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Abstract

Experimentally derived, amino acid specific backbone dihedral angle distributions are invaluable 

for modeling data-driven conformational equilibria of proteins and for enabling quantitative 

assessments of the accuracies of molecular mechanics forcefields. The protein coil library that 

is extracted from analysis of high-resolution structures of proteins, has served as a useful proxy 

for quantifying intrinsic and context-dependent conformational distributions of amino acids. 

However, data that go into coil libraries will have hidden biases, and ad hoc procedures must 

be used to remove these biases. Here, we combine high-resolution biased information from protein 

structural databases with unbiased low-resolution information from spectroscopic measurements 

of blocked amino acids to obtain experimentally derived and computationally optimized 

coil library landscapes for each of the twenty naturally occurring amino acids. Quantitative 

descriptions of conformational distributions require parsing of data into conformational basins 

with defined envelopes, centers, and statistical weights. We develop and deploy a numerical 

method to extract conformational basins. The weights of conformational basins are optimized 

to reproduce quantitative inferences drawn from spectroscopic experiments for blocked amino 

acids. The optimized distributions serve as touchstones for assessments of intrinsic conformational 

preferences and for quantitative comparisons of molecular mechanics forcefields.
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1. INTRODUCTION

Proteins and peptides consist of amino acid residues linked by peptide bonds. Information 

encoded in amino acid sequences and their interplay with solution conditions determines 

the ensemble of conformations that proteins adopt 1. Proteins can fold into ordered three-

dimensional structures either autonomously or upon binding to suitable ligands 2. They 

can also display significant conformational heterogeneity, as is the case with intrinsically 

disordered proteins 3. Details of the conformational ensembles accessible to a protein, be it 

an intrinsically foldable or intrinsically disordered protein, are governed by a combination of 

the amino-acid specific distributions of backbone dihedral angles, namely ϕ and ψ, and the 

through-space interactions amongst the amino acid residues.

The intrinsic, amino-acid specific backbone conformational preferences are typically 

presented using Ramachandran plots 4. Amino-acid specific ϕ and ψ preferences arise from 

local steric considerations and the interplay between intra-peptide electrostatics and peptide-

solvent interactions 5. The intrinsic amino-acid specific ϕ and ψ preferences combined 

with local and long-range interactions contribute, in part, to the formation of well-defined 

stable structures for autonomously foldable proteins. These intrinsic backbone ϕ and ψ
angle preferences also determine the conformational preferences of intrinsically disordered 

proteins and unfolded states of autonomously foldable proteins 6. Context-independent 

backbone conformational statistics are directly relevant for two reasons: First, they provide 

a quantitative assessment of the range and unbiased weights of conformations that are 

accessible to an individual amino acid. This is useful because these intrinsic conformational 

statistics for blocked amino acids in water will change in different sequence and structural 

contexts. The intrinsic statistics serve as suitable priors and help one calibrate how 

sequence- and structure-specific contexts alter these preferences, thereby providing a 

quantitative assessment of how the interactions that go beyond the dipeptide help overcome 

the intrinsic conformational entropy. Second, intrinsic conformational statistics provide 

a useful touchstone for calibrating the accuracies of molecular mechanics forcefields 

for capturing residue-specific conformational preferences. This is essential because the 

backbone ϕ and ψ angle preferences are governed by chemical details of the interplay 

between backbone and sidechain atoms.

The protein coil library provides a widely accepted, quantitative description of ϕ and 

ψ preferences for each of the twenty naturally occurring amino acids 7. These libraries 
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are assembled using backbone conformational statistics extracted from protein structures 

deposited in the protein data bank. Specifically, the coil library for each amino acid 

represents the conformational preferences for the amino acid when it is not part of regular 

secondary or ordered tertiary structures. Secondary structures result from the interplay 

between intrinsic dihedral angle preferences and intermediate / long-range inter-residue 

interactions. A residue that is part of a regular secondary structure will be biased toward 

specific values for the backbone ϕ and ψ angles. Accordingly, occurrences of residues 

in regular secondary structures are removed prior to assembling coil libraries, providing 

information on the intrinsic ϕ and ψ preferences of each amino acid sans biases imposed by 

secondary structure.

