
Redox Biology 70 (2024) 103060

Available online 1 February 2024
2213-2317/© 2024 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

NADPH-oxidases as potential pharmacological targets for thrombosis and 
depression comorbidity 
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A B S T R A C T   

There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of 
cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders 
such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased 
risk of being diagnosed with mental disorders. 

Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular 
disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive 
oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. 

This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. 
It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain 
disorders. A better comprehension of these processes could facilitate the development of new therapeutic ap
proaches for the prevention and treatment of the comorbidity of thrombosis and depression.   

1. Introduction 

Cardiovascular diseases (CVDs) and depression are currently the 
most prevalent causes of disability in high-income countries. According 
to the WHO, CVDs are complicated illness causing considerable number 
of deaths worldwide (https://apps.who.int/iris/handle/10665/44701). 
Major depression is a prevalent mental disorder characterized by 
persistent poor mood, anhedonia, exhaustion, sadness, insomnia, and 
increased risk of suicide [1]. CVDs and depression are two seemingly 
unrelated conditions, but they can be linked in different ways, so it is 
important to consider both when treating patients. Obesity, physical 
inactivity, smoking, diabetes, stress and chronic inflammation are 
common risk factors for both CVDs and depression [2], and a possible 
bidirectional relationship between CVD and depression has been sug
gested (Fig. 1). Indeed, patients with CVD are more likely to develop 
depressive symptoms, and depressed people have a higher risk of 
developing CVD [3]. Depression is 2–3 times more prevalent in CVDs 
patients than in the general population. The incidence of depression in 
CVD patients is between 10 % and 40 %, and it increases with the 
severity of the heart disease [4]. 

Depression correlated with adverse cardiovascular outcomes and 
mortality in CVDs patients [3,19–21]. The relationship between 
depression and both arterial and venous thrombosis has been estab
lished in numerous human researches. Depression is associated with a 
worse prognosis in acute coronary syndrome patients, a manifestation of 
CVD resulting from coronary artery thrombosis [22], and increases the 
relative risk of venous thrombosis [23]. Conversely, venous thrombo
embolism increased the risk of depression [24], suggesting a reciprocal 
risk model of depression and thrombosis. The strong interaction be
tween depression and thrombosis has been also proved by the use of 
experimental models of depression and thrombosis. Several studies have 
shown that animal models such as chronic restraint stress, chronic mild 
stress and lipopolysaccharide injection, which are commonly used to 
promote depressive-like disorders in rodents [25–28], enhanced arterial 
thrombosis [16,29–32], platelets activation [33] and promoted the 
development of venous thrombosis [30,34]. On the other hand, coro
nary artery ligation, which mimics human coronary occlusion by 
thrombosis, causes depression-like behavior in animals [35,36]. 

It is well documented that depression is associated with worsening 
psychosocial variables since its onset, which may increase the likelihood 
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of unhealthy lifestyle habits such as poor diet, tobacco smoking, alcohol 
consumption, and physical inactivity [37–40]. It is noteworthy that 
these unhealthy behaviors have traditionally been studied in the area of 
non-communicable diseases and the American Heart Association has 
included these modifiable factors in the list of “Life’s Simple 7″ that have 
a definite impact on the development and progression of cardiovascular 
disease [41]. These observations clearly indicate that, in addition to the 
direct effects of depression on the pathophysiological mechanisms 
leading to CVDs, increased behavioral risk profiles in depressed patients 
also contribute to their higher risk of CVDs [42]. For this reason, man
aging unhealthy behaviors should be included in the strategy to reduce 
cardiovascular risk associated with depression [2]. 

It is well known that depression can alter the body’s stress response 
and inflammatory pathways, the activation of endothelial cells and 
platelets, and the increased oxidative stress production, which can 
enhance the risk of blood clot formation and consequently the proba
bility of a thrombotic event [43,44]. Similarly, thrombosis and the 

resulting health consequences can lead to autonomic nervous system 
dysfunction, inflammation, endothelial dysfunction, platelet hyperac
tivity and generation of reactive oxygen species (ROS), that in turn can 
trigger or exacerbate depression [43,44]. Various mechanisms have 
been proposed for the link between depression and thrombosis, with 
oxidative stress being one of the most interesting. In all cells there is a 
dynamic balance between pro- and antioxidant factors. The most 
important oxidants are ROS, endogenous byproducts of oxidative 
respiration, intracellular signals, and substances used to defend against 
pathogens. On the other hand, some mechanisms can prevent damage 
caused by radical species, such as small antioxidant molecules and 
enzymatic systems. If antioxidants succeed in balancing the formation of 
ROS, homeostasis is maintained. However, if ROS formation is not 
adequately counteracted, a state referred to as oxidative stress occurs, 
leading to various cellular damages. ROS affects the primary structures 
of cells such as proteins, lipids and DNA that in turn can promote cell 
death [45]. Increase in ROS production has been associated to CVDs 

