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Abstract

Obesity-associated inflammation is a systemic process that affects all metabolic organs. Prominent 

among these is adipose tissue, where cells of the innate and adaptive immune system are 

markedly changed in obesity, implicating these cells in a range of processes linking immune 

memory to metabolic regulation. Furthermore, weight loss and weight cycling have unexpected 

effects on adipose tissue immune populations. Here, we review the current literature on the 

roles of various immune cells in lean and obese adipose tissue. Within this context, we discuss 

pharmacological and nonpharmacological approaches to obesity treatment and their impact on 

systemic inflammation.

INTRODUCTION

Obesity [defined by body mass index (BMI) > 30 kg/m2] is highly prevalent worldwide, 

with more than 42% of the US population considered obese (1), and obesity rates have 

more than doubled in over 70 countries since 1980 (2). Obesity is a major risk factor for a 

constellation of noncommunicable diseases including cardiovascular disease, type 2 diabetes 

mellitus, and cancer (3). Although obesity is known to be associated with a heightened 

inflammatory milieu in all metabolic organs, a unifying mechanistic link between immune 

responses to obesity and cardiometabolic complications has been challenging to delineate, 

limiting the potential for therapeutic advancements. However, evidence continues to suggest 

that nutrient excess elicits a chronic low-grade inflammatory response that may underlie 

cardiometabolic complications, which has expanded into the study of “metaflammation” 
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(4). Here, we present an overview of the links between obesity and inflammation, discuss 

the immunologic memory triggered by obesity, and review the metabolic response to 

nutrient oversupply in immune cells (immune cell bioenergetics). Last, we identify clinical 

approaches targeting obesity and their impact on inflammation.

OVERVIEW OF OBESITY-ASSOCIATED INFLAMMATION

Obesity is accompanied by chronic low-grade inflammation in metabolically impactful 

tissues such as adipose tissue (AT), liver, skeletal muscle, pancreatic islets, and the brain 

(Fig. 1). Inflammatory cytokine signaling can interfere with insulin signaling pathways 

leading to impaired glucose uptake and uncontrolled lipolysis, ultimately resulting in 

ectopic lipid storage and propagating insulin resistance in a vicious cycle. Although this 

Review will focus on AT, immune contributions to other organs are summarized in these 

excellent articles (4–8). AT immune cells serve a wide range of homeostatic functions 

that are modified upon obesity. In addition to the loss of their regulatory functions, 

heightened inflammatory phenotypes of immune cells in AT are typically met with systemic 

complications such as insulin resistance, hyperglycemia, and dyslipidemia—contributing 

to greater cardiometabolic disease risk. In addition, excessive pro-inflammatory cytokine 

release into the circulation is often present in obesity and metabolic syndrome, suggesting 

the induction of inflammatory processes as a clinical biomarker for metabolic disease 

risk (9). Thus, localized and systemic inflammatory processes provide potential targets for 

immune-mediated therapies to treat metabolic disease.

In mice, most studies have analyzed epididymal white AT from male animals. However, 

other visceral adipose depots (perirenal, mesenteric, and omental AT), as well as inguinal 

subcutaneous white AT and brown AT depots, may also be relevant to systemic dysfunction 

associated with AT inflammation. Furthermore, tissue-specific adipose depots such as 

perivascular and epicardial AT, as well as fat around skin and lymph nodes, are important 

for tissue homeostasis and may be altered in obesity, although their discussion is beyond 

the scope of this article. In humans, most studies have analyzed subcutaneous and omental 

white AT depots. Although the inflammatory response in AT is more extreme in mice, ample 

human data suggest that similar changes in the immune landscape occur in humans. For 

example, the number of macrophages in visceral AT is elevated in obese compared with 

lean individuals, associated with insulin resistance (10), and predictive of hemoglobin A1c 

(HbA1c) concentrations (11).

ADIPOSE TISSUE MACROPHAGES

Macrophage polarization

In a simplified and dichotomous paradigm, macrophages have been described as either 

classically activated M1-like or alternatively activated M2-like. These extreme states 

are based on in vitro polarization with cytokines in an effort to generate macrophage 

populations specialized to respond to environmental cues from stimuli within the tissues. 

M1-like macrophages defend against intracellular pathogens and are characterized by 

the production of pro-inflammatory cytokines [for example, interleukin-6 (IL-6), IL-1β, 

and tumor necrosis factor–α (TNF-α)] and expression of inducible nitric oxide synthase 
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(iNOS). M2-like macrophages are induced by IL-4 and IL-13 and present a tissue-repair 

phenotype characterized by the release of anti-inflammatory cytokines [for example, IL-10, 

IL-12, and transforming growth factor–β (TGF-β)]. In contrast to in vitro stimulation of 

macrophage phenotypes, macrophages in vivo exist along a spectrum of polarization states, 

and individual cells can simultaneously express genes/proteins of both M1/M2 phenotypes 

(12, 13).

Macrophage polarization in AT has been an area of interest in the immunometabolism 

field. In AT of mice and humans, M1- and M2-like macrophages express immune cell 

surface markers F4/80, CD11b, and CD64 but also contain unique identifiers specific to 

their population. M1-like macrophages express CD11c in mice and humans (10, 14, 15) 

and major histocompatibility complex class II (MHCII) in mice (16), whereas M2-like 

signatures include CD206, CD163, and TIM4 in mice (17) and CD206 in humans (10, 11). 

Studies identifying macrophage subpopulations in obesity have also revealed dissimilarities 

between mice and humans (18). For example, subcutaneous AT CD206+ CD11c+ cells are 

positively associated with insulin resistance in humans, but this double-positive population 

may be less prevalent in mice (10, 19). As in other tissues, the simple M1/M2 dichotomy 

is not sufficient to explain the full range of macrophage phenotypes in AT. Fortunately, 

technological and analytical advances in single-cell RNA sequencing, mass cytometry, and 

spatial transcriptomics are emerging in the immunometabolism field (11, 19–22), allowing 

for the profiling of functionally diverse immune cell populations.