Since the original work of Swindells et al. 8, many research groups have compiled 

coil libraries using different data sets and filtering approaches 6c, 7, 9. Coil library 

populations show distinct, residue-specific conformational basins when projected onto the 

two-dimensional (ϕ, ψ)-space 10. The statistical weights assigned to each of the basins 

are derived from conformational populations of the basins 11. The basin-based topography, 

which includes delineation of basins, identification of basin centers, and assignment of 

basic weights, can be converted into an amino-acid specific conformational free energy 

landscape. Some of the basins are given names corresponding to secondary structure 

elements because repetitions of the ϕ and ψ angles corresponding to the basin centers will 

yield these canonical secondary structures. Accordingly, the αR basin centered on ϕ ∼ − 60∘

and ψ ∼ − 40∘ and the β basin centered on ϕ ∼ − 150∘ and ψ ∼ 150∘ are the basins associated 

with the right-handed α-helix and the β-strand, respectively.

To zeroth order, the eighteen non-glycine and non-proline amino acids may be viewed as 

having similar basin structures. This is true if one uses the hard-sphere model for steric 

interactions 12. However, this view becomes considerably more nuanced even for purely 

steric interactions, providing one uses soft-sphere repulsions 11. Residue-specific basin 

topographies and basin weights emerge when considering the detailed stereochemistries 

of amino acids. These nuances, which are prevalent in many of the extant coil libraries, 

distinguish β- and γ-branched sidechains from those with straight-chain hydrocarbons or 

sidechains such as asparagine and glutamine from one another 9d, 13. Therefore, coil libraries 

provide an experimentally derived high-resolution description of backbone dihedral angle 

preferences. However, these libraries do not reflect the unbiased intrinsic conformational 

preferences of amino acids because they are extracted from structures of folded proteins. 

As a result, the presence of additional structural context can introduce non-negligible 

biases. This limits the use of the coil library as a representation of intrinsic conformational 

preferences of amino acids.

Spectroscopic data on short peptides provide useful information to complement and refine 

the conformational statistics extracted from coil libraries. Oligopeptides afford the advantage 

of eliminating confounding contributions from long-range interactions, thus uncovering 

intrinsic conformational preferences of amino acids. The shortest peptide constructs that 

are ideal targets for spectroscopic investigations are blocked amino acids of the form 

Ace-Xaa-Nme. Here, Ace is the N-acetyl group, Nme is the N′-methylamide group, and 
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Xaa is the amino acid of interest. Nuclear magnetic resonance (NMR) experiments report 

scalar coupling constants that depend on the dihedral angle distribution of the given 

structural ensemble 14, while data from infrared and Raman spectroscopy can be used to 

extract relative populations of distinct conformational classes 15. Far ultraviolet spectra from 

circular dichroism measurements also have been used to determine relative populations of 

different conformations. These spectroscopic investigations have been used to study various 

lengths and sequences of short peptides 16. The resultant data provide insights regarding 

the complex interplay between specific residues and their chain contexts as determinants of 

the backbone dihedral angle distribution. Information from various experiments has been 

collated together to reconstruct Ramachandran plots, typically based on certain assumption 

of basin shapes 16b, 16f, 16g, 16i. These inferences suggest that the dihedral angle distributions 

of short peptides are different from their counterparts extracted from coil libraries. For 

example, short peptides show higher populations for the polyproline II (PII) basin (ϕ ∼ − 60∘

and ψ ∼ 150∘), when compared to statistics from coil libraries. High-resolution data for 

short peptides, specifically blocked amino acids, are essential for quantifying the intrinsic, 

residue-specific (ϕ, ψ)-preferences.

In this work, we present a computational method to derive high-resolution backbone 

dihedral angle distributions of blocked amino acids, by combining biased high-resolution 

data from a coil library and unbiased low-resolution data from spectroscopic measurements. 

Our method employs the approach of representing conformational statistics using basin 

structures that are defined by basin envelopes, basin centers, and basin weights 17. We 

extract basins using a facsimile of the steepest descent configurational mapping method 

pioneered by Stillinger and Weber for describing potential energy surfaces in condensed 

phases 18. We adapt this approach to extract basin structures from effective free energy 

landscapes whereby conformational statistics are first converted to potentials of mean force 

(PMFs) written in terms of backbone ϕ and ψ angles. The PMFs are used to identify basin 

structures.

The basin structures derived from the default coil library are optimized vis-à-vis 

spectroscopic data and tested for accuracy against scalar coupling constants derived from 

NMR experiments. The final result is an experimentally derived and computationally 

optimized, high-resolution, quantitative description of intrinsic conformational statistics 

for all twenty amino acids. These statistics, presented in the form of refined coil library 

landscapes, will be of direct use for modeling conformational equilibria of intrinsically 

disordered proteins and unfolded states of proteins 6d–g, 7a, 10a, 19. They will also be of use in 

improving molecular mechanics forcefields 9d, 20, and serve as a high-resolution touchstone 

for comparing different forcefields.

