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ABSTRACT
Circadian disruption is being increasingly recognized as a critical factor in the development and progression of Parkinson’s dis-
ease (PD). This review aims to provide an in-depth overview of the relationship between circadian disruption and PD by explor-
ing the molecular, cellular, and behavioral aspects of this interaction. This review will include a comprehensive understanding of 
how the clock gene system and transcription–translation feedback loops function and how they are diminished in PD. The article 
also discusses the role of clock genes in the regulation of circadian rhythms, as well as the impact of clock gene dysregulation on mi-
tochondrial function, oxidative stress, and neuroinflammation, including the microbiota-gut-brain axis, which have all been pro-
posed as being crucial mechanisms in the pathophysiology of PD. Finally, this review highlights potential therapeutic strategies tar-
geting the clock gene system and circadian rhythm for the treatment of PD.
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INTRODUCTION

Parkinson’s disease (PD) is a complex neurodegenerative 
disorder that has been traditionally characterized by its debili-
tating motor symptoms. However, recent research has provided 
information on significant nonmotor manifestations, among 
which circadian disruption emerges as a critical but underap-
preciated dimension.1 The circadian clock, which is an intrinsic 
time-keeping system orchestrating physiological processes, ap-
pears to be altered and perturbed in PD. This scenario corre-
spondingly contributes to sleep disturbances, cognitive decline, 
and possible exacerbation of motor symptoms.2 This article ex-
plores the molecular and cellular underpinnings of this disrup-
tion by highlighting the roles of proteins, genes, and neurotrans-

mitters at the intersection of circadian rhythms and PD pathology. 
Emerging evidence also links the gut microbiota-brain axis 
with circadian regulation and PD, thus suggesting a potentially 
transformative approach to our understanding of the etiology 
and progression of this disorder.3,4 This new research direction 
emphasizes the implications of diagnostic strategies and thera-
peutic interventions; moreover, it advocates for a greater focus 
on the identification of reliable biomarkers, the development of 
personalized medicine, and the use of precision therapeutics 
from a holistic perspective of circadian disruption in PD. We 
believe that by integrating circadian health into the PD manage-
ment framework, we can enhance our current therapeutic strat-
egies and improve the quality of life of those individuals living 
with PD.
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CIRCADIAN RHYTHM

Circadian rhythm regulation
Circadian rhythms are inherent timekeeping systems that 

govern a wide array of physiological processes, thus ensuring 
that they occur at biologically advantageous times. Spanning 
approximately 24 hours, these rhythms have evolved to align 
with the Earth’s rotation, thereby synchronizing the internal 
processes of an organism with the external environment. This 
internal timer is controlled by genes and synchronized by envi-
ronmental signals, such as light and nutrition, to regulate physi-
ological activities in every cell structure.5 Indeed, the 2017 Nobel 
Prize in Physiology and Medicine, which was awarded to Ros-
bash, Hall, and Young, recognized their groundbreaking work 
on the molecular dynamics of this circadian rhythm and the 
relevance of circadian synchronization to health.5-11

A central idea of the orchestration of these rhythms in mam-
mals is the suprachiasmatic nucleus (SCN), which is a dense 
cluster of neurons located in the anterior hypothalamus. The 
autonomy of the rhythmicity of the SCN is remarkable but not 
impervious to external cues. Such environmental signals, which 
are aptly known as “zeitgebers” (a German lexicon translating 
to “time givers”), rely predominantly on ambient light. The SCN 
receives direct input from the eyes through a pathway known as 
the retinohypothalamic tract. Specialized photoreceptive retinal 
ganglion cells containing pigment melanopsin absorb light and 
relay this information to the SCN. Neurons within the SCN ex-
hibit rhythmic firing patterns, and these patterns are instru-
mental in conveying time-of-day information to various regions 
of the brain and peripheral tissues.12,13 These patterns are sup-
ported by secondary input from structures such as the interge-
niculate leaflet and brainstem.14