Additional insights into AT macrophage (ATM) polarization can be made when considering 

the local AT milieu, which is rich in lipids, glucose, and insulin. Thus, a metabolically 

activated (MMe) macrophage phenotype in obesity provides a more accurate description 

of the ATM polarization state than the “M1” nomenclature (12, 13). In vivo cell surface 

abundance of CD36, PLIN2, and ABCA1 in ATMs from humans with obesity is a signature 

of the lipid-handling functions of MMe cells (13). In vitro MMe macrophages can be 

generated by metabolic stimuli (palmitic acid, glucose, and insulin). A detailed description 

of the function of these lipid-handling macrophages in AT is provided below.

Specialized resident macrophage function in AT homeostasis

Macrophages are the most abundant immune cell population in AT in both genetic and 

diet-induced obesity (23, 24). In the lean state, macrophages represent about 10% of all AT 

immune cells and can expand to represent more than 40% of all immune cells in obesity 

(15, 23). Macrophages present a high degree of plasticity and readily adapt to environmental 

cues to preserve tissue homeostasis. The diversity of tissue-resident macrophage populations 

within tissues is indicative of their homeostatic functions ranging from tissue repair, 

clearance of cellular debris, and metabolic regulation. Specifically in AT, their functions 

include buffering lipids and other critical molecules, antigen presentation, and coordinating 

both intercellular and interorgan cross-talk.

Lipid uptake and partitioning—MMe polarization is characterized by the expression 

of lipid-handling genes and proteins (13). Similar lipid-handling ATM populations have 

also been identified by expression of CD9 (called CD9+ATMs) (25) and Trem2 [called 
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lipid-associated macrophages (LAMs)] (26). The association of lipid-laden ATMs with 

CD9 and Trem2 markers has also been identified in humans (11). MMe, CD9+, and 

LAMs in AT are proposed to aid in the uptake and storage of lipids in an effort to 

limit ectopic lipid accumulation. In addition to their transcriptional profile linked to lipid 

handling, they are also localized to crown-like structures to aid with lipid scavenging around 

dead adipocytes. Other studies of lipid-handling ATMs report transcriptional characteristics 

of lysosomal biogenesis and lysosomal-dependent lipid metabolism, suggesting that an 

autophagy-dependent mechanism is up-regulated to aid in dead adipocyte degradation and 

fatty acid recycling (27). ATM localization to crown-like structures around dead adipocytes, 

coupled with a transcriptional pattern for lipid uptake and catabolism, offers a unique 

role for lipid uptake and storage in ATMs. In addition, adipocytes have been shown to 

release lipid-filled exosomes that are sensed by immune cells and directly contribute to 

bone marrow–derived monocyte differentiation into an MMe-like phenotype (28). Although 

not intuitive that macrophages would be required to buffer lipids in AT when adipocytes 

themselves can store large amounts of triglyceride, the reports described here support this 

function for ATMs.

Iron handling—Iron is required for normal homeostatic functions but is detrimental when 

in excess. We have described a subset of iron-rich macrophages—coined MFehi—that 

protect adipocytes from iron overload through an intrinsic capacity for iron uptake and 

storage (29, 30). Obesity results in fewer MFehi cells and lower iron content within the 

MFehi cells with concurrent adipocyte overload, suggesting that iron handling by MFehi 

cells is important for adipocyte iron homeostasis (29). Furthermore, iron transfer between 

macrophages and adipocytes in coculture was accelerated when the macrophages were 

MMe-polarized, with a net increased iron accumulation in the adipocytes (31). Adipocyte 

iron concentrations are relevant to systemic metabolic health because adipocyte-specific 

overload via ferroportin deficiency results in glucose intolerance (32), whereas reducing 

adipocyte iron concentrations via transferrin receptor deficiency results in protection from 

obesity-related metabolic dysfunction (33). In addition, increased iron localization within 

the mitochondrial matrix of ATMs promotes an inflammatory phenotype in ATMs and 

directly elevates mitochondrial iron content in adipocytes. In contrast, low macrophage iron 

content is associated with an M2-like phenotype and improved glucose tolerance (34). Thus, 

published data strongly support the role of ATMs in AT iron homeostasis, which may be 

particularly important for limiting the oxidative stress and insulin resistance common in 

obesity.

Catecholamine uptake and catabolism—Sympathetic innervation by norepinephrine 

signaling robustly promotes lipolysis. Nerve-associated macrophages in AT have been 

termed sympathetic neuron-associated macrophages (SAMs) (35). SAMs have been reported 

to increase with obesity (35) and to decrease with aging (36). SAMs are localized to nerve 

bundles, and their role is to coordinate sympathetic tone by regulating norepinephrine uptake 

and catabolism. In the context of obesity, increased activation and recruitment of SAMs 

to AT aim to protect from norepinephrine spillover. Ablation of the ability of SAMs to 

endocytose and degrade norepinephrine results in the browning of white fat and weight loss 

(35). Furthermore, this cell population appears to be conserved in humans (35), making it 
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a potential target for weight loss. The decline of SAMs with aging also provides a partial 

explanation for why aging humans have a defect in white AT lipolysis (36). Given the link 

between catecholamine and lipid metabolism, SAMs appear to be an important immune cell 

population poised to limit lipolysis from AT by catecholamines and likely preserve further 

glucose intolerance in obesity and aging.

Antigen presentation—Another intriguing function of ATMs is antigen presentation, 

which should not come as a surprise given the existence of memory CD4+ and CD8+ T 

cells in AT (described further below). Murine ATMs express MHCII and human ATMs 

express HLA-D, indicative of antigen presentation capability (11). Interestingly, the antigen 

presentation markers CD1A-E are elevated in lipid-rich CD11c+ ATMs. In mouse models, 

a dynamic interaction between ATMs and CD4+ T cells was demonstrated, and deficiency 

of MHCII resulted in fewer CD4+ T cells in the AT (37). Furthermore, the transfer of 

activated antigen-presenting cells into lean mice results in AT inflammation and impaired 

insulin action systemically (38). Antigen presentation may also be relevant to CD8+ T cell 

activation, because in obesity, CD8+ T cells increase in number and in clonality (39).

Intercellular mitochondria transport—Recent studies have suggested that 

macrophages are able to coordinate both intercellular and interorgan mitochondrial transfer 

through the uptake of extracellular vesicles or free mitochondria (40, 41). In the context 

of obesity, mitochondrial transfer between adipocytes and ATMs can be attenuated by 

saturated fatty acids, resulting in mitochondrial release into the circulation either as free 

mitochondria or within extracellular vesicles for peripheral tissue uptake (40). Furthermore, 

genetic disruption of mitochondrial uptake by macrophages results in systemic metabolic 

dysregulation (41). When considering the iron-handling phenotype of ATMs, it is possible 

that some of the iron transfer between adipocytes and ATMs could be attributed to this 

mitochondrial transfer. Whether all ATMs can participate in mitochondrial transfer or 

whether a unique subset is responsible for this function is unknown.