2. GENERAL FEATURES EXTRACTED FROM COIL-LIBRARY STATISTICS

To investigate general features of coil-library statistics, we focused on the Protein Coil 

Library that is maintained, updated, and distributed by the Fitzkee group 7b. As a reminder, 

the coil library consists solely of the structures of amino acid residues that are classified as 

existing outside of regular secondary structure. Specifically, we employed a pre-compiled 
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list (retrieved on June 5, 2017) that fits the following criteria. The conformations were 

excised from proteins sharing sequence identities below 90%. All of the data were extracted 

from protein crystal structures with an overall resolution of 1.6 Å or higher and a 

crystallographic R-factor below 0.25. Using structures that meet these criteria, we collected 

the distribution of ϕ and ψ for each of the twenty amino acid residues. Glycine has the 

largest number of data points (288,146), while cysteine data form the smallest set (39,067; 

see Supplementary Figure S1).

To generate an effective free energy landscape, i.e., a PMF written in terms of ϕ and ψ
angles, we binned the ϕ and ψ angles using an appropriate grid size. We applied a criterion 

derived from information theory to justify the choice of grid size that would maximize 

information content without overfitting. We chose two amino acids with non-canonical 

Ramachandran distributions, namely glycine (Gly) and proline (Pro), and two other amino 

acids with the largest and smallest data sizes among non-glycine, non-proline amino acids: 

leucine (Leu) and cysteine (Cys), respectively. For each of the four amino acids, we 

quantified the information content as a function of grid size by calculating the Shannon 

entropy, S = − ∑i = 1
nϕ ∑j = 1

nψ pij log pij where the ϕ and ψ axes are tiled into nϕ and nψ bins and 

the pij values are the normalized frequencies associated with the grid with row index i and 

column index j.

As grids become finer, the Shannon entropy increases, until it saturates to a value governed 

by the logarithm of the size of the dataset (Supplementary Figure S2a). Although the 

saturation value has the highest Shannon entropy, this yields a sparsely populated grid 

that introduces additional issues in later stages of our workflow. Therefore, we computed 

the numerical derivative of the Shannon entropy with respect to grid size. This quantity 

represents the information loss associated with the increase of grid size, or equivalently, 

the information gained by reducing the grid size. All curves for the numerical derivatives 

peak around similar regions (Supplementary Figure S2b). This implies that we obtain less 

additional information by reducing a grid size beyond this region. Accordingly, a grid 

size in this interval will provide an optimal resolution where we do not lose details by 

coarse-graining or fine-graining. Therefore, for constructing residue-specific PMFs we used 

2.5° × 2.5° grids.

The formal connection between information such as conformational statistics and free 

energies has been well established in statistical physics. Accordingly, instead of using the 

raw statistics, we converted the grid-base probabilities into PMFs. For each amino acid, the 

probability density P(φ, ψ) is a marginal density that quantifies the likelihood that specific 

(φ, ψ)-values or intervals are realizable. Accordingly, the PMF W (φ, ψ) = − kT log[P(φ, ψ)]
is an effective free energy landscape that can be used to quantify the relative free energy 

preference associated with one (ϕ, ψ)-pair over another, as reflected by the information 

content of the coil library.

Figure 1 shows the (ϕ, ψ)-dependent PMFs for all twenty amino acids using 2.5° × 2.5° 

grids. As noted by Perskie et al., 10b the coil-library data show distinctive, amino-acid 

specific (ϕ, ψ) preferences. The basin structures look significantly different between amino 
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acids with topologically different sidechains such as alanine (Ala) versus aspartate (Asp) 

or valine (Val), while topologically similar amino acids show similar basin structures. The 

β-branched amino acids, Val, isoleucine (Ile), and threonine (Thr), show strong preferences 

for the β basin. In contrast, Asp and asparagine (Asn) have higher populations in the PII

basin and left-handed alpha-helical basin. Note that while the Ramachandran map of Gly is 

required to be symmetric with respect to the origin (due to the achiral nature of its α-carbon), 

the coil-library landscape for Gly violates this symmetry because the Protein Coil Library 

imposes a filter to remove signals from regular secondary structures 7b. Accordingly, for all 

of the subsequent analysis, we used a symmetrized landscape for Gly by adding a population 

reflected through to the origin, unless otherwise stated.