Without the influence of light, SCN neurons autonomously 
generate an intrinsic circadian rhythm, which produces an ap-
proximate 24-hour cycle. Harmonized output of the SCN is 
transmitted to peripheral molecular oscillators, thus extending its 
temporal influence throughout the organism.15 Although these 
peripheral clocks possess innate rhythmic capabilities, their tem-
poral alignment is orchestrated by the SCN via various modula-
tory pathways, including endocrine signaling, autonomic output, 
thermoregulatory changes, physical activity, and dietary pat-
terns.16-19 For example, rhythmic hormonal cascades originating 
from the hypothalamus and pituitary are driven by the SCN. 
Additionally, hormones such as melatonin, serotonin (5-HT), 
and glucocorticoids subsequently modulate circadian gene ex-
pression, thus establishing a pivotal feedback loop for circadian 
synchronization.20,21 These hormonal mechanisms involve the 
secretion of specific neuropeptides and the intricate modula-
tion of the hypothalamic‒pituitary‒adrenal axis, which subse-

quently influence the secretion of melatonin from the pineal 
gland, as well as secretion of glucocorticoids and catecholamines 
from the adrenal gland.22,23

Upon further investigation into the cellular architecture of the 
SCN, most of its neurons are GABAergic. Those neurons that re-
side in the ventrolateral core divisions of the SCN predominantly 
express neurotransmitters and neuropeptides, such as vasoactive 
intestinal polypeptide (VIP), calretinin, gastrin-related peptide, 
and neurotensin. In contrast, the divisions of the dorsomedial 
shell are enriched in neurons expressing arginine vasopressin 
(AVP), angiotensin II, prokineticin-2, and met-enkephalin.24 A 
unique characteristic of SCN neurons is their intercellular cou-
pling, which promotes autonomous circadian oscillations in 
both neuronal activity and gene expression. The VIP produced 
by ventrolateral core neurons plays a key role in this intercellu-
lar synchronization, whereby it influences other neuropeptides, 
such as AVP and gastrin-releasing peptide (GRP) (Figure 1). 
This intricate synchronization is crucial, and VIP knockout 
studies have demonstrated marked desynchronization of SCN 
activities.25-27

Recent studies have provided information on a subset of VIP-
positive SCN neurons that display activity during dark periods, 
which is in contrast to the predominant pattern of SCN neuro-
nal activity. These neurons have been postulated to play a pivot-
al role in modulating sleep patterns between activity bouts in 
nocturnal murines, either by inhibiting activity and fostering 
quiescence or via direct effects of sleep promotion.26,28 This find-
ing not only underscores the role of the SCN in maintaining 24-
hour rhythms but also suggests its involvement in fine-tuning 
intricate features of the sleep–wake cycle.

Molecular and cellular mechanisms
The regulation of circadian rhythms at the molecular level 

is governed by a transcriptional/translational feedback loop 
(TTFL).29 Every major tissue in the mammalian body has rhyth-
mic gene expression, and a substantial proportion of mammali-
an genes (ranging from 10% in rodents to more than 50% in 
primates [including humans]) exhibit rhythmic fluctuations 
that are tailored to specific tissue environments.30-32 A key con-
cept of this oscillation is the intricate feedback mechanism in-
volving core circadian genes and their protein products. The syn-
chronization of these rhythms across various tissues ensures the 
coordinated functioning of the body’s systems.24,33 At the molec-
ular level, circadian rhythms are maintained by a series of clock 
genes that are regulated by a TTFL (Figure 2).34

Positive regulators
The CLOCK (circadian locomotor output cycles kaput) and  

BMAL1 (brain and muscle ARNT-like 1) genes encode proteins 
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Figure 1. Molecular cartography of suprachiasmatic nucleus interactions. SCN, suprachiasmatic nucleus; PACAP, pituitary adenylate cy-
clase-activating polypeptide; AVP, arginine vasopressin; VIP, vasoactive intestinal polypeptide; GRP, gastrin-releasing peptide.

that dimerize, thus forming the CLOCK-BMAL1 complex. This 
complex binds to enhancer box elements on the promoters of 
target genes, thus stimulating the transcription of downstream 
clock genes, especially Period (PER1, PER2, and PER3) and 
Cryptochrome (CRY1 and CRY2) genes.34,35

Negative regulators
As the PER and CRY proteins accumulate in the cytoplasm, 

they form complexes and translocate to the nucleus. Herein, 
they function as negative regulators by inhibiting the activity of 
the CLOCK-BMAL1 complex. This results in decreased tran-
scription of the PER and CRY genes, thus creating the negative 
feedback loop that defines the rhythm.35-37

Posttranslational modifications
The maintenance of a precise 24-hour cycle requires post-

translational modifications to fine-tune protein stability and 
function, with phosphorylation playing a pivotal role.38 Kinases 
such as CK1δ/ε (casein kinase 1 delta/epsilon) phosphorylate 