Together, these data demonstrate the pleiotropic homeostatic functions of resident ATMs. 

Therefore, therapeutic strategies targeting ATMs need to be considered carefully because 

some populations serve a conserved and beneficial impact relative to their anatomic location 

and role in metabolism.

Macrophage recruitment and differentiation

Tissue macrophages originate from either resident yolk-sac progenitors that proliferate 

within the tissue environment or the recruitment of bone marrow–derived monocytes into 

regions of tissue inflammation. Specifically, bone marrow–derived monocytes expressing 

Ly6C migrate from their peripheral origins to inflammatory sites signaled by chemokine 

ligands/receptors such as CCL2/CCR2 (42). For example, CCR2+ Ly6C+ monocytes are 

thought to differentiate into M1-like macrophages after recruitment to AT, and deletion of 

CCR2 on macrophages results in decreased monocyte influx into AT (15, 42).

After monocyte recruitment to the site of tissue inflammation, environmental cues from 

the tissue niche become drivers for macrophage differentiation and polarization. Unlike 

adaptive immune cells that have high antigen specificity, innate immune cells do not 
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express specific antigen recognition receptors (43). Therefore, macrophage polarization 

is activated by cell surface receptor response to ligands in the tissue microenvironment. 

Specifically, pattern recognition receptors (PRRs) are key components of the host immune 

system, initiating pathogen recognition and transcriptional activation to respond to specific 

pathogens of interest. Within the PRR family, Toll-like receptor (TLR) signaling has 

been demonstrated in early activation of the innate immune response, in which TLRs 

are proposed to “sense” nutrient excess by stimulation of their ligands [from saturated 

fatty acids and lipopolysaccharide (LPS)] to initiate signaling pathways aimed to meet the 

cellular and bioenergetic needs of the cell (44). The canonical model for TLR activation 

has been important for understanding signals responsible for inducing a pro-inflammatory 

environment in obesity and AT insulin resistance (45). For example, TLR activation by 

ligands activates nuclear factor κB (NF-κB) signaling to produce inflammatory cytokines 

as well as the Nod like receptor (NLR) family of innate immune sensors, specifically 

the NLRP3 inflammasome, which in turn regulates the activation of caspase-1 to cleave 

cytokines such as pro-IL-1β to their active form (46, 47). Therefore, IL-1β represents 

another inflammatory mediator that may impair insulin signaling and induce lipolysis. In 

summary, monocyte activation through the innate immune response aims to alleviate tissue 

stress caused by obesity but may follow with metabolic consequences.

Macrophage bioenergetics in obesity

Macrophage bioenergetics and polarization—Over the past 15 years, immunologists 

have developed a greater appreciation for the role of intrinsic immunometabolism, or 

bioenergetic pathways, in immune cell function (48). Preferential use of glycolysis or 

oxidative phosphorylation (OX PHOS) for adenosine 50-triphosphate (ATP) production 

allows metabolites to be generated for cellular functions such as proliferation, redox balance, 

inflammatory signaling, hypoxia-inducible factor–1α (HIF1α) activation, and epigenetic 

modifications. Interestingly, the relationship between fuel utilization and cell polarization is 

reciprocal because activating certain metabolic pathways can influence cell differentiation 

and polarization, and cell polarization can affect the use of bioenergetic pathways (Fig. 2). 

For example, fatty acid oxidation of oleic acid can induce M2 polarization (49), and using 

IL-4 for M2 polarization drives OX PHOS (50).

In the AT, intrinsic immunometabolism has been primarily studied in macrophages (51). 

In a resting state, lean ATMs have relatively low metabolic activity (52, 53). After 

adipose expansion, ATMs increase OX PHOS, typically associated with M2 polarization, 

and glycolysis, typically associated with M1 polarization. This unique bioenergetic state 

supports the data suggesting that ATMs are not M1 or M2 but have a unique “metabolically 

activated” polarization (13).

Whereas cytokine production in lean ATMs is supported by fatty acid, glucose, and 

glutamine utilization, cytokine production in obese ATMs is supported by glycolysis (52). 

Glycolytic macrophages often express high levels of the glucose transporter Glut1, and thus, 

Glut1 myeloid deficiency was hypothesized to improve fatty acid uptake and oxidation in 

ATMs (54). However, there were no differences in body weight, adiposity, or fasting blood 

glucose in myeloid Glut1-deficient mice compared with controls after high-fat diet (HFD) 
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feeding. There were, however, unstable atherosclerotic lesions and defective phagocytosis 

in Ldlr−/− mice lacking myeloid Glut1, suggesting several metabolic functions of Glut1 in 

macrophages to maintain tissue homeostasis.

Together, the current body of literature suggests that signals in the AT environment (lipids, 

glucose, and hormones) contribute not only to MMe polarization but also to the unique 

bioenergetics of ATMs in obesity. However, there is still much to understand about how 

we can target ATM metabolism in obesity. Microarray analysis of ATMs has highlighted 

changes in gene expression across many metabolic pathways, including one-carbon 

metabolism, amino acid metabolism, amino/nucleotide sugar metabolism, fructose/mannose 

metabolism, glycerolipid metabolism, and sphingolipid metabolism (52). Moreover, obese 

AT is an environment with elevated concentrations of lactate and iron, which likely drive 

their own metabolic programs in adipose immune cells (55). Thus, more research is 

warranted to understand the contribution of each metabolic pathway to macrophage function 

and to determine whether one or more of the metabolic pathways can be targeted to improve 

ATM function in obesity.

Other innate immune cells in AT

Other populations of innate immune cells also reside in AT. These include eosinophils, 

mast cells, neutrophils, dendritic cells (DCs), and innate lymphoid cells (ILCs). Whether 

eosinophils and mast cells contribute to AT homeostasis or dysfunction remains 

controversial (56–58) (Fig. 3). Thus, we focus our attention here on DCs and ILCs.

Dendritic cells—DCs in AT have been consistently grouped within macrophage 

clusters because of overlapping CD11c+ expression despite their functional diversity (59). 