Next, we assessed the accuracy of PMFs extracted from the coil library by comparing 

calculated parameters to experimentally measured parameters for blocked amino acids. 

Specifically, we compared  3J HN, Hα  scalar coupling constants. For each amino acid, we 

converted all coil-library data points to their corresponding coupling constants using the 

Karplus equation 21 that is based on optimized parameters 16d, 22:

J(ϕ) = 7.09cos2 ϕ−60∘ − 1.42cos ϕ−60∘ + 1.55

The units of J(φ) are hertz (Hz). The average value of J(φ) over all data points of 

the specific amino acid was used as a calculated coupling constant. Comparisons of the 

coupling constant values obtained using the residue-specific coil-library landscapes and the 

experimental values reported by Avbelj et al. 16c show a consistent bias towards larger J
values in the coil-library data (Figure 2; mean absolute error = 0.33 Hz). This is presumably 

due to inconsistencies in basin distributions of coil-region residues and blocked amino acids. 

For example, PII and β basins have different populations in the case of blocked amino acids 
16h.

In order to calibrate basin structures, we need a systematic approach to quantify and 

refine basin weights. However, the coil library by itself provides no prior knowledge 

regarding basin centers, basin envelopes, and basin weights. Many previous studies have 

used arbitrarily drawn boundaries to quantify basin weights from PMF landscapes (for 

example, see 23). We present an alternative systematic approach that is based on the concept 

of inherent structures developed by Stillinger and Weber 18.

3. INHERENT BASIN STRUCTURE ANALYSIS

Motivated by a previous study that demonstrated the power of configurational mapping 

to extract basin structures for blocked amino acids 17, we developed a method to extract 

basin structures from a given (ϕ, ψ)-dependent PMF. The PMFs associated with each grid 

value (Figure 3a) are first averaged using a 4×4 grid (which corresponds to a 10° × 10° 

window; see the next paragraph for a justification of the chosen grid size) to smoothen 

fluctuations. This provided us with coarse-grained PMF surfaces (Figure 3b). Next, we 

neglect windows where more than 75% of the constituent grids are empty, leaving us with 

only well populated regions of dihedral space (Figure 3c). For each coarse-grained grid, 
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the average PMF and those of immediate neighbor grids are compared to determine the 

direction where the PMF difference is largest (Figure 3c, arrows). If the current grid has the 

lowest PMF, it is considered a local minimum (Figure 3c, crosses). After determining all the 

steepest-gradient directions, we follow the directions to reach the nearest local minimum. 

The grids that eventually reach the same local minimum are defined to be part of the same 

basin, and the local minimum is defined as the center of the basin (Figure 3d). This approach 

identifies residue-specific numbers of basins that reflect the underlying PMF and are defined 

in an unbiased manner.

We tested different grid sizes and calculated the number of basins found for each grid size. 

The number of basins is greater for finer grids, which is to be expected (Supplementary 

Figure S3a). The data contain statistical and innate fluctuations and coarse-graining 

smoothens these fluctuations. We computed the number of major basins, which we define as 

the basins whose weights are above a threshold value. As shown in Supplementary Figure 

S3b, the numbers of basins show a non-monotonic behavior as the grid size increases, 

for all the threshold values we tested. This demonstrates that very fine grids make it 

difficult to extract accurate basin structures because the underlying structure is masked by 

fluctuations in the data. Accordingly, we chose 4 × 4 grids (10° × 10° window), since it 

is the finest grid system that provides simple and easy-to-interpret basin structures for the 

region ϕ ∈ −180∘, − 60∘  and ψ ∈ 60∘, 180∘ , where β and PII basins lie (compare Figure 4, 

Supplementary Figures S4, S5, and S6).

Our formalism does not make any a priori assumptions regarding distributions for basins. 

It is computationally tractable and provides quantitative estimates for basin centers and 

basin envelopes. Hence, it can be co-opted to quantify residue-specific basin structures from 

conformational statistics either from a coil library or from simulations. In Figure 4, we show 

basin structures as derived from coil-library landscapes for all 20 amino acids (see also 

Supplementary Table S1). As shown in Figure 1, topologically similar amino acids have 

similar basin structures. Non-canonical basin structures of Gly and Pro are shown clearly. 