PER proteins, thereby marking them for degradation. More-
over, phosphatases remove phosphate groups, thus stabilizing 
proteins. The interplay between kinases and phosphatases en-
sures timely protein degradation, which is crucial for the preci-
sion of the rhythm.38,39

Beyond the core TTFL, auxiliary feedback loops provide ad-
ditional layers of regulation. For example, the CLOCK-BMAL1 
complex also activates the transcription of the genes Rev-Erbα 
and retinoic acid receptor-related orphan receptor alpha (RORα). 
Rev-Erbα protein acts as a repressor by inhibiting BMAL1 tran-
scription, whereas RORα enhances BMAL1 transcription by 
binding to ROR-responsive elements on the BMAL1 promoter. 
This loop intersects with the core TTFL, thus providing stability 
and robustness.40,41

Recent studies have provided more information on the inter-
action between cellular metabolism and the circadian clock. Nic-
otinamide adenine dinucleotide (NAD+) levels, which vary with 
the circadian rhythm, influence the activity of sirtuin 1 (SIRT1), 
which is an NAD-dependent deacetylase sirtuin-1. Importantly, 



4

J Mov Disord  2024;17(1):1-14

SIRT1 can deacetylate BMAL1, thus affecting its stability and 
influencing the pace of the clock.42-44

Molecular interactions with light cues
Upon light exposure, the photopigment melanopsin is acti-

vated in retinal ganglion cells.45 This activation influences in-
tracellular signaling pathways that ultimately impact the levels 
of the PER2 protein, which helps to reset the clock.46

The precise coordination of the TTFL ensures that cells can 
anticipate and prepare for daily changes in their environment. 
This autonomous cell rhythm, when synchronized across bil-
lions of cells, ensures that tissues and organs function in har-
mony.34,47 Moreover, several other genes, often termed “clock-
controlled genes,” are regulated by the circadian rhythm, thus 
further amplifying the impact of TTFL on cell function. These 
genes govern a host of processes, ranging from metabolism to 
DNA repair, which emphasizes the widespread influence of the 
circadian system.48,49

CIRCADIAN DISRUPTION IN PD

PD: beyond motor symptoms
Although it is primarily diagnosed by its core motor fea-

tures,50 it is well known that nonmotor symptoms are more 
prominent and bothersome to the patient’s quality of life, espe-
cially during the advanced stages of the disease (Table 1). In 
addition, many nonmotor features have been recognized dur-
ing the prodromal period of the disease, including REM sleep 
behavior disorder, excessive daytime sleepiness, hyposmia, con-
stipation, orthostatic hypotension, sexual dysfunction, anxiety, 
or depression,51 which are often not declared due to embarrass-
ment or unawareness.52

Significantly, there is emerging evidence to suggest that certain 
sleep-related symptoms in PD are associated with circadian mis-
alignment, which may represent a bidirectional relationship.53 
Two extensive cohort studies have recently indicated a potential 
link between disturbances in circadian rhythm and a higher like-
lihood of developing PD. Leng et al.54 evaluated 2,930 community-
dwelling men who were 65 years or older without PD at baseline, 
and subjects were observed for an 11-year period. Circadian pa-

Figure 2. Regulatory mechanisms of the circadian clock: core and auxiliary feedback loops and metabolic interactions. SIRT-1, sirtuin 1 
also known as NAD-dependent deacetylase sirtuin-1; PGC-1α, peroxisome proliferator activated receptor γ coactivator-1α; RORs, retinoic 
acid-related orphan receptors; Rev-ERB, nuclear receptor subfamily 1 group D derived from “Rev-ERBA,” which was later truncated to 
“Rev-Erb”; RORE, ROR response elements; CRY, cryptochrome proteins; PER, period proteins; BMAL1, brain and muscle ARNT-like 1; 
CLOCK, circadian locomotor output cycles kaput; E-BOX, enhancer box; PER complex, period proteins complex; NAD, nicotinamide ade-
nine dinucleotide.
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rameters generated by wrist actigraphy-extended cosinor analysis 
(specifically, amplitude, mesor, and robustness) were found to be 
potent indicators of PD risk. Individuals in the lowest quartile 
for these circadian measures demonstrated an approximately 
threefold elevated risk of developing PD compared to those in 
the highest quartile.54 Another expansive cohort study included 
72,242 UK Biobank participants aged 37–73 years, wherein 
subjects were monitored for a median duration of 6.1 years. Cir-
cadian relative amplitude, which was derived from 7-day accel-
erometry data, served as a key measure to assess circadian 
rhythm disturbance. The study found that people with dimin-

ished relative amplitude exhibited increased risks in a range of 
neurological and psychiatric conditions, with risk ratios of 1.33 
for PD in their fully adjusted models.55 These findings high-
light the substantial role of circadian disruption as a common 
risk factor for PD and underscore the prognostic significance 
of prodromal circadian markers concerning the onset of PD. 
Little is known about whether this disruption of the circadian 
system may impact mitochondrial dysfunction,56 oxidative 
stress,57 and neuroinflammation,58 which are all considered to 
be potential contributors to the neuropathology of PD.