Specifically, DCs have been identified in humans as CD11c+ CD1c+ (60) and in mice as 

CD11c+ CD64− (59) or CD11chigh F4/80low (60). Furthermore, DC subpopulations can be 

classified into conventional DC (cDC) subsets, comprising cDC1s and cDC2s. Previous 

reports have demonstrated that DC recruitment into AT is mediated by CCR2 and CCR7 

and is increased in HFD-fed mice (59) and positively associated with BMI in humans (60). 

Specific functions for DCs are still incompletely understood, but they are proposed to serve 

as antigen-presenting cells to signal CD4+ T cell activation. In addition, DCs induce T 

helper 17 (TH17) differentiation in mice and associate with TH17 T cells in humans (60).

Innate lymphoid cells—ILCs are proposed to be regulators and responders to the 

inflammatory response to obesity. ILCs can be clustered by group 1 (ILC1), group 2 (ILC2), 

and group 3 (ILC3) based on cell surface markers and cytokine release (61). Consistent 

with innate cells, ILCs respond to cytokines produced by local macrophages and DCs and 

are absent of antigen receptors (62, 63). ILC1 activation is induced by IL-12 cytokines, 

by which IL-12R/STAT4 signaling mediates ILC1 activation and stimulates interferon-γ 
(IFN-γ) release (62, 63). In mice, ILC1s are largely tissue-resident whereas natural killer 

(NK) cells are recruited from bone marrow precursors and are present in circulation (64). 

Activation of ILC1 and NK cells by local cytokines serves as a feed-forward response 

to increase a pro-inflammatory environment necessary to induce immune responses to 

obesity. ILC2s are an innate immune cell population associated with type 2 immunity and 
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maintained by IL-33 (65). ILC2s are attenuated in HFD-fed mice and humans with obesity 

(65). Interestingly, ILC-2s promote adipocyte precursor differentiation toward a beiging 

phenotype in mice, suggesting a potential role for type 2 ILCs to regulate tissue homeostasis 

by environmental cues triggered by IL-33 (65, 66).

Summary and future directions of innate AT immunity

Together, extensive literature now shows that macrophages and other innate immune cells 

play a key role in the pathogenesis of obesity and inflammation. Environmental cues 

that trigger the recruitment and differentiation of innate immune cells are exacerbated by 

obesity, and the polarization of macrophages into distinct phenotypes serves to modify AT 

function. Understanding how obesity alters the molecular and functional characteristics of 

macrophage subpopulations will continue to be critical for developing therapeutic strategies 

targeting inflammation.

ADAPTIVE IMMUNE CELL POPULATIONS IN OBESITY

T lymphocytes

T cells comprise the largest proportion of adaptive immune cells in AT, with CD4+ and 

CD8+ T cells predominating. They each play a unique role in AT homeostasis in the lean 

condition and in AT inflammation with obesity.

CD4+ T cells—CD4+ T cells can be divided into two broad categories: pro-inflammatory 

(TH1 and TH17) and anti-inflammatory [TH2 and Treg (regulatory T cells)]. In lean AT, the 

CD4+ to CD8+ ratio is 3:1; however, obesity increases the CD8+ T cell population (67). 

This in turn increases the ratio of inflammatory TH1 to anti-inflammatory TH2 CD4+ T 

cells. In addition, the Treg population, important for maintaining homeostasis within the AT, 

is reduced by up to 70% in HFD-fed mice (68). Forced reduction in the Treg population 

markedly increases the macrophage and effector T cell population within AT (68). This 

shift toward a more pro-inflammatory population is most prevalent in visceral AT and 

contributes to obesity-associated AT inflammation. In models of diet-induced obesity, Tregs 

are reduced and concentrated in the crown-like structures surrounding adipocytes, indicating 

their role in the maintenance of systemic metabolism (78). Tregs are abundant in lean AT 

and express genes involved in lipid metabolism (CD36, DGAT1, and LDLR) driven by 

peroxisome proliferator–activated receptor γ (PPARγ) (79). Deletion of PPARγ specifically 

in Tregs increases the infiltration of pro-inflammatory macrophages and monocytes after 

HFD feeding and abolishes the insulin-sensitizing effect of pioglitazone, a US Food and 

Drug Administration (FDA)–approved medication for type 2 diabetes.

CD8+ T cells—Diet-induced obesity evokes an early increase in CD8+ effector T cells and 

subsequent macrophage infiltration into visceral AT depots in mice (67) and subcutaneous 

AT in humans (69). CD8+ T cells interact with local macrophages to elicit macrophage 

differentiation, activation, and migration, inciting inflammation that contributes to insulin 

resistance. CD8+ T cell infiltration precedes the reduction in the Treg population. CD8 

depletion studies resulted in an inhibition of inflammatory macrophage infiltration and the 

downstream inflammatory cascade typically observed in obese AT (69). An expanding area 
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of research is related to the observation that T cell exhaustion, most commonly associated 

with the tumor microenvironment and viral infections, also increases within obese AT in 

mice and humans (20, 70, 71). Specifically, these exhausted CD8+ T cells are effector 

memory T cells, which express PD1 and TIGIT at the surface protein level and Pdcd1, 

Tox, Entpd1, Tigit, and Lag3 at the gene level. The relevance of T cell exhaustion to AT 

inflammation and function in obesity is not fully known.

Gamma-delta (γδ) T cells—γδ T cells are a class of tissue-resident lymphocytes present 

in both mice and humans with primary roles in defending against pathogens in epithelial 

tissues such as the skin, gut, and lungs (72). γδ T cells are also present in AT, comprising 

~4 to 11% of CD3+ T cells in mice (73). γδ T cells are unique in that they respond to 

antigen presentation similar to conventional T cells but also respond to cytokines, bridging 

a gap between innate and adaptive immunity. In mice, γδ T cells in AT have been shown to 

increase in obesity and are noted to secrete cytokines IL-17 (73, 74) and TNF-α (75). IL-17 

released by γδ T cells may limit adipogenesis (73), increase M1-like (CD11c+ CD206−) 

macrophages (75), and limit glucose tolerance (73, 75). In humans, circulating γδ T cells 

are decreased with obesity (76), yet omental AT γδ T cells are increased (77). Future studies 

profiling γδ T cells in obesity should identify innate signals responsible for γδ T cell 

activation and downstream T cell activation by γδ T cells.

