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Summary
Background Previous metabolic profiling of liver cancer has mostly used untargeted metabolomic approaches and was
unable to quantitate the absolute concentrations of metabolites. In this study, we examined the association between
the concentrations of 186 targeted metabolites and liver cancer risk using prediagnostic plasma samples collected up
to 14 years prior to the clinical diagnosis of liver cancer.

Methods We conducted a nested case–control study (n = 322 liver cancer cases, n = 322 matched controls) within the
Shanghai Men’s Health Study. Conditional logistic regression models adjusted for demographics, lifestyle factors,
dietary habits, and related medical histories were used to estimate the odds ratios. Restricted cubic spline
functions were used to characterise the dose–response relationships between metabolite concentrations and liver
cancer risk.

Findings After adjusting for potential confounders and correcting for multiple testing, 28 metabolites were associated
with liver cancer risk. Significant non-linear relationships were observed for 22 metabolites. The primary bile acid
biosynthesis and phenylalanine, tyrosine and tryptophan biosynthesis were found to be important pathways
involved in the aetiology of liver cancer. A metabolic score consisting of 10 metabolites significantly improved the
predictive ability of traditional epidemiological risk factors for liver cancer, with an optimism-corrected AUC
increased from 0.84 (95% CI: 0.81–0.87) to 0.89 (95% CI: 0.86–0.91).

Interpretation This study characterised the dose–response relationships between metabolites and liver cancer risk,
providing insights into the complex metabolic perturbations prior to the clinical diagnosis of liver cancer. The
metabolic score may serve as a candidate risk predictor for liver cancer.
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US National Institutes of Health [subcontract of UM1 CA173640].
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Introduction
Liver cancer ranks as the sixth most commonly diag-
nosed cancer and the third leading cause of cancer death
worldwide, with approximately 906,000 new cases and
830,000 deaths occurring in 2020.1 Most cases of HCC,
the predominant form of liver cancer, can be attributed
to infections with HBV and HCV, accounting for about
44% and 21%. Meanwhile, lifestyle risk factors
contribute to approximately 26% (alcohol consumption),
13% (tobacco smoking), 9% (obesity), and 7% (type 2
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diabetes mellitus, T2DM) of the cases.2 Although the
understanding of risk factors has greatly improved, the
underlying molecular mechanisms linking them to liver
cancer warrant further investigation.

Due to the asymptomatic nature of early-stage liver
cancer, the majority of patients are diagnosed at an
advanced stage, resulting in poor prognoses. Between
2000 and 2014, the 5-year relative survival for liver
cancer was less than 30% in most countries and re-
gions.3,4 Although widely used for the early detection of
cer & Department of Epidemiology, Shanghai Cancer Institute, Renji
200, Xie Tu Road, Shanghai, 200032, China.
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Research in context

Evidence before this study
Metabolic alterations associated with liver cancer have been
characterised by many hospital-based studies, yet these
studies are susceptible to reverse causation. Reports of
prospective epidemiological studies remain scarce. To our
knowledge, six studies have to date investigated the
association between circulating metabolite profiles and liver
cancer risk in a prospective manner. However, these studies
used untargeted metabolomic approaches that quantify
metabolites on a relative scale. Findings from these
untargeted metabolomic studies warranted further
confirmation.

Added value of this study
The application of targeted metabolomics technology in this
study allowed the absolute quantification of metabolites,

thereby strengthening the credibility of our findings and
enabling confirmation of associations previously reported by
untargeted metabolomics. Moreover, we examined potential
non-linear relationships and visualised the dose–response
curves between plasma metabolites and liver cancer risk. This
provided additional insights into the complex metabolic
perturbations prior to the clinical diagnosis of liver cancer.

Implications of all the available evidence
Our study offers insights into the aetiology of liver cancer,
suggesting that abnormal metabolism might be present long
before diagnosis and the association between several plasma
metabolite concentrations and liver cancer risk may not be
linear.
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liver cancer, the efficacy of ultrasonography is highly
operator-dependent and influenced by patient-related
factors such as obesity and cirrhosis, while the sensi-
tivity and specificity of serum alpha-fetoprotein (AFP)
are insufficient.5–7 Novel biomarkers, especially those
capable of indicating metabolic alterations well before
the onset of symptoms, are currently attracting signifi-
cant attention for risk assessment in liver cancer.

Metabolomics technology allows for a comprehen-
sive characterisation of both endogenous and exogenous
molecules present in biospecimens, offering a robust
tool to dynamically monitor metabolic alterations at the
molecular level in disease processes.8 The integration of
metabolomic technology into epidemiological studies
constitutes an emerging field of research, possessing
the potential to enhance the understanding of disease
aetiology and to identify early disease markers.9

Substantial efforts have been made to characterise
the metabolic alterations associated with liver cancer.10–14

Several metabolites and biochemical pathways have
been identified, such as bile acid biosynthesis, biosyn-
thesis of amino acids and proteins, lipid metabolism,
etc.15,16 However, the majority of existing studies, con-
ducted in hospital settings and including prevalent pa-
tients with cancer, may be susceptible to reverse
causation. Additionally, these studies often have rela-
tively small sample sizes, potentially compromising
their power to detect weak associations. Several
population-based studies have prospectively investigated
the association between circulating metabolites and liver
cancer risk.17–22 Given the limited number of existing
studies and the significant disparities in study design,
metabolomics platforms, and statistical analyses among
them, it is necessary to provide additional evidence for
the role of circulating metabolites in the development of
liver cancer in a prospective setting, where study
participants are recruited from the general population,
and biospecimens are collected prior to disease
diagnosis.

