction forces 

are computed before and after performing a coordinate transformation, such as translating a 

molecule between the binding pocket and bulk solvent. The simulation evolves based on a 

weighted average of the two. This permits efficient sampling of alchemical pathways used 

to compute absolute or relative free energies. Unlike many other alchemical methods, it 

does not require soft-core interactions and can be applied to arbitrary potential functions, 

including ones defined by MLPs.

New Force Fields—Classical force fields continue to advance, improving both in 

accuracy and range of applicability. Many new force fields are now supported. This 

includes newer versions of the Amber30 and CHARMM31 point charge force fields and 

the polarizable AMOEBA32 and CHARMM Drude33 force fields. The GLYCAM34 force 
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field has been added for simulating carbohydrates. For simulating arbitrary small organic 

molecules, the OpenFF35 and GAFF36 generic force fields are now available.

New Integrators—OpenMM has added support for the LF-Middle integration 

algorithm37,38. This is an improved discretization of the Langevin equation that significantly 

reduces error compared to previously used discretizations. In many cases, it allows doubling 

the step size with no loss in accuracy, leading to a huge increase in performance.

Other new integrators have also been added, including a Nosé-Hoover integrator39, a dual-

temperature version of the Nosé-Hoover integrator for simulating Drude particles40, and a 

multiple time step Langevin integrator. In addition, many features have been added to the 

CustomIntegrator class, which allows users to define entirely new integration algorithms. 

These features greatly increase the range of methods that can be implemented with it.

Improved Hardware Support—OpenMM has grown in its ability to take advantage of a 

range of hardware. ARM and PowerPC processors are now supported. A new backend based 

on the HIP framework provides greatly improved performance on AMD GPUs (see Table 

1). The ability to efficiently parallelize a simulation across multiple GPUs has improved (see 

Table 2). The speed of running simulations on CPUs has also greatly improved.

Results and Discussion

Performance of MLPs

To demonstrate the effect of the optimizations in NNPOps, we simulated cyclin-dependent 

kinase 8 (CDK8) bound to a 53 atom inhibitor (lig_30 from the protein-ligand-benchmark 

set41, shown in Figure 1). CDK8 has 632 residues and 10,456 atoms. We modeled it with the 

Amber14 force field and solvated it with 41,194 TIP3P-FB water molecules, giving a total of 

134,099 atoms.

We compared the simulation speed when modeling the inhibitor either with the classical 

OpenFF 2.0.0 force field35 or with the ANI-2x machine learning potential. Interactions 

between the inhibitor and the rest of the system were computed with the Amber14 force 

field in all cases. We further compared the speed of ANI-2x using either the standard 

implementation from the TorchANI library or the optimized version from NNPOps.

ANI-2x is an ensemble of eight models that were each trained independently. The average 

of the models is slightly more accurate than any one of the models on its own. When speed 

is important, it is often acceptable to use just one of the eight models. This produces a large 

improvement in speed in exchange for a small loss in accuracy. We benchmarked this option 

as well.

All of the simulations described above were run with a Langevin integrator and a 2 fs 

time step. In classical simulations, it is common to constrain the lengths of bonds involving 

hydrogen and to increase the mass of hydrogen atoms through mass repartitioning. This 

combination allows integration to be stable with a 4 fs time step. In principle, the same 

optimization could be used for the MLP, but it would require careful selection of the 
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constrained bond lengths and a thorough validation of the results. Since this optimization is 

not yet common practice in ML/MM simulations, we chose to omit constraints within the 

ligand and limit the time step to 2 fs. For the classical force field, we measured the speed 

with both 2 fs and 4 fs time steps.

Each simulation was integrated for 10,000 steps, and the speed in ns/day was calculated 

based on the elapsed time. These very short simulations are intended only to benchmark 

speed. Our goal in this section is not to validate the accuracy of the ANI-2x potential, which 

has been studied elsewhere19, only to measure the effect of our optimizations.

All simulations were run on a NVIDIA RTX 4080 GPU. The results are shown in Table 3.