T cell clonality in obesity

One hallmark of adaptive immunity is the clonal expansion of specific T and B cell 

populations after exposure to specific antigens. Remarkably, restricted T cell receptor (TCR) 

sequences have been identified on CD4+ and CD8+ T cells isolated from AT in mice (37, 

69). What is even more interesting is that with obesity, Treg clonal expansion decreases 

(68), whereas CD8+ clonal expansion increases. Tregs isolated from lean visceral AT have 

a restricted TCR sequence, suggesting that they are responding to a select population 

of local antigens. Regarding CD8+ T cells in obese AT, little is known about potential 

antigens. In our study, the amino acid sequences corresponding to the complementarity 

determining region 3 of clonal TCRs were characterized as positively charged and nonpolar 

(80). Isolevuglandins are negatively charged and detected in high amounts within ATMs, 

suggesting that they may be one component of the AT microenvironment capable of 

stimulating CD8+ T cell proliferation (80). However, the identification of specific antigens 

driving CD8+ T cell clonal expansion is still needed. Furthermore, the mechanisms 

regulating CD8+ T cell expansion in human obesity remain unclear.

B lymphocytes

In contrast to regulatory B-1 cells, B-2 cells in AT create an inflamed environment, 

secreting more pro-inflammatory cytokines, such as IL-6 and IFN-γ, at the expense 

of anti-inflammatory cytokines, specifically IL-10 (81). Excess adiposity results in the 

accumulation of B-2 cells in visceral AT, worsening inflammation of the tissue. In 

pan B cell-null mice, adipocyte hypertrophy was mitigated, macrophage infiltration was 

substantially decreased, and glucose tolerance was improved (81). The hypertrophic obesity 

and worsened glucose tolerance seen in B cell null animals are influenced by the ability 

of the B cells to regulate T cells in the AT. In T cell activation studies, cells from B 
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cell–deficient mice had reduced pro-inflammatory cytokine production. The role of B cell 

and T cell interactions in AT inflammation was further confirmed when RAG1−/− mice 

were reconstituted with B cells from 16 weeks in HFD-fed mice. Despite the reconstitution, 

fasting glucose, insulin, and glucose tolerance were not worsened, suggesting that B cells 

require the presence of T cells for their impact on metabolic function (82).

Summary and future directions of adaptive AT immunity

The contribution of adaptive immune cells to AT homeostasis and dysfunction remains 

an intriguing area of research. Outstanding questions include the following: Why do 

T cells change in degree of clonality with obesity (with decreased Tregs and increased 

CD4+ and CD8+ cells)? Are there specific antigens that can be targeted to reduce AT 

inflammation? And how are T cell exhaustion and B cell antibody production related to AT 

function? Furthermore, whereas the bioenergetics of T cells in the context of cancer is well 

documented, whether the AT milieu changes intrinsic T cell metabolism is not known. For 

example, although Tregs are well primed to metabolize lipids for their regulatory functions in 

homeostasis, there is still much to learn about the metabolism of other adipose immune cell 

types (T cells and B cells, and their subpopulations) in lean and obese AT.

IMMUNE RESPONSE TO WEIGHT LOSS AND REGAIN

Weight cycling is loosely defined as the repeated gain and loss of body mass. Most of the 

literature on weight cycling was published several decades ago and sought to determine 

whether fluctuations in body weight have a negative impact on food efficiency and energy 

requirements. More recent studies have revealed an association between weight cycling and 

increased risk of insulin resistance and cardiovascular disease (83, 84). One of the first 

studies addressing this issue reported a 10% increase in the 25-year risk of coronary death 

in men who weight-cycled compared with those who maintained a stable weight (83). In 

addition, multiple recent publications suggest that weight regain after substantial weight 

loss has negative consequences on metabolic health in humans (84, 85). Emerging studies 

provide evidence that AT immune memory may be involved in the metabolic consequences 

of weight cycling.

Adaptive immune memory to metabolic signals

To interrogate the cell types and molecular contributors to weight cycling, researchers have 

turned to mouse models that can recapitulate many of the adverse metabolic sequelae of 

weight cycling. In mice, prior obesity results in weight regain at a faster rate, greater 

fat accumulation, and an adaptive immune response characterized by type I immune cells 

(86–88). CD4+ T cells have been thoroughly studied in mouse models of weight cycling 

(82). Rag1−/− (lacking T and B cells), TCRβ−/− (lacking CD4 and CD8 T cells), and 

H2A−/− (lacking CD4 T cells) mice were protected from accelerated weight regain (87). 

Interestingly, when reconstituted with CD4+ T cells from wild-type mice with a history 

of obesity, both Rag1−/− and TCRβ−/− mice gained weight more quickly than those 

that received CD4+ T cells from lean controls (87). Work from our laboratory showed 

an increase in CD8+ effector memory T cells in AT of weight-cycled mice (20, 88). 

Unanswered questions remain regarding how extreme the weight loss and regain must 
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be, whether the numberof weight cycles matters, whether T cell clonality is different in 

weight cycling versus maintained obesity, and the degree to which the immune landscape in 

human AT is affected by weight cycling. These findings suggest that adaptive immune cell 

populations within AT are highly plastic and that further work should be conducted to better 

characterize these populations in AT and within metabolically active tissues at each stage of 

weight cycling.

The reason for the immune changes induced by weight cycling can be garnered by assessing 

the AT immune landscape after weight loss. Surprisingly, AT of animals that have lost 

weight does not fully revert to a lean anti-inflammatory phenotype (Fig. 3) (20, 89, 90). In 

addition, recent work indicates that the highest proportion of T and B cells occurs during 

the weight-loss phase of weight cycling (20). These data suggest that although weight loss 

improves systemic metabolic processes, the AT immune system may “remember” previous 

obesity and become overly activated upon weight regain.

Innate immune memory to metabolic signals

Although immunological memory is historically considered characteristic of only adaptive 

immune cells, recent work suggests that innate immune cells can also develop nonspecific 

memory (91). Activation of PRRs by β-glucan, the Mycobacterium tuberculosis vaccine 

(BCG), and even oxidized low-density lipoprotein (LDL) can drive metabolic activation 

and persistent epigenetic remodeling to prime cells for a more robust response after 

second stimuli. Specifically, innate stimuli can drive glycolytic ATP production so that 

metabolic intermediates like acetyl-CoA can help acetylate histones (92). These histone 

modifications can hold open regions of chromatin at glycolytic and inflammatory genes for 

faster transcription upon subsequent activation.