Behavioral and clinical evidence
Sleep disturbance affects 60% to 98% of patients with PD, es-

pecially in the more advanced stages of the disease.59 In addi-
tion to sleep disturbance, diurnal changes in other motor and 
nonmotor symptoms, such as the disruption of the rest-activity 
cycle, variation in blood pressure or cardiac rhythms, impaired 
sleep and alertness, and oscillations in mood, have also been 
associated with disease progression.60

Compared to healthy subjects, previous studies have suggested 
the relevance of PD and disruption of circadian rhythm via ac-
tivity measurements.61,62 Surprisingly, actigraphy recording rest-
activity in PD has not demonstrated that lower activity and am-
plitude correlate with more advanced disease. However, such 
studies have also demonstrated a phase advance in PD, thus in-
dicating a disturbance in circadian activity rhythm.63,64 More-
over, diurnal variation in cardiovascular systems (reflected by in-
creased blood pressure variability, reverse dip, and awakening 
hypotension) has also been reported in PD.65 This clinical and 
preclinical evidence supports the assertion that circadian rhythm 
dysregulation may be a driver of the pathogenesis of PD.66

Molecular crosstalk between PD and circadian rhythm
Although the exact causes of PD are still unknown, new evi-

dence suggests that disturbances in circadian rhythm and clock 
gene expression may be involved in PD pathophysiology.67,68 
The intertwined nature of clock genes and TTFL in cellular reg-
ulation indicates that their disruption can have systemic effects. 
In PD, this has been observed through altered neurotransmitter 
release patterns (especially dopamine), disturbed sleep architec-
ture, metabolic dysregulations, gastrointestinal disturbances, and 
even immune system abnormalities.69-73 Clock gene disruptions 
can lead to misaligned dopamine release patterns, thus provid-
ing a window into the complex mechanisms underlying PD 
symptomatology.73,74 Dopaminergic neurons, which represent 
the primary targets in PD, exhibit intrinsic circadian rhythms 
governed by the TTFL. Dysregulation of these clock genes has 
been observed in PD patients and animal models of PD (Table 2). 
McClung et al.74 found that CLOCK mutant mice exhibited in-

Table 1. Major motor and nonmotor symptoms of Parkinson’s dis-
ease

Domain Symptom
Motor Appendicular Resting tremor

Rigidity

Bradykinesia

Micrographia

Dyskinesias

Gait Postural instability

Decreased arm swing

Short step length

Freezing of gait

Oral Hypophonia

Dysphagia

Nonmotor Psychiatric Depression

Anxiety

Apathy

Hallucination/delusion

Dementia

Obsessional disorder

Sleep Periodic limb movement in sleep

REM sleep behavior disorder

Excessive daytime sleepiness

Insomnia

Vivid dreaming

Autonomics Orthostatic hypotension

Sexual dysfunction

Bladder dysfunction

Gastrointestinal Constipation

Nausea/vomiting

Dyspepsia

Sensory Hyposmia

Paraesthesia

Pain

Other Fatigue

Weight loss

Blurred vision
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Table 2. Summary of key studies providing behavioral or clinical evidence for the linkage between Parkinson’s disease and circadian disruption

Study
Behavioral and physiological alternations

Presentation Significance
Sun et al.,151 2019 Sleep-awake behavior Increased α-synuclein in CSF was noted in adults with chronic sleep apnea, supporting 

poor sleep may be related pathogenesis of Parkinson’s disease
Jiang et al.,152 2023 Sleep-awake behavior Poor PD sleepers have severe non-motor symptoms; in addition, the increase of 

nocturnal arousal may predict the progression of motor symptoms
Brooks et al.,63 2020 Rest-activity rhythms Continuous actigraphy can detect rest-activity disruption in PD, which is associated 

with motor severity and H&Y stage
Obayashi et al.,64 2021 Rest-activity rhythms PD patients exhibited a phase advance in circadian activity rhythm, along with amplitude 

reduction
Vallelonga et al.,65 2019 Variations in cardiac 

rhythms or blood pressure
Patients with α-synucleinopathies showed a circadian rhythm disruption characterized 

by increased BP variability

Shen et al.,153 2022 Variations in cardiac 
rhythms or blood pressure

24-hour ambulatory BP monitoring is an important method to evaluate the BP alterations 
in PD