There are three groups that show “equivocal” basin structures. This refers to the fact that it 

is unclear which basin corresponds to β or PII (see also Figure 1). The first group consists 

of Asp and Asn, where we find two significant basins for ψ > 60∘, whose local minima lie 

around ϕ = − 60∘. The second group includes only Thr, where two equally significant basins 

are revealed with minima at ϕ ∼ − 130∘ and ψ > 120∘. The last group includes Ile and Val, 

for which β and PII basins are apparently merged to one single basin with the new local 

minimum at ϕ ∼ − 115∘ and ψ ∼ 125∘.

Using the extracted basin structures, we next calculated the weights associated with each 

of the basins. To determine correct weights, we first compared to the coil-library derived 

weights for β, PII, and αR basins with experimental data taken from spectroscopic approaches. 

From the obtained basin structures, we calculated basin weights (normalized by the total 

data size of each amino acid) and collected basins with normalized weights > 15 %. For the 

13 amino acids with canonical and “unequivocal” basin structures, we could unambiguously 

assign β, PII, and αR basins (Supplementary Table S1). We compared these basin weights 

with experimental data, which were reported as relative basin populations of the three 
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basins for blocked amino acids as determined by infrared and Raman spectroscopies 16h. We 

find that the coil-library weights are significantly different from the experimentally derived 

populations (Figure 5). This implies that the coil-library statistics do not correctly reproduce 

backbone dihedral angle distributions of blocked amino acids.

We also employed a sub-sampling method to assess the sensitivities of basin statistics 

to sampling and noise. We randomly sampled 90% of the data from each data set and 

performed the basin analysis on the data subset as described above. We repeated this 

procedure 100 times for each amino acid, which allowed us to collect average values and 

standard deviations of basin statistics. To represent basin topographies, we quantified: (1) 

the total number of basins; (2) the number of major basins, i.e., basins whose weights are 

greater than 15%; (3) the basin weights; (4) the depths of the basin centers, which refer to 

the locations of local minima; (5) and the basin areas (Supplementary Figure S7). For items 

3 through 5, we employed the values for the αR basin, since it has a well defined and nearly 

invariant position of basin center for all 20 amino acids (even in the case of Gly and Pro) 

and accordingly, it provides a useful way to compare statistics across different amino acids. 

Also, the depth of each local minimum (item 4) was corrected by adding -log(0.9), which is 

the compensation factor for 90% sub-sampling.

As expected, the total number of basins is more sensitive than the number of major basins 

(Supplementary Figure S7a and S7b). The number of major basins does not change upon 

sub-sampling, unless the basin weight is close to the threshold value for determining major 

basins (see data for phenylalanine (Phe), tyrosine (Tyr) and Gly in Supplementary Table 1). 

At the level of individual basins, the most sensitive statistic is the basin area (Supplementary 

Figure S7e), while the depths of basin centers are almost invariant (Supplementary Figure 

S7d). Also, the positions of basin centers are invariant; all amino acids (except Thr) show no 

change of basin center positions. In the case of Thr, the basin analysis sometimes found the 

grid right below the original one as the basin center. This is because the real basin center is 

close to the boundary of two neighboring grids that small randomness in sampling may lead 

to change of basin center position.

4. COMPUTATIONAL OPTIMIZATION OF LANDSCAPES

We used quantitative inferences from spectroscopic data to refine the coil-library derived 

PMFs. The refinement / optimization was designed to reproduce accurate backbone (ϕ, ψ) 

statistics for blocked amino acids, based on what we refer to as the coil library ansatz. 

According to this ansatz, the coil library provides a high-resolution and accurate basin 

structure, albeit with incorrect basin weights for blocked amino acids. Inaccuracies in 

basin weights can be corrected by reweighting against extant experimental data leading 

to optimized and accurate effective free energy landscapes for blocked amino acids.