Although this response may be evolutionarily protective in responses to infection, it 

appears detrimental in chronic disease. We have recently shown that bone marrow–derived 

macrophages can develop enhanced secondary activation after priming with AT-conditioned 

media or palmitate, which is dependent on TLR4 and suppressed with metformin or pan 

methyltransferase inhibition. In addition, ATMs from previously obese mice secrete more 

inflammatory cytokines after ex vivo activation with LPS and are more inflammatory 

after weight regain (93). Similarly, others have shown that a ketogenic diet and palmitate 

injections worsen systemic LPS-induced inflammation via ceramide production (94) and 

stearic acid (via TLR4) and that previous obesity induces chromatin remodeling in ATMs, 

which predisposes mice to worsened macular degeneration (95). Other innate immune 

stimuli have shown a role in mevalonate and changes in genes related to fatty acid 

metabolism and OX PHOS (92). Thus, ATMs appear uniquely situated to develop innate 

immune memory in response to activation and uptake of lipids, and future research should 

aim to understand how ATM memory affects both metabolic and immunological diseases.

Together, these data suggest that multiple arms of the immune system remember previous 

obesity, and clinical approaches to weight loss should strive for long-term efficacy. 

Moreover, further understanding of the signals that drive and maintain immunological 

memory to obesity may provide additional therapeutic targets to mitigate diseases associated 

with weight regain.
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CLINICAL APPROACHES TARGETING OBESITY AND METAFLAMMATION 

IN HUMANS

Trials with anti-inflammatory therapies

Although chronic inflammation has been strongly linked to metabolic diseases such as 

atherosclerotic cardiovascular disease and type 2 diabetes, compared with lipid- and 

glucose-lowering drugs, anti-inflammatory therapies are nascent with regard to clinical 

application. One of the first studies focused on salsalate and glycemic control in patients 

with type 2 diabetes (96). At three different doses, salsalate treatment resulted in significant 

decreases in HbA1c concentrations and other markers of glycemic control. More recently, 

the CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study) trial, with 

~10,000 patients, provided proof of concept that targeting an inflammatory cytokine (in this 

case, IL-1β) could reduce the incidence of a composite primary end-point of myocardial 

infarction, stroke, and cardiovascular death (97). Interestingly, cancer mortality was also 

decreased in the canakinumab-treated groups. However, the incidence of serious infection 

was seen in one out of every 750 patients. This does not diminish enthusiasm for the idea of 

using anti-inflammatory agents to treat cardiometabolic disease; however, other approaches, 

such as improving pro-resolving processes to limit the acute inflammatory response, are now 

considered to be a better approach (98).

Lifestyle interventions for obesity

Weight loss, either via lifestyle modification, medication, or surgery, is the primary 

recommended intervention for obesity and its associated cardiometabolic complications. 

Moderate amounts of weight loss (~5% body weight) result in improved metabolic 

outcomes in humans (99). Clinical trials have found that moderate weight loss does not 

affect AT inflammation in adults with obesity despite improved insulin sensitivity. Rather, 

more progressive weight loss (~11 to 16%) sufficiently reduced both systemic and AT 

inflammation (99). Therefore, we speculate that the immune response to weight loss in 

humans is a biphasic response, where macrophage subpopulations are increased in AT to 

undergo tissue remodeling and buffer lipid accumulation derived by lipolysis (100) but may 

be reduced with sustained weight loss. However, given the strong data showing sustained 

inflammatory immune cells in AT of mice that have lost weight, more extensive studies are 

needed in humans. Here, we highlight pharmacological and surgical approaches for weight 

loss and discuss their impact on AT and systemic inflammation.

Dietary modifications—The effects of negative energy balance on pro-inflammatory 

markers have been studied clinically in individuals with obesity. In the clinical weight 

management setting, patients are advised to focus on unprocessed foods with an emphasis 

on whole grains, lean protein, fresh fruits and vegetables, and limited refined sugars and 

flour. One study suggested that a reduction in high-sensitivity C reactive protein (CRP) and 

IL-6 occurs when energy homeostasis is achieved after a decline in fat mass (101). However, 

antioxidant-rich foods containing carotenoids, mixed tocopherols, vitamin C, or selenium 

have not consistently been shown to reduce inflammatory markers (102). Oftentimes, 

patients choose a dairy-free diet as a method to induce weight loss despite a lack of 
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evidence to suggest increases in weight, fat, visceral AT, and subcutaneous ATM number, 

subcutaneous AT inflammatory gene expression, and circulating cytokines from dairy foods 

(103). The Mediterranean diet on the other hand, characterized by a high consumption of 

legumes, nuts, seeds, and olive oil, and a moderate consumption of protein, has been shown 

to reduce inflammation (104).

Physical activity—The American Heart Association recommends at least 150 min/week 

of exercise to promote and maintain health. In the clinical weight management setting, 

patients are counseled on physical activity, both structured and unstructured, consistent with 

standard of care guidelines. In one study, routine exercise over 6 and 12 months resulted 

in decreased levels of leptin, adiponectin, resistin, homocysteine, and IL-6, particularly 

in patients who were overweight (BMI, ≥25 and <30 kg/m2) (105). Intensive exercise 

focused on structure and consistency may be necessary to produce a hypo-inflammatory 

state, especially in persons with obesity (106).

Pharmacological intervention

Pharmacologic interventions directly aimed at reducing inflammatory cytokines have 

demonstrated success as measured by reductions in CRP and IL-6 in the circulation and 

a resultant decrease in cardiovascular events (97), yet none is standard of care in obesity 

at this time. Pharmacological interventions aimed to mitigate the metabolic effects of 

obesity, specifically type 2 diabetes, have focused on pathways involved in insulin action. 

Serendipitously, these have sometimes resulted in the added benefit of weight loss. These 

pathways include incretins and sodium-glucose co-transporter 2 (SGLT2) inhibitors, which 

we will highlight below.

Glucagon-like peptide 1 receptor agonists—The incretin effect describes the 

phenomenon that oral glucose increases pancreatic insulin secretion to a greater degree than 

intravenous glucose. This is due to the secretion of incretin hormones glucose-dependent 

insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) from the gut. 