In this research, we conducted a 1:1 individual
matched case–control study nested within a prospective
cohort study and quantitated the plasma metabolites in
study participants. The objective of this study was to
examine the associations between the concentrations of
plasma metabolites and liver cancer risk, to elucidate the
biochemical pathways implicated in the aetiology of liver
cancer, and to identify a panel of metabolites that may
function as risk predictors for liver cancer.
Methods
Study design
The present nested case–control study was conducted
based on the Shanghai Men’s Health Study (SMHS), the
rationale for which has been published elsewhere.23–25

Briefly, the SMHS is a prospective and population-
based cohort initiated by the Shanghai Cancer Insti-
tute and Vanderbilt University in 2002–2006. SMHS
included 61,469 men aged 40–74 years from an urban
district in Shanghai, China. In-person interviews were
conducted by trained staff at baseline to collect infor-
mation on demographic background, medical history,
family history of cancer, dietary habits, physical activity,
and other lifestyle factors of the study participants. The
food frequency questionnaire and physical activity
questionnaire have been proven to have reasonable
reproducibility and validity.24,25 Anthropometrics were
also measured at study enrolment according to a stan-
dard protocol. A 10-mL blood sample was collected from
each of the 46,244 willing participants (75.1%). All
samples were kept at 4 ◦C, processed within 6 h, and
stored at −75 ◦C. Information on the date and time of
www.thelancet.com Vol 100 February, 2024
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sample collection, time of last meal, intake of selected
foods, smoking, and medication use in the past 24 h and
the previous week was collected at the time of bio-
specimen collection.23 HBV infection status was deter-
mined by quantitating the HBsAg levels using a
chemiluminescent microparticle immunoassay (CMIA)
with the Architect HBsAg Reagent Kit and Architect
i2000 analyser from Abbott Diagnostics (Abbott Park,
IL, USA). According to the manufacturer’s instructions,
the seronegative of HBsAg was defined as a titre of less
than 0.05 IU/mL.26

A combination of database linkage and active follow-
up was utilised to track new cancer events in study
participants. Incident cancer cases and deaths were
updated annually by linking the Shanghai Cancer Reg-
istry and the Shanghai Vital Statistics Registry.27 Three-
round of follow-ups have been conducted, all with high
response rates (2004–2008: 97.6%; 2008–2011: 93.7%
and 2012–2017: 93.6%). Possible cancer diagnoses were
verified through home visits and review of medical re-
cords by clinical specialists and pathologists.

By the end of 2016, SMHS had identified 444 inci-
dent liver cancer cases (ICD-9: 155). The present nested
case–control study was conducted based on 326 cases
that had adequate blood samples. A density sampling
method was used to select appropriate controls. Cohort
members who had adequate blood samples and were
free of cancer at the index time served as potential
controls. For each case, we randomly selected one con-
trol, matching in terms of age (±two years), date of blood
collection (±30 days), time of blood collection (morning/
afternoon), and antibiotics use during the preceding
week (yes/no). After excluding four cases that lacked
suitable controls, the nested case–control study
comprised 322 liver cancer cases along with their
respective controls (Supplementary Figure S1).

Quantitation of plasma metabolites
The metabolomics analysis was performed by a Q300
Kit from Metabo-Profile Biotechnology (Shanghai,
China) Co., Ltd.28 Sample preparation, instrument
settings, and quality control (QC) were carried out ac-
cording to the manufacturer’s protocol. Details on the
source of instruments and reagents have been
described in detail elsewhere.28 Briefly, an ultra-
performance liquid chromatography coupled to tan-
dem mass spectrometry (UPLC-MS/MS) system
(ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford,
MA, USA) was used to quantitate all targeted metabo-
lites. The raw data files generated by UPLC-MS/MS
were processed using TMBQ software (v1.0, Human
Metabolomics Institute, Shenzhen, Guangdong,
China) for peak integration, calibration, and quantita-
tion of each metabolite. We examined the reproduc-
ibility and reliability of the metabolite quantitation
using pooled QC samples, which were prepared by
mixing aliquots of the study samples. Principal
www.thelancet.com Vol 100 February, 2024
component analysis (PCA) were conducted based on
644 study samples and 58 pooled QC samples. The
multivariate control chart and the PCA score plot based
on the first two principal component were depicted.
The Spearman’s rank correlation matrix for the pooled
QC samples were also characterised. Inter-batch coef-
ficient of variances (CVs) and the average of intra-batch
CVs for each metabolites were calculated to assess the
analytical performance. Results of these analysis sug-
gested that the metabolite quantitation was robust and
suitable for further analysis (Supplementary Figure S2,
Supplementary Table S1).

Categorisation of the metabolite concentrations
After a standard QC procedure, the absolute concen-
trations (μmol/L) of 186 known metabolites were suc-
cessfully quantitated and used for further analysis
(Supplementary Table S1, Supplementary Figure S3).
Values below the lower limit of quantitation were
imputed with half of the minimum observed concen-
tration for that metabolite. Metabolite concentrations
were considered in both categorical and continuous
ways. For the categorical manner, the metabolites were
categorised into four groups based on corresponding
quartile cutoffs of the controls, with the lowest quartiles
as reference categories. Categorical analysis enhance the
understanding of the relationship between different
metabolite levels and the risk of liver cancer, and cap-
ture the possible nonlinear relationship. For the
continuous manner, a log2-transformation was adopted
to address the skewed distribution of plasma metabolite
concentrations. Compared with other transformation
method such as generalised log transformation and
cube root transformation, log2 transformation allows for
an intuitive interpretation. A 1-unit increase could be
interpreted as a doubling in the metabolite
concentrations.

Selection of covariates
Potential confounders were selected a priori based on
their known associations with liver cancer and their
potential to affect plasma metabolite concentrations. We
created a directed acyclic graph using the DAGitty web
application to determine the minimal sufficient adjust-
ment sets (Supplementary Figure S4).29 Based on the
causal diagram, the following covariates were included
in the multivariable-adjusted models: age (years old,
continuous), cigarette smoking (0 and tertiles of pack-
year), alcohol drinking (0 and tertiles of drinks/d),
body mass index (BMI) (<18.5 kg/m2, 18.5–23.9 kg/m2,
24–27.9 kg/m2, ≥28 kg/m2), Chinese Food Pagoda
(CHFP) score (0–45 points, tertiles), total physical ac-
tivity (MET-hour/week, tertiles), medical history of
chronic hepatitis and cirrhosis (yes, no), medical history
of cholelithiasis (yes, no) and medical history of T2DM
(yes, no). The CHFP score indicated adherence to the
Chinese dietary guidelines and the calculation has been
3
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reported in our previous publications.30–32 Considering
the potential collinearity of seropositive HBsAg, medical
history of chronic hepatitis, and medical history of
cirrhosis, we combined the three variables into one
(medical history of chronic hepatitis and cirrhosis) to
indicate potential liver damage at blood collection.