Suzuki et al.,154 2007 Mood swings PD patients with depression show an altered circadian rhythm in temperature

Study
Molecular alternations: clock genes expression from human/animals

Gene/intervention Phenotype
Lee et al.,155 2010 BMAL1 Alternation in rhythm of locomotor activity, premature aging, risk factor of cancer
Gu et al.,77 2015 BMAL1 Tremor dominant subtype, contribution not only to circadian dysfunction but also PD 

pathogenesis
DeBruyne et al.,156 2007 CLOCK Circadian disruption presenting in locomotor activity and response to light

Lou et al.,78 2018 CLOCK An independent risk factor for motor fluctuations and sleep disturbance in PD

Hua et al.,157 2012 CRY1 Besides circadian disruption, more prone to depression

Masubuchi et al.,158 2005 PER1 Fail to adapt to environmental light-dark cycle
Gu et al.,77 2015 PER1 Postural instability subtype, also contribution to circadian dysfunction and 

PD pathogenesis
Fu et al.,159 2002 PER2 Caricadian control and tumor suppressor gene

Lou et al.,160 2017 PER2 Regulation of psycho-behavioral control, hormone secretion, mood, and sleep

Study
Molecular alternations: preclinical models from animals

Gene/intervention Phenotype
Tanaka et al.,161 2012 MPTP Lengthen the circadian period of locomotor activity

Hayashi et al.,104 2013 MPTP Alterations of clock genes expression

Choudhury and Daadi,162 2018 MPTP Experience PD-like motor and non-motor symptoms with circadian disruption

Franke et al.,163 2016 MPTP Prodromal stage PD symptoms

Wang et al.,90 2018 6-OHDA Alterations of clock genes expression and antioxidant molecules

Yang et al.,164 2021 6-OHDA Variations in circadian rhythms of blood pressure and body temperature

Mattam and Jagota,165 2015 Rotenone Alterations of clock genes expression

Valadas et al.,166 2018 PARK Sleep fragmentation and circadian dysregulation
Liu et al.,167 2022 LRRK2 Lower clock gene expression and disrupted sleep-awake cycle with reduced REM, 

NREM and total sleep time
McDowell et al.,168 2014 α-synuclein Produce sleep disruption with increased NREM sleep, decreased REM sleep and 

altered oscillatory EEG activity
Kudo et al.,169 2011 α-synuclein The wheel-running activity shows reduced nighttime activity and increased fragmentation.

Liu et al.,86 2023 α-synuclein Disrupts biorhythms by destabilizing BMAL1 mRNA through miR-155.

Langley et al.,170 2021 MitoPark Display all-light- or all-dark-induced circadian rhythm dysfunction

Taylor et al.,171 2009 VMAT2-Deficient Model A shorter latency to behavioral sleep

PD, Parkinson’s disease; BP, blood pressure; REM, rapid eye movement; NREM, non-rapid eye movement; EEG, electroencephalography.

creased dopamine cell firing in the ventral tegmental area, thus 
suggesting that clock gene disruptions can directly affect dopami-
nergic function. Disturbances in the feedback loop within these 
neurons can also lead to changes in dopamine secretion patterns, 

thus contributing to the motor symptoms observed in PD.75,76 
These findings suggest a clear link between the clock gene sys-
tem and the dopaminergic dysfunction observed in PD.
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The role of CLOCK genes in disease risk, phenotype, and 
prognosis

Several studies have investigated the associations between 
clock genes and the different phenotypes observed in PD. A 
case‒control study in a Han Chinese population found that the 
ARNTL (BMAL1) and PER1 genes were associated with suscep-
tibility to PD and specific phenotypes. The variant ARNTL 
(rs900147) showed a positive correlation with tremor-dominant 
(TD) cases, whereas PER1 (rs2225380) showed a positive corre-
lation with postural instability and gait difficulty (PIGD) cases. 
The allele frequencies did not significantly differ between TD 
and PIGD, thus indicating no significant genetic variation be-
tween subtypes.77 These findings suggest that clock genes could 
actually provide the foundation for the manifestation of specific 
PD symptoms.