GIPand GLP-1 act directly on β cells to promote insulin secretion. GLP-1 is lower in 

individuals with obesity and increases after bariatric surgery (107). GLP-1 receptor agonists 

(GLP-1RAs) decrease blood glucose, cause weight loss, and decrease composite death from 

cardiovascular causes, nonfatal stroke, and myocardial infarction in patients with diabetes 

(108, 109).

In animal models, GLP-1RAs have been shown to decrease inflammation. In obese 

animals, treatment with GLP-1RAs decreases AT inflammatory cytokines and causes a 

switch from a pro-inflammatory to an anti-inflammatory macrophage phenotype (110, 

111). GLP-1RA treatment of nonobese diabetic mice with new-onset diabetes increases 

Tregs (112). Furthermore, GLP-1RA treatment reduces atherosclerosis in ApoE and LDLr 
knockout animals by inhibiting inflammatory pathways in the vasculature (113). Despite 

the therapeutic potential for GLP-1RAs to modify inflammation in animals and limit 

cardiovascular outcomes in humans, their effects on AT immune profile in humans are still 

unconfirmed.
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Human studies have provided contradictory results. In two studies of adults with obesity and 

type 2 diabetes, GLP-1RAs increased circulating adiponectin concentration and decreased 

circulating concentrations of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6; soluble 

CD163; and M1-like ATMs (114, 115). However, a different group found that GLP-1RAs 

increased circulating MCP-1, expression of TNF-α, MCP-1, and markers of extracellular 

matrix deposition in AT (116). Despite the promising effects of GLP-1RAs to improve 

cardiometabolic outcomes and glucose tolerance, variations in the length of these clinical 

trials range from 8 weeks to 1 year and are typically in patients with type 2 diabetes (Table 

1). Therefore, the effect of GLP-1RAs on obesity independent of metabolic disease onset 

is unknown. In addition, more studies rigorously profiling the impact of GLP1-RAs on 

AT immune cell phenotype are warranted. Last, controlled trials comparing the effect of 

GLP-1RAs independent of weight loss or in combination with lifestyle interventions could 

identify additional therapeutic potential.

Sodium-glucose cotransporter 2 inhibitors—Sodium-glucose cotransporter 2 

(SGLT2) is responsible for the reabsorption of 90 to 97% of the filtered glucose in the 

kidneys. SGLT2 inhibitors cause glucosuria, reduce HbA1c, and induce weight loss of 2 to 3 

kg (117). Large cardiovascular outcome trials have also demonstrated that SGLT2 inhibitors 

significantly decrease major adverse cardiovascular events in patients with type 2 diabetes 

and with established cardiovascular disease and are effective at primary and secondary 

prevention of heart failure and chronic kidney disease (118).

Similar to GLP-1RAs, SGLT2 inhibitors also decrease inflammation in animals and may 

decrease inflammation in humans, as reviewed recently (119). SGLT2 inhibitors decrease 

the production of pro-inflammatory cytokines (IL-6 and TNF-α) in vitro in mouse and 

human cell lines and in vivo after LPS stimulation (120). In diabetic, atherosclerosis-prone 

ApoE knockout mice, SGLT2 inhibitors decrease aortic pro-inflammatory gene expression 

independently of weight loss (121) and decrease NLRP3 inflammasome activation (122, 

123). Last, SGLT2 inhibitors skew ATMs from pro-inflammatory to anti-inflammatory 

phenotypes in a mouse model of diet-induced obesity (124). In humans, SGLT2 inhibitors 

decrease NLRP3 inflammasome activation in blood-derived macrophages after 30 days of 

in vivo treatment (125) and in human aortic smooth muscle cells after in vitro IL-17A 

stimulation (126). In addition, SGLT2 inhibitors increase circulating adiponectin in multiple 

studies (119, 127, 128). Add-on SGLT2 inhibitors in people with type 2 diabetes decrease 

CRP, which correlates with improvements in insulin resistance (129). Controlled clinical 

studies identifying the effect of SGLT2 inhibitors on tissue-specific immune cell populations 

(such as those in AT) are still lacking, as well as the effect of therapies in combination 

with or independent of weight loss. Despite the promising impact of SGLT2 inhibitors in a 

diabetic population, the effect in nonclinical populations with obesity is as of yet unknown.

Bariatric surgery

Adipocyte-derived inflammatory factors are elevated in individuals with obesity and 

contribute to the metabolic and vascular derangements common in obesity. Given the 

well-established link between adiposity and a pro-inflammatory state, it is plausible that 

marked weight loss seen after bariatric surgery would yield a reduction in inflammation. 
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Surprisingly, studies show variable changes in inflammatory markers postoperatively 

[reviewed in (130)].

Diabetes remission occurs in more than 75% of patients 2 years after Roux-en-Y gastric 

bypass (RYGB), and oftentimes, the improvement in glycemic control is seen immediately 

postoperatively, before significant weight loss occurs (131). There is debate about the 

exact mechanism underlying this phenomenon. We know that glycemic improvement is 

partially attributed to increased incretin secretion, but one other theory is that inflammatory 

cytokines are markedly reduced after surgery. This could also account for the reduction in 

cardiovascular complications of obesity after bariatric surgery as well (132).

Although inflammation may be difficult to quantify, there are key inflammatory markers that 

have been studied in the post-RYGB population, with the most cited being IL-6, TNF-α, 

CRP, and serum amyloid A (SAA). IL-6 is a cytokine that is implicated in obesity-related 

metabolic decline. Most RYGB studies agree that this cytokine can increase in the acute 

postoperative period but show a long-term downtrend over 1 year postoperatively (130). 

One study showed a different triphasic pattern of interleukin response: a sharp decrease at 3 

months, then a steady rise to presurgical values at 6 months, and at 12 months a downtrend 

that depended on BMI and metabolic status change (133). Smaller studies looking at 

changes in TNF-α post-RYGB do not show consistent trends, where TNF-α has been 

shown to increase 3 months after surgery and return to presurgical baseline (134). However, 

a recent meta-analysis of 116 studies evaluating TNF-α response 12 months after surgery 

showed a significant decrease compared with baseline (135). CRP is an acute-phase liver 

protein strongly associated with inflammatory states and cardiovascular disease. Studies 

show a consistent reduction in CRP after various types of bariatric surgical procedures, 

including RYGB, vertical sleeve gastrectomy, and laparoscopic adjustable gastric banding. 