Statistical analyses
Baseline characteristics of the study participants were
described as frequency with proportion for categorical
variables, as mean with SD for continuous variables
with approximate normal distribution, and as median
with 25th and 75th percentile for skewed variables.
Categorical variables were compared using conditional
logistic regression model. Continuous variables were
compared using Student’s paired t-test or Wilcoxon
signed-rank test, as appropriate. The concentrations of
plasma metabolites were presented as geometric means
with geometric SDs and compared using geometric
mean ratios with 95% CIs.

The associations between plasma metabolites and
liver cancer risk were examined by conditional logistic
regression models. The ORs and corresponding 95%
CIs were calculated based on two models. Model 1 was
conditioned on matching factors. Model 2 further
adjusted for potential confounders mentioned above.
Since only three continuous variables (pack-year,
drinks/day, and CHFP score) have missing values and
the missing proportions were low (0.2%, 0.8%, and
2.0%), we imputed missing values with corresponding
median values. To account for multiple comparisons,
the Benjamini-Hochberg false discovery rate (FDR)
was computed.33 The Bonferroni-corrected P values
(raw P value/186) were also presented. The S value
[-log2 (P value)] was calculated to show the compati-
bility of data with hypotheses.34,35 The S-value has an
intuitive interpretation in a physical experimental coin
tossing. For example, an S value of 3 could seem about
as surprising as seeing 3 heads in a row from fair coin-
tossing.

The restricted cubic spline (RCS) function was used
to investigate potential non-linear relationships and to
characterise the dose–response curves flexibly.36 Log2-
transformed metabolite concentrations fitted with three
knots (10th, 50th, and 90th percentile) were included in
the multivariable-adjusted models as a three-knot RCS
function is much more flexible and would be more
powerful in detecting departure from linearity.37

Nonlinearity was evaluated by Wald χ2 tests. Dose–
response curves for metabolites with a Pnon-linearity of
less than 0.05 were characterised. To best capture the
dose–response relationships of these metabolites and
liver cancer risk, RCS function with four (5th, 35th,
65th, and 95th percentile) and five (5th, 25th, 50th, 75th
and 95th percentile) knots were further fitted for them
and the Akaike information criterion was used to select
the best-fitted model.38
We estimated the pairwise correlations of liver
cancer-associated metabolites by calculating the raw and
partial (adjusted for age and fasting time) Spearman
rank correlation coefficients (Spearman’s ρ). To avoid
potential collider bias, the correlation analyses were
performed only in controls.

To identify the most relevant biochemical pathways
associated with the development of liver cancer, we
conducted a metabolic pathway analysis based on me-
tabolites with an FDR of <0.05. The Human Metab-
olome Database (HMDB) IDs were used as standard
metabolite names.39 The pathway enrichment analysis
and pathway topology analysis were conducted using
the latest version of the R package provided by
MetaboAnalyst.40 The Kyoto Encyclopedia of Genes and
Genomes (KEGG) Homo sapiens database was selected
as the pathway library.41 We employed the hypergeo-
metric test as the method for over-representation
analysis and relative betweenness centrality as the
measure of node importance in topology analysis.
GHCA (HMDB0240607) did not match with any
compounds in the pathway library and was excluded
from subsequent pathway analysis.

To examine the robustness of the observed associa-
tions, the following sensitivity analyses were conducted.
First, we excluded participants with a follow-up time of
less than two years to rule out possible reverse causa-
tion. Second, taking into account the impact of prevalent
hepatobiliary diseases on plasma metabolite concentra-
tions, we excluded participants with a medical history of
chronic hepatitis, cirrhosis, or cholelithiasis or who
were seropositive for HBsAg. Unconditional logistic
regression models were employed in the above analyses
as the matched case–control pairs had been split. Third,
we replicated the observed associations by using a
bootstrap resampling method (accounted for matched
pairs) with 2000 repetitions to examine the robustness
of the risk estimates. The bias-corrected and accelerated
(BCa) method was used to calculate the 95% CIs of the
bootstrapped ORs.42 Fourth, a multivariable-adjusted
Cox regression model was fitted to offer insights into
the temporal relationships between metabolites and
liver cancer risk.

To extract the most informative and least redundant
panel of metabolites that could discriminate liver cancer
cases from healthy controls, a penalised least absolute
shrinkage selection operator (LASSO) logistic regression
analysis was performed.43 The optimal tuning parameter
(λ) was determined by a tenfold cross-validation pro-
cedure. We chose the most parsimonious model whose
deviance is no more than one SE above the deviance of
the best model.44 All the metabolites with nonzero co-
efficients in the model were obtained and used to
construct a liver cancer-associated metabolic score. The
metabolic score was calculated as the weighted sum of
the selected metabolites with weights equal to the co-
efficients from the LASSO logistic regression model.
www.thelancet.com Vol 100 February, 2024
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We used a multivariable-adjusted conditional logistic
regression model incorporating RCS function terms
(three knots: 10th, 50th, and 90th percentile) to char-
acterise the dose–response relationship between the
metabolic score and liver cancer risk.

To assess the predictive value of the metabolic
score, we developed three logistic regression models,
including a model with established risk factors for liver
cancer that are available in our datasets (age, BMI,
HBsAg, family history of liver cancer, cigarette smok-
ing, and alcohol drinking), a model with LASSO-
derived metabolic score alone, and a model with both
established risk factors and the metabolic score. The
Brier scores were calculated to evaluate the overall
performance of the three models. Discrimination of
the models was evaluated by receiver operating char-
acteristics (ROCs) and AUCs. ROC curves were
compared using DeLong’s test.45 Calibration was
examined by the Hosmer–Lemeshow goodness-of-fit
test. The calibration slope, intercept, as well as the
unreliability index (U) and its P value were also
calculated to test unreliability (H0: intercept = 0,
slope = 1) of the calibration curves. Apparent and bias-
corrected calibration curves using the loess algorithm
were also constructed to visualise the agreement be-
tween observed outcomes and predicted probabilities.
To account for overfitting, the bootstrap technique was
used for internal validation of the prediction models.
We calculated the optimism-corrected Brier scores and
AUCs and their 95% CIs with 2000 bootstrap
repetitions.

