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Animal and bacterial cells use shared mechanisms to defend against
viruses. Analyzing 3 families of immune genes, a new study in PLOS

Biology illuminates this evolutionary connection and traces the
emergence of antiviral signaling across domains of life.

Recent discoveries characterizing bacterial antiphage defense systems have generated a sur-

prising observation: Bacteria and human cells use strikingly similar mechanisms to protect

against viral infection [1,2]. As founding examples, key components of human immunity

including cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and

viperin each originated in ancient antiviral systems of bacteria and archaea [3–6]. In animal

cells, cGAS and other cGLRs (cGAS-like receptors) sense foreign nucleic acid and catalyze syn-

thesis of nucleotide immune signals including 2030-cGAMP (20–50/30–50 cyclic GMP–AMP).

2030-cGAMP activates the downstream receptor STING and induces antiviral responses

through type I interferon and NF-κB signaling [2,7]. Type I interferons can induce expression

of a suite of antiviral effector proteins including the enzyme viperin that creates chain-termi-

nating nucleotide analogs that potently inhibit viral transcription and genome replication [6].

With the realization that central aspects of human immunity are shared with bacteria, a key

question is how did this come to be? In this issue of PLOS Biology, Culbertson and Levin pro-

vide a comprehensive bioinformatic analysis of eukaryotic cGLR, STING, and viperin pro-

teins, revealing strikingly different evolutionary histories and providing insight into the early

emergence of metazoan antiviral immunity (Fig 1) [8].

To explain evolution of antiviral immunity, Culbertson and Levin design and iterate a sen-

sitive search strategy to uncover divergent homologs of cGLR, STING, and viperin proteins.

Leveraging EukProt, a curated database representative of eukaryotic protein diversity [9], the

authors designed a conservative sequence homology search strategy to create a comprehensive

set of eukaryotic immune proteins for direct comparison with components of bacterial anti-

phage defense. First, the authors compare animal cGLRs with bacterial cGAS-like enzymes

named CD-NTases (cGAS/DncV-like nucleotidyltransferases) [3]. Surprisingly, cross-domain

phylogenetic analysis suggests multiple pathways through which CD-NTase genes entered

eukaryotic genomes and seeded animal immune protein families. Distinct phylogenetic clades

include cGLRs (including the human DNA sensor cGAS), oligoadenylate synthase (OAS)-like

enzymes (including the human double-stranded RNA sensor oligoadenylate synthase 1), and a
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set of uncharacterized proteins the authors name “eSMODS” after the protein domain name

“second messenger oligo- or di-nucleotide synthase” [10]. OAS-family proteins are broadly

present among eukaryotes and form a monophyletic, well-supported clade indicating presence

at LECA (last eukaryotic common ancestor). In contrast, cGLR and eSMODS proteins appear

to have evolved later via independent horizontal gene transfers of bacterial CD-NTases. cGLRs

are encoded mainly in metazoans, where the authors demonstrate further diversification and

gene duplication, and eSMODS appear in a subset of microeukaryotes.

Using a similar strategy to analyze STING proteins, the authors uncover 2 instances of conver-

gent domain shuffling, which shaped evolution of this gene family. In bacteria, STING antiphage

defense proteins are encoded either with a 2-pass transmembrane (TM) or a toll-interleukin

receptor (TIR) effector domain [5]. In contrast, animal STING proteins have a 4-pass TM

domain, which, in mammals, is required for cellular trafficking and signaling. Interestingly, the

authors uncovered several bacteria-like STING homologs, mainly in unicellular eukaryotes,

which exhibit closer homology to bacterial STINGs than mammalian STINGs in the cyclic dinu-

cleotide ligand binding domain. However, these bacteria-like STINGs are fused to a 4-pass TM

domain similar to mammalian STINGs. Further, some eukaryotic STINGs acquired a TIR-ST-

ING architecture via fusion with a eukaryotic TIR supporting convergent evolution where bacte-

rial and animal STINGs independently acquired similar domain fusions [10].

Finally, analyzing viperin evolution, the authors demonstrate that most eukaryotic viperin

homologs form a single well-supported phylogenetic clade and that viperin enzymes likely

Fig 1. Evolutionary routes connecting ancient immune genes to modern eukaryotic genomes. Illustration of

evolutionary mechanisms enabling eukaryotic acquisition of innate immune machinery from bacteria. Gray

background illustrates bacterial sequences, with transition to white background indicating inheritance by eukaryotes.

Through analysis of the evolutionary history of CD-NTase, STING, and viperin proteins, Culbertson and Levin

highlight 3 broad mechanisms of eukaryotic immune gene evolution: vertical inheritance from LECA (green clade),

horizontal gene transfer to specific eukaryotic clades groups (blue, pink, and tan clades), and convergent domain

shuffling where similar accessory domains (red with white hashes) are found fused to the same immune gene (tan

clade). CD-NTase, cGAS/DncV-like nucleotidyltransferase; HGT, horizontal gene transfer; LECA, last eukaryotic

common ancestor; STING, stimulator of interferon genes.

https://doi.org/10.1371/journal.pbio.3002481.g001
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only entered animals once via descendance from LECA. However, Culbertson and Levin also

identify 2 groups of marine algal viperin homologs, which branch from marine cyanobacterial

viperin proteins within the bacterial section of the phylogenetic tree. This observation may

support additional horizontal gene transfer events in viperin evolutionary history and suggests

that eukaryotes continue to sample bacterial pools of antiviral genes.

In addition to these exciting observations, the authors note some current limitations of

their bioinformatic approach. Eukaryotic genome assemblies and transcriptomes are of vary-

ing qualities and frequently contain sequence contamination from prokaryotes, complicating

interpretations of horizontal gene transfer between domains. The authors are careful to only

propose apparent horizontal gene transfer events if a well-supported monophyletic group of

several eukaryotic sequences branched from a bacterial sequence clade. They also note that

this approach is unable to distinguish prokaryotic endosymbionts and/or close prokaryotic–

eukaryotic cell associations, which may repeatably result in contamination of genome assem-

blies with similar sequences. This may be a particular issue among microeukaryotes, support-

ing a need for more high-quality genome assemblies and establishment of biological models to

investigate the nature of immunity in these organisms.

Culbertson and Levin hint at major developments still to come in our understanding of the

evolution and biology of antiviral immunity in eukaryotes. Domain-wide screens such as those

which have characterized CD-NTases, cGLRs, and viperin proteins [3,6,7] will be of use to bet-

ter understand the molecular function of the newly identified eSMODS, blSTING, and algal

viperin proteins. Additionally, the distinct paths of cGLR/CD-NTase and STING protein evo-

lution observed in this study indicates that these proteins may have alternative functions either

individually or within different pathways in non-metazoans. Finally, the authors’ observation

that a majority of species currently within the EukProt database lack identifiable homologs of

these 3 major immune proteins (711/933) may indicate adoption of alternative immune strate-

gies in many species. Given the deep reservoir of bacterial antiphage defense system genes

from which eukaryotes sample immune functions, further analysis of non-metazoan eukary-

otes represents a new frontier to understand antiviral immunity and host–virus interactions

across all domains of life.
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