CRP was reduced by 82% at 1 year postoperative in a study of 66 participants with 

obesity who underwent RYGB, and the reduction was higher in those without insulin 

resistance (136). Furthermore, a longitudinal analysis using high-sensitivity CRP testing 

showed a progressive decline in this marker at 3, 6, and 12 months after RYGB, and this 

correlated with BMI, insulin, and HOMA-IR (134). SAA is another acute-phase reactant 

produced in the liver in response to inflammation and has shown positive correlations 

with atherosclerosis. The aforementioned studies show a consistent reduction in SAA as 

well across various bariatric surgical procedures, although a decrease in SAA is not as 

pronounced as a reduction in CRP (136).

In summary, the evidence confirms a reduction in the acute-phase reactants CRP and SAA 

after bariatric surgery, but changes in inflammatory cytokines are inconsistent. This may be 

partially due to drastic changes in calorie intake postoperatively and perhaps macronutrient 

composition as well. Additional studies are needed to assess the long-term impact of 

bariatric surgery on inflammatory markers.

Emerging therapies

Whereas older-generation anti-obesity pharmacotherapies can achieve approximately 3 to 

7% weight loss from baseline, more recent therapeutics have shown more than 15% 

weight loss. These include incretin therapies such as semaglutide and tirzepatide, both of 
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which have proven safety and tolerability. Semaglutide (2.4 mg) is now FDA-approved for 

chronic weight management, and tirzepatide is expected to be FDA-approved for obesity 

in light of the recent SURMOUNT-1 study showing 22.5% weight loss (137). Although 

3 to 5% weight loss signifies clinically meaningful weight loss, >10 to 15% weight loss 

can revert or improve more serious inflammatory diseases such as nonalcoholic fatty liver 

and cardiovascular disease. In addition, the cardiovascular risk profile of semaglutide in 

patients with type 2 diabetes has been shown to be noninferior to placebo (138, 139). 

Clinically, for patients with metabolic derangements and worsening inflammatory processes, 

these newer therapies are highly preferred over the older-generation compounds. Presently, 

studies are ongoing, with SELECT (Semaglutide Effects on Cardiovascular Outcomes 

in People with Overweight or Obesity) being the first cardiovascular clinical trial to 

measure the superiority of major adverse cardiovascular events reduction for an anti-obesity 

medication, semaglutide. As more novel obesity agents gain FDA approval, insights into 

their mechanisms of action and effect on inflammation can enhance our clinical application 

of these drugs to target not only severe obesity but also weight-related complications.

CONCLUSION

Understanding the direct and indirect effects of obesity-induced metaflammation will be 

important to further understand how obesity accelerates cardiometabolic disease. Despite 

tremendous efforts to identify cellular mediators contributing to metabolic dysfunction in 

obesity, pharmacological approaches targeting a single mechanism remain difficult because 

of the diversity of innate and adaptive immune cells altered in obesity. Technological 

advancements and availability of multiomics platforms will continue to improve our 

understanding of immune populations that are either associated with or directly causative of 

metabolic dysfunction and to propose new therapeutic targets. Researchers should continue 

to address whether obesity-induced modifications in immune cell populations are causal 

to poor metabolic health outcomes. Similarly, an important question for pharmacological 

research in obesity is to identify whether therapies directly targeting weight loss additionally 

mitigate inflammation driven by obesity or whether the weight-loss effects of obesity drive 

the attenuated inflammatory phenotype independent of pharmacological intervention.
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Fig. 1. Organ-specific inflammatory responses in obesity.
(A) Inflammation is a coordinated immune response aimed to alleviate stresses induced by 

obesity and occurs in tissues such as liver, pancreas, adipose tissue, skeletal muscle, and 

the brain. Ectopic lipid accumulation in these tissues can initiate monocyte recruitment, 

macrophage polarization toward pro-inflammatory states, CD8+ T cell accumulation, and 

excess accumulation of pro-inflammatory mediators. (B) Immune response to positive 

energy balance within the stromal compartments of these tissues increases type 1 immunity 

(light blue line) including M1-like innate immune cells and CD8+ T cells. Conversely, 

Schleh et al. Page 27

Sci Transl Med. Author manuscript; available in PMC 2024 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



obesity attenuates type 2 immunity (green line) phenotype, resulting in reduced M2-like 

innate immune cells as well as Treg and CD4+ adaptive immune cells. This reciprocal 

relationship between type 1 and type 2 immunity in obesity is proposed to underlie tissue 

homeostasis and insulin resistance (dark blue line). CLS, crown-like structure; NAFLD, 

nonalcoholic fatty liver disease.
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Fig. 2. AT macrophages have distinct metabolic phenotypes.
(A) In lean AT, macrophages have a low metabolic demand. Tregs use oxidative 

phosphorylation, and PPARγ drives gene expression of lipid handling–related genes. The 

metabolism of other adipose immune cells is unknown. (B) In obese adipose tissue, 

macrophages have heightened glycolysis and oxidative phosphorylation, likely driven by 

increases in more inflammatory lipids, hypoxia, insulin, and leptin signaling. Other cell 

types including TH1/17, T lymphocytes, neutrophils, and dendritic cells are also speculated 

to modify their metabolic phenotype in obesity.
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Fig. 3. Innate and adaptive immune cell response to weight cycling.
Lean AT is often composed of type 2 immune cells (for example, M2-like macrophages, 

TH2 CD4+ T cells, and Tregs). In obesity, both innate and adaptive immune cell recruitment 

result in greater type 1 immune cell populations, resulting in the influx of M1-like 

macrophages, TH1 CD4+ T cells, and CD8+ T cells. Conversely, the Treg population is 

diminished in obesity. In the event of weight loss, inflammatory macrophages and memory 

T cells remain intact, whereas Treg populations do not increase back to their lean proportion. 

Therefore, in the event of weight regain (as in weight cycling), effector T cell populations 

interact with antigen-presenting cells that had accumulated from the previous obesity cycle, 

resulting in even greater adaptive immune cell populations (including CD8+ T cells, CD4+ 

T cells, and B cells). The dark blue curve on the graph indicates the innate and adaptive 

immune cell populations shown per bout of weight gain, loss, and regain.
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