Statistical analyses were conducted in SAS 9.4 (SAS
Inc., Cary, N.C., USA) and R 4.3.0 (R Core Team,
Vienna, Austria). A 2-sided P value of less than 0.05 was
considered statistically significant. P values were re-
ported with two significant digits. All raw data and sta-
tistical programs are permanently stored on servers at
the Shanghai Cancer Institute.

Ethical approval
This study was conducted in accordance with both the
Declarations of Helsinki and Istanbul. Approval was
granted by the Ethics Committee of the Renji Hospital
Ethics Committee of Shanghai Jiao Tong University
School of Medicine (KY2021-029). Informed consent
was obtained from all individual participants included in
the study.

Role of the funding source
The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript.
Results
The descriptive characteristics of the cases and controls
are presented in Table 1. The median age at blood
www.thelancet.com Vol 100 February, 2024
collection was 57.57 years old [Q1 = 50.66, Q3 = 68.31]
for cases and 57.01 years old (Q1 = 50.66, Q3 = 68.59)
for controls. The median age at diagnosis for liver can-
cer cases was 65.03 years old (Q1 = 55.85, Q3 = 73.80)
and the median time between sample collection and
liver cancer diagnosis was 5.89 years (Q1 = 3.02,
Q3 = 8.90). Compared to their respective controls, liver
cancer cases were more likely to have a seropositive
HBsAg, a medical history of chronic hepatitis, cirrhosis,
and cholelithiasis, as well as a family history of liver
cancer. The distributions of education, personal income,
and cigarette smoking were also significantly different
between the two groups.

A total of 186 types of metabolites, which involved
amino acids, benzenoids, benzoic acids, bile acids, car-
bohydrates, carnitines, fatty acids, indoles, nucleotides,
organic acids, phenols, phenylpropanoic acids, pyri-
dines, and short-chain fatty acids (SCFAs), were quan-
titated in our study (Supplementary Figure S3,
Supplementary Table S1). The geometric means, geo-
metric SDs, and the ratios of geometric means of the
plasma metabolite concentrations are shown in
Supplementary Table S2.

Results from the conditional logistic regression
models showed that the plasma concentrations of 89
metabolites were significantly associated with liver
cancer risk (FDR<0.05) conditioned on matching factors
(Model 1) (Supplementary Table S3). Totally, 28 me-
tabolites had an FDR of less than 0.05 after further
adjusted for multiple potential confounders (Model 2)
(Table 2, Fig. 1), predominantly consisting of bile acids
(n = 7, 25%), amino acids (n = 5, 18%) and carnitines
(n = 4, 14%) (Fig. 2). The ORs (95% CI), P values, and S
values for all the metabolites are shown in
Supplementary Table S3 (Model 1) and Supplementary
Table S4 (Model 2). Citric acid and Lysine had the
strongest association with liver cancer risk based on
effect estimates (OR per doubling = 12.86, 95% CI:
4.10–40.30 and 0.16, 95% CI: 0.06, 0.41). Potential non-
linear relationships were observed for 22 metabolites
and liver cancer risk, with a Pnon-linearity of less than 0.05
(Supplementary Table S4). The dose–response curves
for these metabolites are presented in Fig. 3. Arach-
idonic acid had an FDRnon-linear of less than 0.05 and the
dose–response curve suggested a “v” shape between the
log2-transformed concentrations of arachidonic acid and
liver cancer risk (Fig. 3). Pairwise correlations between
liver cancer-associated metabolites varied substantially
(Fig. 2). The highest correlation was observed in citric
acid and aconitic acid (ρraw = 0.84, ρpartial = 0.82).

As shown in Fig. 4, four pathways were significantly
associated with liver cancer risk, among which the pri-
mary bile acid biosynthesis had the lowest P value and
the phenylalanine, tyrosine and tryptophan biosynthesis
had the highest impact. The inclusion of arachidonic
acid, whose FDRnon-linear was less than 0.05, did not alter
the results of pathway analysis.
5
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Cases (N = 322) Controls (N = 322) P valueb

Age at blood collection, years old, median (Q1, Q3) 57.57 (50.66, 68.31) 57.01 (50.66, 68.59) 0.26

Fasting time, hours, n (%) 0.90

<3 79 (24.5) 76 (23.6)

3–6 165 (51.2) 166 (51.6)

≥6 78 (24.2) 80 (24.8)

Education, n (%) 0.040

Elementary school or less 34 (10.6) 35 (10.9)

Middle school 243 (75.5) 219 (68.0)

College or above 45 (14.0) 68 (21.1)

Personal income, Yuan/month, n (%) 0.0058

<1000 213 (66.2) 175 (54.4)

1000–2999 84 (26.1) 115 (35.7)

≥3000 25 (7.8) 32 (9.9)

Cigarette smoking, pack-year, n (%)c 0.043

0 90 (28.0) 119 (37.0)

≤16.73 87 (27.0) 67 (20.8)

≤30.00 74 (23.0) 66 (20.5)

>30.00 71 (22.1) 70 (21.7)

Alcohol drinking, drinks/day, n (%)c 0.89

0 213 (66.2) 217 (67.4)

≤1.19 32 (9.9) 34 (10.6)

≤2.27 34 (10.6) 35 (10.9)

>2.27 43 (13.4) 36 (11.2)

HBV infection, n (%)d 205 (63.7) 20 (6.2) <0.0001

History of chronic hepatitis, n (%) 85 (26.4) 11 (3.4) <0.0001

History of cirrhosis, n (%) 41 (12.7) 1 (0.3) <0.0001

History of cholelithiasis, n (%) 46 (14.3) 21 (6.5) 0.0014

History of type 2 diabetes mellitus, n (%) 33 (10.3) 27 (8.4) 0.42

Family history of liver cancer, n (%) 30 (9.3) 10 (3.1) 0.0022

Body mass index, kg/m2, mean (SD) 23.79 (3.44) 23.53 (3.02) 0.29

CHFP score, mean (SD)e 30.23 (5.06) 30.53 (5.11) 0.46

Total physical activity, MET-hour/week, median (Q1, Q3) 58.13 (36.70, 83.41) 58.07 (35.43, 85.43) 0.83

aCategorical variables were compared using conditional logistic regression analyses. bContinuous variables were compared using Student’s paired t-test or Wilcoxon signed-
rank tests, as appropriate. cNever smoker/drinkers = 0; ever smoker/drinkers were categorised by tertiles distributions. dSix participants lacked this information. Their self-
reported history of chronic hepatitis was used as a proxy. eChinese Food Pagoda score.