Clock gene variants have also been implicated in the disease 
phenotype, with the CLOCK T3111C variant found to be an 
independent risk factor for motor fluctuations and sleep disor-
ders in Chinese PD patients.67,68,78,79 Cai et al.68 also reported 
that lower expression of the clock gene BMAL1 in PD patients 
during the dark period was associated with disease severity, 
thus suggesting that the extent of circadian rhythm disruption, 
as indicated by clock gene expression levels, may also serve as a 
severity marker in PD.68

In summary, these studies indicate that clock genes are asso-
ciated with susceptibility to PD, specific phenotypes, motor 
fluctuations, sleep disorders, and disease severity.

Pathophysiological basis of CLOCK gene abnormalities 
in PD

Circadian rhythms regulate the oscillations of tight junction 
proteins in the blood‒brain barrier (BBB); thus, disrupted cir-

cadian rhythms can lead to increased permeability of the BBB, 
altered expression of BBB transporters, and changes in the ex-
pression of tight junction proteins in the BBB.80,81 The break-
down of BMAL1 has been shown to impair BBB integrity via 
pericyte dysfunction.82 These findings suggest that disruption of 
circadian rhythms can directly affect BBB function, which could 
contribute to the development of PD.83

Beyond the disruptions that occur in the BBB, Willison et al.84 
proposed that circadian dysfunction may even accelerate the 
underlying pathology of PD by increasing oxidative stress and 
mitochondrial disruption. Indeed, the decomposition of BMAL1 
expression has been shown to cause terminal synaptic damage, 
death of dopaminergic neurons, and aggravation of motor dys-
function in the MPTP-induced PD model.85 Furthermore, it 
has been reported that the accumulation of α-synuclein can de-
stabilize BMAL1 mRNA via miR-155, which can affect circadi-
an rhythm.86 Taken together, these results suggest that there is a 
bidirectional relationship between disruptions in the circadian 
clock system and the neuropathology of PD that, if better un-
derstood, could have implications for diagnosis and treatment.

The role of CLOCK genes beyond circadian rhythm
It has been suggested that clock genes not only regulate cir-

cadian rhythms but also play a significant role in neuroprotection 
through processes such as mitochondrial dysfunction, protein 
aggregation, neuroinflammation, and oxidative stress pathways 
(Figure 3).79,85,87-90

Clock gene dysregulation and mitochondrial dysfunction
Mitochondrial dysfunction is a prominent feature of the 

pathophysiology of PD, and emerging evidence suggests a link 
between clock gene dysregulation and mitochondrial function. 

Figure 3. Integrated model of clock gene dysregulation and its multidimensional impact on Parkinson’s disease (PD). SCN, suprachiasmatic 
nucleus.
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The clock gene system regulates mitochondrial dynamics, in-
cluding processes such as mitochondrial transport, fusion, and 
fission, as well as mitophagy, which is the selective degradation 
of damaged mitochondria.91 Clock genes regulate mitochon-
drial dynamics, biogenesis, and oxidative phosphorylation via 
the modulation of key transcription factors, such as PGC-1α 
and NRF1.92-94 Thus, dysregulation of clock genes can disrupt 
mitochondrial homeostasis, thus leading to impaired energy 
production, increased oxidative stress, and neuronal dysfunc-
tion in PD.89,95

Clock gene dysregulation and oxidative stress
Oxidative stress, which results from an imbalance between re-

active oxygen species (ROS) production and antioxidant defense 
mechanisms, is believed to be a key contributor to PD patho-
genesis.57 Clock genes play a crucial role in regulating redox ho-
meostasis by modulating the expression of antioxidant en-
zymes and stress response genes.70 Disruptions in clock gene 
expression can lead to increased ROS production and impaired 
antioxidant defense mechanisms, thus contributing to oxida-
tive stress and neurodegeneration in PD.90,96,97 Furthermore, 
dysfunction of the NAD-dependent deacetylase SIRT1, which 
is regulated by clock genes, is a hallmark of PD. SIRT1 is in-
volved in maintaining cellular redox homeostasis, and its dys-
function may contribute to oxidative stress and neurodegener-
ation in PD.43,44,98