To arrive at optimized and accurate effective free energy landscapes for blocked amino acids 

we employed a Monte Carlo (MC) based iterative method for basin reweighting (Figure 

6). The target values were the basin weights inferred from spectroscopic data for blocked 

amino acids 16h. For each basin X, we denote the basin population as P(X). However, the 

spectroscopic experiments only provide population data for the three basins normalized 

Choi and Pappu Page 8

J Chem Theory Comput. Author manuscript; available in PMC 2024 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the sum of the three basins. Therefore, we use the symbol P(X) for the normalized 

population in basin X such that:

P(X) = P(X)
P(β) + P PII + P αR

;

Here, X is one of β, PII, or αR. The cost-function E that we use for the MC optimization is the 

sum of absolute errors from the target populations of the three basins:

E = P(β) − P target(β) + P PII − P target PII + P αR − P target αR ;

Here, P target(X) is the experimentally derived target population for basin X. We also accounted 

for the contributions from populations corresponding to minor basins that are not the 

three basins considered in analysis of the experimental data. Based on physicochemical 

considerations it follows that regions outside the three standard basins should not contribute 

much to the overall landscapes. Accordingly, we assumed that their sum is close to 

a certain value designated as 1 − c within tolerance d (set to 0.01 in this work), i.e., 
P(β) + P PII + P αR = c. The value of c is determined below.

For each MC step, one of the three basins is randomly chosen and is populated or 

depopulated. After this trial move, the cost function is calculated, and based on the 

Metropolis criterion (MC temperature = 1.0), the proposed move is either accepted or 

rejected by comparing the value of the cost function to the previous value. If the cost 

function becomes smaller than a tolerance (set to 0.01 in this work) and the second criterion 

on other basins is satisfied, the MC process is terminated.

To populate or depopulate each basin, we use a combination of basin structure and steepest 

descent information (Figure 7a). First, we extract the boundary pixels of a basin, which 

we define as pixels that are in immediate contact with non-basin pixels. Each boundary 

pixel has its own trajectory, which refers to a collection of pixels following steepest descent 

directions from the boundary pixel to the basin center. All pixels along each trajectory are 

assigned their relative positions from the boundary with respect to the number of pixels on 

the trajectory (Figure 7b). The relative positions are used to determine the scaling factor of 

each pixel: the scaling factor for a pixel is the maximum of all the relative position values for 

the pixel (Figure 7c). For a pixel missing its scaling factor, we assigned an average value of 

non-zero scaling factors of its neighboring pixels. Lastly, we converted this information on a 

coarse grid system (10° × 10°) into the original fine grid system (2.5° × 2.5°; see Figure 3a) 

by simple linear interpolation (Figure 7d). With these scaling factors, a basin is populated or 

depopulated according to following equation:

pnew(i, j) = pold(i, j)±ks(i, j);

Here, (i, j) are pixel indices, pold(i, j) is the old population of pixel (i, j), pnew(i, j) is the 

new adjusted population of pixel (i, j), s(i, j) is the scaling factor calculated above, and k
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is a global coefficient set to 0.005. The plus and minus signs correspond to populating and 

depopulating of pixel (i, j), respectively. The parameter k serves a role of “step size.”

As noted above, there are certain amino acids with “equivocal” basin structures that do not 

yield a unique candidate for the β or PII basin. For example, the coil-library landscapes of 

Asp and Asn show two candidates for the PII basin (Figures 1 and 4). To determine the 

identities of basins that are to be populated, we employed the J(φ) coupling constant values 

reported by Avbelj et al. as an additional constraint 16c. We tested all possible combinations 

of different candidate basins, and for each combination, we computed J(φ) coupling 

constants from reweighted populations. We then selected the optimal combination of basins 

that provided the closest match between the calculated and experimentally measured J(φ)
coupling constants (Supplementary Table 2). Additionally, the coil library populations of Ile 

and Val indicate the absence of a PII basin. Instead, the shallowness of the basins in this 

region suggests that the PII basin is a shoulder of the β basin for Ile and Val (Figures 1 

and 4). Since Ile and Val are β-branched amino acids, we mixed their populations with the 

population of Thr, the third and last β-branched amino acid, in 1:1 ratio, to provide a starting 

basin structure.

The Parameter c is another factor that may affect the optimized basin structure. We tested 

three different values: 1, 0.975, and 0.95. The optimized PMFs are respectively given in 

Figure 8, Supplementary Figure S8, and Supplementary Figure S9. As shown, c = 0.975
(Supplementary Figure S8) and c = 0.95 (Supplementary Figure S9) provide an unexpected 

basin structure for Ile, which is expected to be consistent with that for Val, given that they 

share similar side chain topologies. Similarly, Asp and Asn show different basin structures 

in the case of c = 0.975 or 0.95. Based on this rationale, we chose 1 for the value of c
(meaning that the populations of the three major basins constitute more than 99 % of the 

total population).