Table 1: Baseline characteristics of the study participants.a
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The results of the sensitivity analysis substantially
supported the main findings. The exclusion of partic-
ipants with a follow-up time of less than two years had
a minor impact on most significant associations
(Supplementary Table S5). When excluding partici-
pants with hepatobiliary diseases, the magnitude of
some observed associations was moderately attenuated
(Supplementary Table S6) and did not reach statistical
significance. All of the significant associations were
replicated using the bootstrapping method (Fig. 5).
The non-linear relationship between arachidonic acid
and liver cancer risk remained stable after excluding
participants whose follow-up time was less than two
years or with hepatobiliary diseases (Supplementary
Figure S5). Results of the Cox regression models
also supported the main findings (Supplementary
Table S7).
The penalised LASSO logistic regression model
derived a panel of 10 metabolites (creatine, glutamine,
tyrosine, TCA, TCDCA, rhamnose, AMP, glutaric acid,
isocitric acid, and homovanillic acid) most significantly
associated with liver cancer risk while robust to collin-
earity. Seven metabolites were associated with liver
cancer risk at the FDR<0.05 level (Table 2). The distri-
bution frequency of the LASSO-derived metabolic score
varied substantially between liver cancer cases and
controls (Supplementary Figure S6). An increased level
of metabolic score was significantly associated with liver
cancer risk after adjusting for potential confounders
(Supplementary Figure S6).

The performance of the three predictive models was
shown in Fig. 6 and Table 3. Overall, the metabolic score
exhibited discrimination comparable to that of estab-
lished risk factors [the optimism-corrected AUCs = 0.86
www.thelancet.com Vol 100 February, 2024
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Metabolite Class Categorial analysis Continuous analysis

Q1 ORQ2 (95% CI) ORQ3 (95% CI) ORQ4 (95% CI) FDRnon-linear
b ORdoubling (95% CI) FDR

beta-Alanine Amino acids Ref. 0.51 (0.24, 1.08) 0.61 (0.27, 1.37) 0.44 (0.19, 1.00) 0.62 0.70 (0.54, 0.90) 0.036

Creatine Amino acids Ref. 0.61 (0.30, 1.24) 0.30 (0.13, 0.67) 0.46 (0.20, 1.06) 0.35 0.52 (0.33, 0.81) 0.035

Lysine Amino acids Ref. 0.56 (0.25, 1.26) 0.16 (0.06, 0.42) 0.32 (0.14, 0.76) 0.59 0.16 (0.06, 0.41) 0.0033

Pipecolic acid Amino acids Ref. 2.68 (1.12, 6.40) 2.92 (1.16, 7.37) 4.06 (1.63, 10.10) 0.70 2.04 (1.23, 3.39) 0.041

Tyrosine Amino acids Ref. 1.08 (0.38, 3.05) 3.22 (1.14, 9.08) 5.38 (1.97, 14.70) 0.74 5.82 (2.38, 14.20) 0.0028

GCA Bile acids Ref. 3.39 (1.15, 9.94) 5.15 (1.62, 16.41) 12.74 (4.17, 38.89) 0.62 1.66 (1.35, 2.04) <0.0001

GCDCA Bile acids Ref. 2.42 (0.77, 7.57) 5.25 (1.85, 14.86) 14.97 (4.92, 45.53) 0.47 2.03 (1.54, 2.68) <0.0001

GHCA Bile acids Ref. 1.10 (0.38, 3.21) 2.67 (0.81, 8.85) 2.95 (0.98, 8.88) 0.64 1.81 (1.24, 2.66) 0.022

GUDCA Bile acids Ref. 1.25 (0.52, 2.99) 1.86 (0.73, 4.75) 3.53 (1.48, 8.45) 0.74 1.45 (1.20, 1.77) 0.0033

TCA Bile acids Ref. 4.28 (1.33, 13.78) 2.63 (0.82, 8.45) 13.36 (4.35, 41.03) 0.67 1.59 (1.31, 1.93) 0.00012

TCDCA Bile acids Ref. 2.94 (0.88, 9.82) 3.79 (1.26, 11.41) 19.06 (5.91, 61.49) 0.82 1.88 (1.48, 2.39) <0.0001

TDCA Bile acids Ref. 2.25 (0.87, 5.82) 0.92 (0.33, 2.54) 4.95 (1.88, 13.01) 0.85 1.43 (1.14, 1.78) 0.019

D-Xylulose Carbohydrates Ref. 2.35 (0.90, 6.15) 2.94 (1.09, 7.98) 3.61 (1.41, 9.26) 0.85 3.56 (1.61, 7.88) 0.019

Fructose Carbohydrates Ref. 1.36 (0.59, 3.11) 1.16 (0.49, 2.76) 2.34 (1.01, 5.44) 0.52 1.40 (1.10, 1.79) 0.044

Rhamnose Carbohydrates Ref. 0.63 (0.25, 1.62) 1.48 (0.58, 3.77) 2.60 (1.03, 6.59) 0.85 1.63 (1.16, 2.28) 0.035

Acetylcarnitine Carnitines Ref. 1.93 (0.85, 4.38) 2.17 (0.93, 5.11) 2.82 (1.26, 6.28) 0.74 2.55 (1.45, 4.49) 0.016

Myristoylcarnitine Carnitines Ref. 1.13 (0.42, 3.05) 2.76 (0.94, 8.10) 4.11 (1.60, 10.60) 0.85 3.24 (1.56, 6.72) 0.019

Oleylcarnitine Carnitines Ref. 0.84 (0.35, 2.04) 2.47 (0.95, 6.40) 4.14 (1.60, 10.69) 0.13 2.32 (1.30, 4.14) 0.035