Clock gene dysregulation and neuroinflammation
Neuroinflammation is a salient characteristic of PD, which is 

highlighted by the pronounced activation of microglia and the 
subsequent release of proinflammatory cytokines.99 The im-
mune system is synchronized with the circadian clock to ensure 
that immune responses are optimally timed to improve their ef-
ficacy.100 Astrocytes possess intrinsic circadian clocks and re-
lease cytokines and chemokines, thus modulating the activity of 
surrounding neurons and glial cells.101,102 Microglia, which are 
the resident immune cells of the brain, exhibit circadian pat-
terns in their morphology and phagocytic activity.103,104 Their 
role becomes crucial in neurodegenerative diseases where aber-
rant circadian rhythms can exacerbate disease progression. 
Within these cells, TTFL modulates several immune respons-
es,85,105,106 and it is known that BMAL1 can inhibit the produc-
tion of proinflammatory cytokines, whereas its disruption leads 
to heightened inflammatory responses.107,108 Thus, the targeting 
of clock genes and their downstream inflammatory pathways 
may provide novel therapeutic approaches for mitigating neuro-
inflammation and slowing disease progression in PD.88

Clock gene dysregulation and the gut-brain axis
The gut-brain axis refers to the bidirectional communication 

between the gastrointestinal tract and the central nervous sys-
tem, and it involves neural, hormonal, and immunological path-
ways.109 Recent studies have demonstrated a bidirectional rela-
tionship between the gut microbiota and the clock gene system. 
Disruptions in the gut microbiota, such as dysbiosis or altera-
tions in microbial metabolites, can lead to clock gene dysregula-
tion and circadian rhythm disturbances.110-112 In contrast, dis-
ruptions in circadian rhythm can also lead to gut dysfunction, 
such as altered gut motility, increased intestinal permeability, 
and dysregulated immune responses.113-115 Thus, dysregulation 
of the gut-brain axis, which is mediated by circadian dysregu-
lation, can further exacerbate neuroinflammation and neuro-
degeneration in PD.116

Clock gene dysregulation and other neurodegenerative 
disorders

Other neurodegenerative disorders, such as Alzheimer’s 
disease (AD), Huntington’s disease, and amyotrophic lateral 
sclerosis, have been associated with disruptions in circadian 
rhythms.55,97,117-121 These disruptions are not only considered 
manifestations of the diseases but may also directly contribute 
to their pathogenesis.122 The role of circadian rhythm abnormali-
ties in these disorders has become increasingly recognized, with 
evidence suggesting that circadian rhythm disruption and sleep 
disorders aggravate neurodegeneration; correspondingly, neuro-
degenerative diseases can disrupt circadian rhythms and sleep.123

BIOMARKERS AND DIAGNOSTICS

The early detection of circadian disruption can allow for the 
identification of prodromal PD, thus allowing for timely dis-
ease-modifying interventions. In fact, as highlighted above, it 
is possible that such strategies may even specifically attempt to 
restore circadian disruption in an effort to slow the pace of dis-
ease progression, which would represent a novel therapeutic 
strategy for the prevention and management of PD.54 When 
considering the importance of circadian disruptions in PD, the 
future direction and challenge for circadian research in PD 
should focus on the identification of circadian biomarkers. In 
addition to traditional measurements of melatonin or cortisol 
levels,124,125 new approaches should focus on the evaluation of 
peripheral clock gene expression.2,126,127 To date, proteomic 
studies of pathology related to circadian rhythm disorders have 
been performed with limited success; moreover, they lack high-
quality cohort studies on the onset and course of PD.128-130 Oth-
er chronobiological signatures obtained from wearable devices, 
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such as actigraphy devices, combined with advanced bioinfor-
matics tools to assess core body temperature and rhythm of 
rest-activity, may also offer noninvasive and efficient methods 
to assess PD onset or progression.131,132

THERAPEUTIC POTENTIAL OF 
CIRCADIAN RHYTHM REGULATION

Along with understanding the role of circadian rhythm dis-
ruption in PD and facilitating research on the interplay be-
tween neurodegeneration and circadian rhythm disruption, there 
is a new perspective for therapeutic potential (Table 3).133 Some 
simple approaches already exist, such as the effect of high-in-
tensity exercise, which not only improves sleep efficiency but also 
improves circadian rhythm.134 Similarly, light therapy has already 
been explored in PD.135,136 Despite the low cost, easy accessibility, 
and excellent safety profile, further studies are needed to clarify 
the optimal timing, appropriate duration, optimal illumination, 
and wavelength of the light itself.135