5. RESULTS AND DISCUSSIONS

Figure 8 shows the optimized PMFs in terms of ϕ and ψ angles. Here the total data size for 

each amino acid is normalized to 5 × 105 for a statistically equivalent comparison amongst 

all amino acids. When compared to the original populations (Figure 1), the basins become 

sharper and the background is less noisy. Although the three major basins become more 

significant, other basins are not removed. Since the basis of basin structures comes from 

the coil-library data, the unique features of basin structures are preserved. The amino acids 

with equivocal basin structures now have well-defined basins. Finally, in accord with the 

experimental data 16h, the populations show strong preference for β and PII basins over αR, 

except for the case of Gly. It should be noted that since we do not have spectroscopic data 
16h for Pro (an imino acid with no αL basin due to its unique secondary amine structure), the 

Pro data are presented directly from the coil library without any reweighting.

The residue-specific shifts that have occurred upon optimization can be quantified in 

several ways. We calculated the overlap coefficients (OC) and the Kullback-Leibler 

(KL) divergences (DKL), which are useful ways to compare pairs of distinct probability 
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distributions. Accordingly, if P ij denotes the probability of grid cell (i, j) in the coil-library 

landscape and Qij denotes the corresponding probability in the optimized landscape, then the 

overlap coefficient, which refers to the area shared under two probability distributions, is 

defined as:

OC = ∑
i

∑
j

min P ij, Qij ;

The KL divergence is defined as:

DKL = ∑
i

∑
j

P ijlog P ij
Qij

.

If the two distributions are identical, the overlap coefficient is unity and the KL divergence is 

zero. As the two distributions diverge from each other, the OC value decreases, and the DKL

value increases. Figure 9a shows the overlap coefficients and KL divergences for nineteen 

amino acids except proline. The two measures show qualitatively same trends. The shift 

upon optimization is smallest for Gly and largest for Asn.

To quantify the improvement of the optimized effective free energy landscapes, we used the 

refined statistics and basin descriptions to calculate the scalar coupling constants (Figure 9b; 

mean absolute error = 0.24 Hz). The absolute errors are reduced vis-à-vis the experimental 

data. More importantly, the bias toward positive errors is now corrected. Since the J
coupling constant employed here depends only on ϕ, this correction mainly comes from 

change in relative populations amongst β and PII + αR basins.

6. CONCLUSIONS

Our primary goal was to obtain high-resolution, experimentally derived conformational 

statistics for blocked amino acids. These could serve as inputs for modeling conformational 

equilibria of sequences with significant conformational heterogeneity. They could also serve 

as a touchstone for the calibration of molecular mechanics forcefields. We developed an 

automated way of describing effective free energy landscapes as PMFs on the (ϕ, ψ) 

space. We find that the unrefined statistics drawn from the coil library are inconsistent 

with experimental data for blocked amino acids. To remedy this, we developed a simple 

basin analysis method to extract basin structures from raw data for backbone dihedral 

angles without imposing any a priori structure on the distributions. This method provides 

quantitative information regarding basins, including the quantification of basin centers, 

widths, and statistical weights. Using this information, we optimized the effective free 

energy landscapes, written as PMFs in terms of backbone ϕ and ψ angles that conform 

to quantitative inferences from spectroscopic data for blocked amino acids. The optimized 

landscapes yield improved estimates of scalar coupling constants and represent a useable 

library of conformational statistics for blocked amino acids.

Our work presents two distinct innovations: (1) the basin topography extraction method 

representing generalization of the configurational mapping approach pioneered by Stillinger 
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and Weber 18 and (2) the optimized PMFs for each of the twenty amino acids. The latter 

provide an important touchstone for quantitative analysis and comparisons of intrinsic, 

amino acid specific conformational statistics. The basin analysis method presented here 

is simple yet quantitative, so it can be employed to compare basin structures from 

different sources, such as different force fields or different structural libraries. Additionally, 

the optimized basin landscapes can serve as reference landscapes for backbone dihedral 

distributions of blocked amino acids, since currently there are no available high-resolution 

landscapes directly inferred from experiments. For example, as part of the development of 

molecular mechanics forcefields, one can compare the performance of the forcefield by 

computing the full basin topography for the forcefield in question and comparing this to the 

reference landscapes provided here.

In an ideal scenario, one would obtain the effective free energy landscapes as PMFs from 

high-level quantum mechanical simulations of blocked amino acids in condensed phases. 

The basin mapping approach developed here will be a useful way to obtain comparative 

descriptions of conformational statistics for different amino acids because the approach 

does not rely on ad hoc tiling of conformational space. However, pending the availability 

of accurate results from high-level quantum mechanical simulations, the optimized basin-

based descriptions we provide here are intended to serve as experimentally derived 

and computationally optimized touchstones for calibrating the accuracy of forcefields. 