Stearylcarnitine Carnitines Ref. 1.05 (0.46, 2.39) 1.60 (0.71, 3.60) 3.37 (1.43, 7.97) 0.62 1.94 (1.27, 2.97) 0.022

10Z-Heptadecenoic acid Fatty acids Ref. 1.46 (0.62, 3.44) 1.31 (0.58, 3.00) 3.35 (1.49, 7.51) 0.71 1.39 (1.12, 1.73) 0.027

Arachidonic acid Fatty acids Ref. 0.44 (0.22, 0.90) 0.52 (0.23, 1.19) 0.66 (0.31, 1.45) 0.016 0.65 (0.42, 1.02) 0.18

Aconitic acid Organic acids Ref. 1.14 (0.40, 3.26) 3.53 (1.22, 10.22) 3.74 (1.26, 11.06) 0.85 6.89 (2.57, 18.43) 0.0028

Citric acid Organic acids Ref. 1.10 (0.43, 2.83) 1.70 (0.60, 4.80) 5.33 (1.94, 14.66) 0.62 12.86 (4.10, 40.30) 0.00036

Isocitric acid Organic acids Ref. 2.36 (0.77, 7.24) 3.10 (1.11, 8.67) 9.22 (3.06, 27.83) 0.92 6.45 (2.98, 14.00) 0.00011

Homovanillic acid Phenols Ref. 1.32 (0.54, 3.23) 1.88 (0.68, 5.21) 3.78 (1.48, 9.71) 0.56 3.19 (1.71, 5.98) 0.0048

Hydroxyphenyllactic acid Phenylpropanoic acids Ref. 0.28 (0.10, 0.83) 0.75 (0.31, 1.85) 1.68 (0.69, 4.10) 0.12 2.11 (1.31, 3.41) 0.022

Butyric acid SCFAs Ref. 2.76 (1.03, 7.43) 6.79 (1.95, 23.66) 6.49 (1.59, 26.48) 0.87 4.17 (1.84, 9.46) 0.0098

Ethylmethylacetic acid SCFAs Ref. 2.87 (1.13, 7.28) 2.87 (1.05, 7.85) 3.48 (1.24, 9.78) 0.83 2.10 (1.23, 3.60) 0.046

Propanoic acid SCFAs Ref. 1.44 (0.58, 3.53) 3.47 (1.33, 9.01) 5.98 (2.01, 17.79) 0.52 6.80 (2.20, 21.05) 0.013

aConditioned on matching factors and adjusted for age, cigarette smoking, alcohol drinking, BMI, physical activity, CHFP score, medical history of hepatitis and cirrhosis, medical history of cholelithiasis and
medical history of T2DM. bLog2-transformed metabolite concentrations was fitted with a 3-knots restricted cubic spline (10th, 50th, and 90th percentile).

Table 2: Associations between selected metabolites and liver cancer risk.a

Articles
(95% CI: 0.82–0.88) and 0.84 (95% CI: 0.81–0.87),
respectively; DeLong’s test P = 0.50]. Incorporating the
metabolic score into the model with established risk
factors improved the overall performance of the model.
The optimism-corrected Brier score decreased from 0.15
(95% CI: 0.14–0.17) to 0.13 (95% CI: 0.11–0.14). The
combined model yielded an optimism-corrected AUC of
0.89 (95% CI: 0.86–0.91), which was significantly higher
than that of either metabolites or epidemiological vari-
ables alone (DeLong’s tests P < 0.0001). The calibration
plots demonstrated good predictive accuracy between
observed and predicted probabilities across all three
models (Fig. 6, Supplementary Figure S7). Test for
calibration slope and intercept showed that all the
models are well calibrated (U = −0.003, P > 0.999 for
three apparent calibration curves). The discrimination of
the individual metabolites used to construct the meta-
bolic score was presented in Supplementary Figure S8,
among which TCDCA showed the best discriminative
ability (AUC = 0.82, 95% CI: 0.78–0.85).
www.thelancet.com Vol 100 February, 2024
Discussion
Based on a case–control study nested within a prospective
cohort study, we examined the associations between the
prediagnostic plasma concentrations of 186 metabolites
and the risk of liver cancer. We found 28 metabolites
were associated with liver cancer risk after adjusting for
potential confounders and correcting for multiple testing.
These associations remained stable when excluding par-
ticipants with a short follow-up time or prevalent hep-
atobiliary diseases. Our study highlighted the non-linear
relationships between 22 metabolites and liver cancer
risk. The primary bile acid biosynthesis and phenylala-
nine, tyrosine and tryptophan biosynthesis were identi-
fied as important biochemical pathways in the
development of liver cancer. Furthermore, we derived a
metabolic score consisting of 10 metabolites that signif-
icantly improved the predictive ability of established risk
factors for liver cancer risk.

Understanding the early metabolic alterations in
liver cancer can provide insights into the aetiology and
7
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Fig. 1: Associations between plasma metabolite concentrations and male liver cancer risk (Logistic regression models conditioned on matching
factors and adjusted for age, cigarette smoking, alcohol drinking, BMI, physical activity, CHFP score, medical history of hepatitis and cirrhosis,
medical history of cholelithiasis and medical history of T2DM were used. The horizontal dashed lines represent thresholds for statistical sig-
nificance. Metabolites located above the lines have reached significance levels at the corresponding thresholds annotated).
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aid in the search for novel biomarkers for risk assess-
ment of liver cancer. To our knowledge, six studies
have to date investigated the association between
circulating metabolite profiles and liver cancer risk in a
prospective manner.17–22 In addition, several studies
paid particular attention to specific categories of
Fig. 2: Correlation matrix for liver cancer-associated metabolites among co
lower left section displays the raw correlation coefficients, while the uppe
age and fasting time).
metabolites including bile acids, amino acids, and one-
carbon metabolites.46–51 Consistent with the Alpha-
Tocopherol, Beta-Carotene Cancer Prevention (ATBC)
study,19 the prospective Korean Cancer Prevention
Study-II (KCPS-II),18 two cohort studies in Chinese
population,20,22 and three reports of the European
ntrols (The numbers within the squares represent Spearman’s ρ. The
r right section shows the partial correlation coefficients adjusted for
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Fig. 3: Dose–response relationships between selected metabolites and liver cancer risk (Logistic regression models conditioned on matching
factors and adjusted for age, cigarette smoking, alcohol drinking, BMI, physical activity, CHFP score, medical history of hepatitis and cirrhosis,
medical history of cholelithiasis and medical history of T2DM were used. The solid lines represent the estimated dose–response curves, the dots
indicate the knots used by RCS function, and the shaded areas denote the 95% CIs).
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Prospective Investigation into Cancer and Nutrition
(EPIC) cohort,17,21,51 we found that elevated levels of
circulating tyrosine were associated with an increased
risk of liver cancer. The associations between beta-
alanine, creatine, and lysine and liver cancer risk
were also reported by Hang et al. and two reports of
EPIC.22,47,51 Additionally, our study suggested that
elevated levels of pipecolic acid was associated with
liver cancer risk. The liver plays a critical role in the
transport, signaling, and metabolism of amino acids.52