Fig. 1. Common risk factors associated with cardiovascular disease and depression 
Various environmental factors such as obesity [5–8], physical inactivity [6,9,10], smoking [11–13], diabetes [14,15], stress [16,17,18] and chronic inflammation [5, 
7], which are also common risk factors for CVDs and depression, can regulate the expression/activity of NOXs. 
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(hypertension, atherosclerosis, thrombosis, heart failure, and 
arrhythmia) and depression [46–50]. Among ROS promoting the onset 
of CVD and depression, superoxide (O− •

2 ) hydroxyl radicals, (OH•) 
hydrogen peroxide (H2O2), and peroxynitrite anion (OONO− ) are the 
main culprits, and their main sources are xanthine oxidase, lipoxidases, 
myeloperoxidases and nicotinamide adenine dinucleotide phosphate 
oxidase (NOX). NOXs are exclusively accountable for ROS production 
and are the main cellular ROS source in mammalian [51,52]. NOXs are 
expressed in the cardiovascular system [53], in various cell types 
including platelets [54,55], endothelial cells [56–59] and leukocytes 
[60] playing a role in thrombotic events, as well as in the brain cells 
relevant to depression including neurons, microglia, and astrocytes 
(Fig. 2; Table 1) [61]. It is noteworthy that the activity and expression of 
NOXs are regulated by obesity [5–8], physical inactivity [6,9,10], 
smoking [11–13], diabetes [14,15], stress [16,17,18] and chronic 
inflammation [5,7], which are also some of the common risk factors for 
CVDs and depression (Fig. 1). 

Here we will examine the impact of NOX activation on thrombosis 
and depression. Therapeutic effects and pharmacological strategies 
related to NOX inhibitors in CVD and depression are also summarized to 
pave the way for developing new therapeutic methods that could be 
effective in preventing and treating the comorbidity of thrombosis and 
depression. 

1.1. Thrombosis mechanisms 

Thrombosis is a multifaceted, complex process that plays a signifi
cant role in the pathophysiology of CVD. Myocardial infarction and 
stroke are caused by arterial thrombosis, whereas venous thrombosis 
causes venous thromboembolism and pulmonary embolism. Arterial 
thrombosis is usually triggered by erosion and rupture of an athero
sclerotic plaque, followed by platelet activation/aggregation, thrombus 
development and vessel occlusion [76]. In contrast, venous thrombosis 
is the result of a disturbance in the balance between blood flow and 
venous endothelial health [77]. 

Thrombosis is mediated by endothelial cells, platelets, leukocytes 
and circulating coagulation proteins. Adhesion of platelets to the 
exposed subendothelial matrix and/or activated endothelium leads to 
platelet activation/aggregation, which results in the expression of spe
cific receptors in the cell membrane and the release of negatively 
charged factors important for the formation of coagulation complexes, 

and the release of small molecules that can alter the properties of leu
kocytes, endothelial cells and other vascular cells [78,79]. 

A disrupted endothelium expresses/releases a variety of factors that 
contribute to the thrombotic response, including procoagulants, cell 
adhesion molecules, nitric oxide and von Willebrand Factor. These 
factors actively contribute to the thrombotic process by influencing 
platelet activation/adhesion and fibrin formation [80,81]. Endothelial 
cell activation also leads to leukocyte adhesion and activation. In 
particular, neutrophil granulocytes, the most abundant leukocytes in the 
bloodstream, release molecules that can influence coagulation through 
various mechanisms, such as activation of clotting factors and platelet 
activation and aggregation [82]. Monocytes are an important source of 
intravascular expression of Tissue Factor (TF) and provide a membrane 
surface for the initiation of coagulation under various conditions, and 
initiate the expression of TF, which in turn activates the coagulation 
cascade [83]. 

NOX-dependent production of ROS is also involved in the thrombotic 

Fig. 2. NOXs: a common player in cardiovascular disease and depression 
NOX activity is altered in different cellular types involved in both thrombosis and depression and may be a common potential therapeutic target for the comorbidity 
of these diseases. 

Table 1 
NOX isoforms expression in thrombosis-related cells and in brain cells.  