NNPOps is faster than TorchANI by a factor of 5.7, enormously increasing the practicality 

of using the potential for real simulations. Using a single model instead of the full ensemble 

improves the speed by another factor of 1.9. Combining these two optimizations, modeling 

the ligand with ANI-2x is only 2.7 times slower than a fully classical simulation with the 

same step size. This is a very reasonable cost, given that it has been shown to significantly 

improve the accuracy in calculated binding free energies. Using a larger step size in the 

classical simulation increases the ratio to 5.1 times slower. In principle, the larger step size 

could also be used for ML/MM simulations, but one would need to evaluate the effects of 

constraining bond lengths on the results.

Viewed another way, these results illustrate how expensive current MLPs still are compared 

to classical force fields; simulating 53 atoms with ANI-2x is more expensive than simulating 

the other 134,046 atoms with Amber14. On the other hand, it is orders of magnitude faster 

than conventional QC methods with similar accuracy. Simulating core pieces of a system 

with MLPs is now entirely practical, and can yield large improvements to accuracy.

Example: MLP for Anionic Green Fluorescent Protein Chromophore in Water

As a demonstration of the TorchForce class and OpenMM’s MLP integration capabilities, 

we trained an MLP to simulate anionic GFP chromophore (p-hydroxybenzylidene-2,3-

dimethylimidazolinone, HBDI-)42 in water. GFP is a widely used genetically-encoded 

fluorescent tag in biological systems that features a covalently attached chromophore formed 

by an autocatalytic reaction following folding43. The chromophore’s fluorescent properties 

are strongly influenced by its environment. For that reason, it is useful to study its behavior 

in a variety of environments, including water and other solvents. The system consists of the 

anionic GFP chromophore with 167 solvating waters for a total of 528 atoms in a periodic 

orthorhombic cell. A picture of the GFP chromophore and the surrounding water molecules 

can be seen in Figure 2.

The training data was obtained from ab initio molecular dynamics (AIMD) trajectories 

of the GFP chromophore in water (75008 configurations from 10 separate trajectories) 

supplemented with 7500 configurations obtained from ab initio path integral molecular 

dynamics (AI-PIMD) trajectories, which incorporate nuclear quantum effects in the 

sampling. In these trajectories, obtained from our previous work44, forces were evaluated 

with CP2K45 using DFT with the revPBE exchange-correlation functional46,47 and D3 
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dispersion corrections48 added. All trajectories used multiple time step (MTS) integration of 

the r-RESPA form49, with an outer time step of 2.0 fs and an inner time step of 0.5 fs. The 

MTS reference forces were evaluated at a SCC-DFTB3 level of theory50. The configurations 

used for training were taken every 2.0 fs and correspond to 15 ps of AI-PIMD trajectory and 

~150 ps of classical AIMD trajectories.

The machine learning architecture that we employ is an equivariant transformer neural 

network using the TorchMD-NET package4. The training data was partitioned randomly into 

an 80-10-10 split for the training, validation, and test sets respectively, and the model was 

trained for 400 epochs to all the forces in each configuration. Our model used 2 attention 

heads, 1 layer, 32 radial basis functions, and an embedding dimension of 64. This resulted 

in a test set RMSE on forces of 45.7 meV/A. Learning curves for the model are shown in 

Figure 3.

The trained model was compiled into a TorchScript module and used the TorchForce class to 

run dynamics in OpenMM 8.0. Using the LangevinMiddleIntegrator, we ran NVT dynamics 

with a temperature of 300 K, 0.5 fs time step, and a 1.0 ps−1 friction coefficient. The final 

trajectory used for analysis was 1 ns in length, with frames saved every 2.0 fs. Of this 

trajectory, we discarded the first 15 ps for equilibration.

For comparing our MLP-generated trajectory to the AIMD trajectories, we analyzed the 

oxygen-oxygen radial distribution functions (RDFs) around the two oxygen atoms on the 

GFP chromophore as well as the distribution of the ɸI and ɸP dihedral angles as defined 

in Figure 2. We chose these two observables because (1) the two oxygen atoms on the 

chromophore are those that interact the most strongly with the solvent water molecules; 

and (2) the dihedrals ɸI and ɸP are the angles that undergo torsional rotation upon 

photoexcitation of the chromophore51.