Altered amino acid profiles have been reported to be
associated with established risk factors for liver cancer,
such as obesity, excessive alcohol intake, T2DM, and
metabolic syndrome.53–59 The alterations in circulating
www.thelancet.com Vol 100 February, 2024
amino acid levels may act as potential mediators link-
ing these risk factors to liver cancer.

Our study highlighted the importance of bile acid
perturbations in the aetiology of liver cancer. We found
that elevated concentrations of seven bile acids were
associated with an increased risk of liver cancer, which
was consistent with previous publications.18,22,48–51

Similar to our study, Jee et al. suggested that dysregu-
lation of primary bile acid biosynthesis plays an
important role in the development of liver cancer.18 Bile
acids are detergent molecules that can be highly toxic if
accumulated in the liver and other tissues.60 Increased
levels of bile acids represent early indicators of liver
dysfunction.60 Except for liver cancer, alterations in bile
9
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Fig. 4: Pathway analysis based on liver cancer-associated metabolites
(Metabolites with an FDR of <0.05 were included in the analysis.
Pathways that lie above the dashed line surpass the significance
threshold of P < 0.05).

Fig. 5: Replication of the observed metabolites-liver cancer associatio
regression models conditioned on matching factors and adjusted for ag
score, medical history of hepatitis and cirrhosis, medical history of cholel
to 95% CI).
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acid homeostasis could also be led by other hepatobiliary
diseases, such as liver fibrosis, cirrhosis, and
NAFLD.11,61,62 Nevertheless, we observed similar associ-
ations in participants without prevalent hepatobiliary
diseases. This suggested that the associations between
circulating bile acids and liver cancer risk might not be
solely attributed to these diseases.

Previous studies have seldom focused on the asso-
ciation between organic acids and liver cancer risk. Only
two prospective studies reported a significant associa-
tion between citrate and liver cancer risk.17,20 We found
that elevated plasma concentrations of three organic
acids were associated with an increased risk of liver
cancer. Additionally, the citrate cycle was identified as
one of the most abundant pathways, with three liver
cancer-associated organic acids included in the pathway.
The citrate cycle, also referred to as the tricarboxylic acid
cycle or the Krebs cycle, is a crucial process of energy
production in cells. In this process, Acetyl-CoA derived
from the breakdown of sugars, fats, and proteins were
oxidised in cells to produce the high-energy molecule
ATP.63 The citrate cycle also generates important
ns using a bootstrapping method with 2000 repetitions (Logistic
e, cigarette smoking, alcohol drinking, BMI, physical activity, CHFP
ithiasis and medical history of T2DM were used. The error bar refers
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intermediates used in the synthesis of fatty acids,
cholesterol, and other biomolecules. A hospital-based
study suggested that oxaloacetate, a citrate cycle-related
metabolite, could be used as a potential biomarker to
discriminate patients with HCC from patients with liver
cirrhosis as well as healthy volunteers.11 They suggested
that the alterations of metabolites in the citrate cycle
revealed high energy demand as well as altered enzyme
activities in association with rapid tumour growth.11 Our
study indicated that abnormal energy metabolism may
be present long before the diagnosis of liver cancer.

An interesting observation in the present study was
the significantly non-linear relationship between arach-
idonic acid (AA) and liver cancer risk, which was
inconsistent with the previous publication of the pro-
spective KCPS-II20 and a hospital-based cross-sectional
study.64 The previous studies indicated that the level of
AA was higher in the HCC group than in the cancer-free
control group, while the ORs were consistently less than
A

Brier score (95% CI)

Established risk factorsb

Metabolic score

Metabolic score & established risk factors

AUC (95% CI)

Established risk factorsb 0

Metabolic score 0

Metabolic score & established risk factors 0

aBootstrapping method with 2000 repetitions. bIncluding age, BMI, HBsAg, family hist

Table 3: Brier scores and AUCs for three prediction models.

www.thelancet.com Vol 100 February, 2024
one in our study. AA is a long-chain polyunsaturated
fatty acid present in human phospholipid cell mem-
branes and can be obtained from animal food sources,
particularly meat, fish, and eggs, or derived from lino-
leic acid, etc.65 Experimental studies suggested that AA
metabolism yields eicosanoids, like prostaglandins,
thromboxanes, and leukotrienes via cyclooxygenase and
lipoxygenase pathways, which are implicated in
inflammation and cancer progression by influencing
tumour cell dynamics and angiogenesis.66 However,
Mendelian randomisation did not support the causal
relationship between circulating AA levels and most
common cancers including liver cancer.65,67 Chen et al.
suggested that genetically predicted higher plasma
phospholipid AA levels were associated with an
increased risk of NAFLD and cirrhosis but not with liver
cancer.68 The combined OR for per SD increase in AA
levels was 0.99 (95% CI: 0.94–1.05; P = 0.77) for liver
cancer. Given the inconsistent results of existing
pparent Optimism-correcteda

0.15 (0.14, 0.17) 0.15 (0.14, 0.17)

0.15 (0.14, 0.17) 0.15 (0.14, 0.17)

0.12 (0.11, 0.14) 0.13 (0.11, 0.14)

.84 (0.81, 0.87) 0.84 (0.81, 0.87)

.86 (0.83, 0.88) 0.86 (0.82, 0.88)

.90 (0.87, 0.92) 0.89 (0.86, 0.91)

ory of liver cancer, cigarette smoking and alcohol drinking.
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studies, the association between arachidonic acid and
liver cancer needs further investigation. This example
indicated the complexity of the metabolic alterations in
the development of liver cancer.