The antioxidative capabilities of melatonin137 and its role in 
circadian synchronization138 have positioned it as a potential neu-
roprotective and chronotherapeutic agent. A recent meta-analy-
sis suggested that melatonin can significantly improve subjective 
sleep quality and total sleep time in PD with good safety and tol-
erability.139 Emerging research has substantiated the efficacy of 
prolonged release melatonin formulations,140 as well as melato-
nin receptor agonists,141 in enhancing subjective sleep quality 
among patients diagnosed with PD. However, the endogenous 
circadian rhythm governing melatonin secretion exhibits inter-

individual variability and is susceptible to modulation by ex-
ternal variables, including dietary intake, physical activity, photic 
stimuli, and even dopaminergic medications.95,138,142-145 Address-
ing these confounding factors may potentiate the efficacy of 
melatonin in the context of individualized therapeutic regimens.

Recent advances in pharmacological research have led to the 
development of small-molecule modulators designed to target 
aberrant circadian systems. The CK1δ/ε inhibitor known as CKI-
7 has been found to significantly reduce endogenous Aβ pep-
tide,146 thus indicating its importance in neuroprotective strate-
gies, such as those for AD. Furthermore, other small modulators 
inhibiting CDKs (cyclin-dependent kinases) or JNK (c-Jun N-
terminal kinases) have period-lengthening activities because of 
their neuroprotective effects on CKIδ in some animal model 
studies.147,148 One recent MPTP-induced PD preclinical study 
demonstrated some preservation of dopaminergic neurons and 
a partial restoration of striatal dopamine levels by using this ap-
proach.147

Rev-Erbα is a crucial negative regulator in the circadian clock 
system that regulates cellular circadian rhythms and energy me-
tabolism and has been associated with the attenuation of neuro-
inflammation in PD pathology.149 Thus, the potential therapeutic 
use of Rev-Erbα agonists (such as GSK4112) and antagonists 
(such as SR8278) to improve circadian dysregulation in neuro-
degenerative conditions has been suggested and requires fur-
ther study.150 Regardless of the agent that is evaluated, future 
treatments may rely on exploring the efficacy of chronotherapy, 
whereby medications need to be administered in synchroniza-
tion with an individual’s biological rhythm to optimize their 
therapeutic effects and to minimize side effects.118

Table 3. Comparing different potential therapeutic strategies, their benefits, and drawbacks

Potential therapy for CRD Benefits Drawbacks
Physical exercise 

(Schenkman et al.,172 2018)
Improvement in motor symptoms
Providing cardiovascular benefits as well
May arrest progression of PD

Concern of physical fitness
Fear and risks of falling
Musculoskeletal injuries

Melatonin supplement 
(Videnovic et al.,124 2014)

Improvement in sleep and poor alertness
Beneficial for the sleep-awake cycle
Antioxidant activity

Possible side effects, such as, 
headache, nausea, dizziness, 
drowsiness

Light therapy 
(Rutten et al.,173 2012; 
Endo et al.,135 2020)

Beneficial in non-motor symptoms, especially in sleep and mood disorder
Simple and convenient
Low cost
No concern of drug adverse effect
Potentials to restore circadian rhythm

Still lack of evidence in optimal 
light exposure, illumination and 
wavelength

Small chemical modulators 
(Wang et al.,147 2004; 
Hu et al.,148 2015)

Alleviates behavioral impairment
Neuroprotective effects of dopaminergic neuron

Lack of evidence in human studies

Chronotherapy 
(Fifel and Videnovic,118 2019; 
Asadpoordezaki et al.,133 2023)

To optimize medication effect
Low cost
No concern of drug adverse effect
Potentials to block the development of non-motor symptoms

Difficult to propose a standard 
circadian schedule

Combinations may be more effective.
CRD, circadian rhythm disruption; PD, Parkinson’s disease.
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CONCLUSION

The role of circadian rhythm is just beginning to be under-
stood in PD. There is clearly an intricate relationship between 
the clock gene system, the circadian rhythm, and the pathology 
underlying PD. A better understanding of the clock gene and 
TTFL disruptions in PD will potentially offer new therapeutic 
strategies. For example, molecular modulators, gene therapies, 
and even lifestyle interventions (such as controlled light expo-
sure and diet) need to be explored more fully to realign disrupt-
ed circadian rhythms and potentially alter the course of the dis-
ease. The modulation of clock gene activity or the realignment 
of the TTFL can mitigate some of the symptoms or even slow 
the progression of PD. These insights pave the way for person-
alized therapeutic interventions and offer hope for better dis-
ease management.
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