Figure 4 shows the comparison of the RDFs obtained using the MLP and the AIMD where 

the error bars on the AIMD RDFs are +/− 1 standard deviation across the 10 AIMD 

trajectories. The MLP and AIMD are in good agreement and within the error bars of the 

AIMD trajectories. The distribution of dihedral angles ɸI and ɸP can be seen in Figure 5 and 

are in similarly good agreement within the error bars.

The advantages of the MLP are evident from the timings. On two AMD EPYC 7763 64 core 

processors (128 cores total), the AIMD calculation of the force takes 13.2 seconds, whereas 

the MLP evaluated on a Nvidia RTX 4080 GPU takes only 8.7 ms for each force evaluation, 

a speed-up of 1517 times.

Conclusions

OpenMM 8 introduces new features to support the use of machine learning potentials in 

molecular simulations. These features are best viewed as a foundation on which to build 

future tools. MLPs are still an immature field; few pretrained, general-purpose potentials 

exist, and those that do exist are limited in their range of applicability. More often, 

users must train their own special purpose potentials, as we demonstrate here for the 

GFP chromophore. The tools in OpenMM provide a powerful environment for researchers 
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developing new pretrained potentials. Those future potentials can then be made easily 

available to users who wish to run simulations with them.

The tools for running hybrid ML/MM simulations should likewise be viewed as a starting 

point for future work. For example, an important feature will be to allow the ML and MM 

regions to interact through electrostatic embedding, rather than the simpler but less accurate 

mechanical embedding. This will require ML models that can predict atomic partial charges 

as well as energy.

With time we hope to provide a diverse set of potentials to meet many different needs. To 

an even greater extent than classical force fields, MLPs can offer a huge range of tradeoffs 

between speed, accuracy, and range of applicability. Developing a corresponding range of 

potentials is an important project for the community.
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Figure 1: 
The 53 atom inhibitor bound to CDK8.
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Figure 2: 
Anionic GFP chromophore in water. The dihedral ɸP is defined between the CP atom and the 

carbons of the methine bridge and the dihedral ɸI is defined between the NI atom and the 

carbons of the methine bridge.
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Figure 3: 
Equivariant transformer training and validation loss.
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Figure 4: 
Anionic oxygen-oxygen RDF (left) and carbonyl oxygen-oxygen RDF (right) generated 

from the MLP and AIMD trajectories. The shaded region represents +/− 1 standard deviation 

across the 10 AIMD trajectories.
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Figure 5: 
Distribution of dihedral angles for ɸI and ɸP. The shaded region represents +/− 1 standard 

deviation across the 10 AIMD trajectories.
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Table 1.

The speed of the OpenCL and HIP platforms simulating three benchmark systems on an AMD V620 GPU. All 

benchmarks used Langevin dynamics with a 4 fs time step, constraining the lengths of bonds involving 

hydrogen.

Molecule Atoms OpenCL (ns/day) HIP (ns/day)

DHFR 23,558 417 1031

ApoAl 92,224 192 393

Cellulose 408,609 42 91
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Table 2.

The speed of simulating Satellite Tobacco Mosaic Virus (1,067,095 atoms) on one to four NVIDIA A100 

GPUs connected by NVLink. All benchmarks use the CUDA platform, Langevin dynamics, a 4 fs time step, 

and constraints on the lengths of bonds involving hydrogen.

GPUs Speed (ns/day)

1 32.3

2 51.5

3 61.6

4 70.9
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Table 3.

The speed of simulating a 53 atom inhibitor bound to CDK8.

Potential Implementation Step Size (fs) Speed (ns/day)

ANI-2x (ensemble) TorchANI 2 9.8

ANI-2x (ensemble) NNPOps 2 56

ANI-2x (single) NNPOps 2 105

OpenFF 2.0.0 2 281

OpenFF 2.0.0 4 531
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