Several studies have examined the possibility of
circulating metabolites serving as risk predictors for
liver cancer. For example, Huang et al. derived a meta-
bolic score consisting of tyrosine, glutamate, and citrate
that improved the c-statistic of a clinical model pre-
dicting future HCC (age, HBeAg, viral load, and alanine
aminotransferase) from 0.70 to 0.79.20 Using the
orthogonal partial least-square analysis, a metabolic
signature was derived from the EPIC study, presenting
an AUC of 0.85.17 Furthermore, Hang et al. utilised
LASSO regression to select independent metabolites
and built a logistic regression model to assess the per-
formance of the predictors. They obtained a combina-
tion of 18 metabolites that showed the potential to
predict HCC risk with AUCs of 0.87 (95% CI: 0.82–0.92)
and 0.86 (95% CI: 0.80–0.93) in the training and vali-
dation sets, respectively.22 Similar to Hang et al., we
derived a panel of 10 metabolites that are robust to
collinearity through LASSO. A metabolic score consist-
ing of these metabolites produced a similar predictive
performance with a combination of established risk
factors for liver cancer. Considering the high cost of
circulating metabolite assays, easily available epidemio-
logical risk factors may still be a better choice for prac-
tical applications.

The key strength of this study lies in its prospective
design, in which blood samples were collected up to 14
years prior to the clinical diagnosis of primary liver
cancer, thereby reducing the possibility of reverse
causation. Detailed information on risk factors for liver
cancer, such as HBsAg, lifestyle factors, dietary habits,
and medical histories allows for comprehensive control
of confounders and improves the reliability of the re-
sults. Besides, the 1:1 individual matching design
significantly reduced the variance and improved the
statistical efficiency. In addition, compared to the
untargeted approach that quantifies metabolites on a
relative scale, targeted metabolomics provides absolute
concentrations of identified compounds. This is ach-
ieved by utilizing chemical standards to construct cali-
bration curves for each metabolite. To our knowledge,
most of the existing studies used an untargeted metab-
olomic approach17–22 and were unable to quantitate the
absolute concentrations of metabolites as in our study
(in μmol/L). The application of targeted metabolomics
technology in this study assured the precision of
metabolite identification and quantitation, thereby
strengthening the credibility of our findings and
enabling confirmation of associations previously re-
ported by untargeted metabolomics. Moreover, we
examined potential non-linear relationships and visual-
ised the dose–response curves between plasma metab-
olites and liver cancer risk. This provided additional
insights into the complex metabolic perturbations prior
to the clinical diagnosis of liver cancer.

Several limitations pertinent to the present study
warrant acknowledgment. First, our study lacked
biochemical markers that indicate liver function, such
as alanine aminotransferase, aspartate aminotrans-
ferase, and total bilirubin. Potential liver damage might
affect the concentrations of plasma metabolites, possibly
resulting in biased risk estimates. To address this, we
utilised self-reported medical histories of chronic hep-
atitis, cirrhosis, and seropositive HBsAg as proxies for
underlying liver dysfunction and included them as
covariates in the regression models. We also performed
sensitivity analyses by excluding participants with these
conditions and the results remained stable. Still, future
metabolomics studies should assess liver function
markers concurrently and give full consideration to this
issue. Second, as is typical of most previous publica-
tions, metabolomic profiling was conducted only once
in our study. Although the reproducibility of many
circulating metabolites over time has been
demonstrated,68–70 longitudinal studies with repeated
measurements are necessitated to account for within-
person variations and to assess the dynamic changes
of metabolites in relation to liver cancer risk. Third, the
concentration of plasma metabolites would be influ-
enced by diet and medication. To improve the compli-
ance of the study participants, fasting was not required
before blood collection. Although we considered sam-
pling time and use of antibiotic drugs in the study, there
will inevitably be deviations through individual subjec-
tive traceability. While a sensitivity analysis in a fasted
subset could be informative, it was not feasible in our
study due to the very low proportion of fasting samples
(<10%). Nevertheless, such non-differential misclassifi-
cation was more likely to result in an underestimation of
the effect. Fourth, residual confounding from strong
liver cancer risk factors such as cigarette smoking and
alcohol drinking, and unmeasured confounding cannot
be fully eliminated. Fifth, the definition of liver cancer
cases in our study was based on ICD-9 code 155, which
encompasses not only HCC but also intrahepatic chol-
angiocarcinoma and other rare histological subtypes. In
this case, our findings primarily reflect the metabolic
alterations in the aetiology of HCC (comprising 75%–

85% of the cases).1 Given the potential differences in the
aetiology of liver cancer among various histological
subtypes, analysing each type separately would offer a
more comprehensive understanding of the metabolic
differences in liver cancer. However, the current study
cannot accommodate this analysis because the histo-
logical subtypes of the liver cancer cases were unavai-
lable. The SWHS was established at an earlier time,
when the design did not facilitate the precise collection
of detailed histological subtype data. Last but not least,
participants in the present study are middle-aged Chi-
nese men from an urban area whose genetic
www.thelancet.com Vol 100 February, 2024
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background, lifestyles, and dietary habits may differ
from those of the other populations. Therefore, our
findings should be interpreted and extrapolated with
caution. Further investigations in women and other
ethnic groups are needed. We also acknowledge the
importance of conducting validation in similar source
populations in future studies, which could substantially
strengthen the generalizability of our findings.

In conclusion, we conducted a prospective metab-
olomics investigation to examine the associations be-
tween concentrations of plasma metabolites and liver
cancer risk and search for potential risk predictors for
the disease. This study provided insights into the aeti-
ology of liver cancer and offers potential candidate bio-
markers for risk prediction, suggesting that abnormal
metabolism might be present long before diagnosis and
the association between several plasma metabolites and
liver cancer risk may not be linear. Future studies are
warranted to confirm our findings in other populations
and to further investigate the underlying molecular
mechanisms.
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