The availability of high resolution unbiased data will help improve the accuracy of the 

experimentally derived and computationally optimized amino acid specific conformational 

distributions. It may also be possible to employ state-of-the-art machine learning techniques 

to optimize basin landscapes that simultaneously satisfy different constraints from various 

experimental sources. In the accompanying manuscript24, we demonstrate the utility of the 

optimized conformational distributions by deploying it for refining potential functions that 

describe local conformational equilibria within the ABSINTH implicit solvation model and 

forcefield paradigm 25.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Coil-library landscapes for all twenty amino acids with color scale in units of thermal 
energy (kT ) with T = 300K (top).

Each panel shows a PMF in terms of the backbone dihedral angles. The amino acid label 

is located on the upper right corner of each panel. Red labels indicate acidic amino acids, 

and blue labels indicate basic ones. The different amino acids are grouped according to their 

stereochemistry (dotted lines).
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Figure 2: Differences between NMR scalar coupling constants calculated by applying the 
Karplus equation to the coil-library data (Jcalc) and those determined experimentally (Jexp)
16c. Note the bias toward positive errors. Absolute error = 0.25 Hz, standard deviation = 0.32 

Hz, and mean absolute error = 0.33 Hz.
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Figure 3: Steps to extract basin structures.
The method is illustrated using data for Ala from the Protein Coil Library. (a) The original 

potential of mean force (PMF) in backbone dihedral angles with color scale in kT . (b) The 

PMF averaged over a 10° × 10° window. (c) Directions of steepest gradients based on the 

averaged PMF. Crosses indicate local minima. (d) Final inherent basin structure. Different 

colors indicate different basins, each defined by a basin center – the local minimum – 

marked by crosses.
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Figure 4: Basin structures derived from Protein Coil Library data for each of the twenty amino 
acids.
Each panel shows a basin structure of each amino acid on the Ramachandran space with 

different colors to indicate different basins. The grouping and order of amino acids follows 

that of Figure 1. Statistics for each of the basins and the coordinates of basin centers are 

shown in Table S1 of the supplementary material.
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Figure 5: Relative populations of three major basins (αR, PII, and β) for blocked amino acids.

The populations are derived from IR/Raman data (filled bars, normalized by the sum of 

the three basin populations) 16e. These data are compared to populations derived from the 

unoptimized coil-library statistics (striped bars). Data are shown for 13 amino acids with 

canonical and unequivocal basin structures (see text).
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Figure 6: 
Flowchart of the Metropolis Monte Carlo algorithm for optimizing the basin weights to be 

concordant with spectroscopic data for blocked amino acids.
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Figure 7: Steps to calculate the scaling factor for the cost function used in the Monte Carlo 
optimization protocol.
(a) Illustrative quiver map showing directions of steepest gradients. (b) An example of a 

trajectory, colored in red. The open circle indicates the basin minimum, and the numbers 

indicate the relative distances of grid points on the trajectory from the boundary. (c) The 

maximum of all the relative position values for all pixels on any trajectory. Note some pixels 

that do not have affiliated trajectories. (d) The final scaling factor values on a fine grid 

system.
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Figure 8: Optimized effective free energy landscapes for all twenty amino acids with color scale 
in kT  (top).

Each panel shows a PMF distribution on the Ramachandran space of an amino acid labeled 

at the upper right corner in the three-letter notation. The grouping and order of amino acids 

follows that of Figure 1. The total data size for each amino acid is normalized to 5 × 105.

Choi and Pappu Page 23

J Chem Theory Comput. Author manuscript; available in PMC 2024 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9: Evaluation of optimized landscapes.
(a) Overlap coefficient OC and Kullback-Leibler divergence DKL (see text for definitions) to 

quantify the (dis)similarities between the unoptimized coil-library and optimized landscapes 

for nineteen of the twenty amino acids (except Pro). (b) Differences between NMR scalar 

coupling constants calculated by applying the Karplus equation to the optimized landscape 

data (Jcalc) and those determined experimentally (Jexp) 16c. Absolute error = 0.10 Hz, standard 

deviation = 0.26 Hz, and mean absolute error = 0.24 Hz. These results are to be contrasted 

with the results shown in Figure 2 for Jcalc obtained from the unoptimized coil library.
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