NOX 
isoforms 

Product Thrombosis- 
related cells 

Source Brain cells Source 

NOX1 O2
− • Platelets [48, 

62] 
Neurons [63–67] 

Endothelium [68, 
69] 

Microglia [70] 

Leukocytes [54, 
71] 

Asrocytes [72] 

NOX2 O2
− • Platelets [48, 

62] 
Neurons [65–67] 

Endothelium [68, 
69] 

Microglia [70] 

Leukocytes [54, 
71] 

Asrocytes [67,72] 

NOX3 O2
− • N.A.  Neurons [67] 

Oligodendrocytes [73] 
Asrocytes [67] 

NOX4 H2O2 Platelets [48] Neurons [67] 
Endothelium [68, 

74] 
Microglia [67]   

Astrocytes [67,72] 
NOX5 O2

− • Platelets [48, 
75] 

Oligodendrocytes [73] 

Endothelium [68]  
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process, mainly by affecting platelet responsiveness [84] and its role in 
determining the risk of thrombosis [85,86] has been demonstrated in 
several studies. 

1.2. Depression mechanisms 

Depression is a complex mental illness involving various molecular 
and cellular mechanisms in the brain [87,88]. Although the precise 
etiology of depression is yet unknown, recent research suggests that 
different cell types are involved. Neurons, the primary signaling cells in 
the central nervous system, have a key role in depression, as alterations 
in neurotransmitter signaling, neuroplasticity and synaptic connectivity 
have been implicated in the pathophysiology [87–89]. Imbalances in 
glutamate and gamma-aminobutyric acid (GABA) transmission, as well 
as deficits in monoamines and neurotrophic factors, disrupt the circuit in 
the limbic and cortical area of the brain that regulate emotions and 
moods [89]. These abnormalities may be a component of the atrophy 
and loss of neurons seen in depressed patients and animal models of 
stress, along with stress-activated signaling pathways that regulate 
neurotrophic factors and inflammatory cytokines. Microglia and astro
cytes contribute to neuroinflammation and immune responses by 
releasing pro-inflammatory cytokines and amplifying the inflammatory 
cascade [90–92]. 

Hormonal, immunological, and aging variables, as well as epige
netic, neurotrophic, and oxidative stress, have all been linked to 
depression. According to the neurotrophic theory of depression, syn
aptic and neuronal changes associated with depression are caused by a 
deficiency of growth factors, in particular the brain-derived neuro
trophic factors (BDNF), the highest abundant neurotrophin detected in 
the adult brain [93]. Indeed, reduction of peripheral BDNF in depressed 
patient and in the brain regions of rodent model of depression have been 
reported [94–96]. 

Increased damages caused by oxidative stress (lipid peroxidation, 
DNA damage and protein oxidation) have been described in the post
mortem brain tissue of depressed humans and in animal models of 
depression, which can promote neuronal damage and exacerbate 
neuronal dysfunction [97–99]. ROS can be generated by various brain 
cells (neurons, microglia and astrocytes) and alter synaptic plasticity 
[100–102]. There is increasing evidence that NOXs are expressed in all 
brain cells and that NOX-dependent ROS generation plays a key role in 
depression [17,71,103–105]. 

2. NOX isoforms, structure and activation 

NOXs are multimembered transmembrane protein complexes that 
transfer electrons throughout the membranes with the unique task of 
producing O− •

2 and H2O2. The NOX family comprises seven different 
enzymes, NOX1-3 and NOX5, which produce O− •

2 and NOX4 and 
DUOX1-2, which produce H2O2. NOX proteins share six conserved 
transmembrane domains, four conserved heme-binding histidine do
mains, the FAD-binding domain, and the NADPH-binding domain [106]. 
Despite the similarity of their structure, each isoform of NOX requires 
association with a specific subset of proteins to be activated. 

The first member identified and characterized in phagocytes was 
NOX2, also termed as gp91phox, which is constitutively associated with 
the transmembrane subunit p22phox [107,108] and its activation needs 
the translocation of other factors present in the cytosol. Indeed, NOX2 
complex also includes the cytosolic regulatory factors p47phox, p67phox, 
small GTPase Rac, and the activity modulator p40phox [109,110]. NOX2 
activation involve the interactions of different proteins, beginning with 
phosphorylation of the cytosolic p47phox/p67phox complex, which in 
turn causes a conformational shift that facilitates the interaction with 
the p22phox subunit. After the complex is translocated into the mem
brane, p67phox bind to NOX2 and recruits the p40phox and GTPase Rac 
subunits, which modulate NOX2 activity [110–113]. After the complex 
is assembled, it becomes active and produces O− •

2 by transferring 

electrons from cytosolic NADPH to oxygen in the extracellular or 
luminal region. 

NOX1 interacts in the membrane with NOXO1, NOXA1 and Rac by 
forming a constitutive complex with p22phox. NOX3 similarly interacts 
with p22phox and NOXO1, whereas NOX4 is constitutively active and 
exclusively linked with p22phox. Activation of NOX5 and DUOX1/2 is 
modulated by a calcium-calmodulin-binding protein or directly by Ca2+

[110,111,113–115]. 

2.1. NOXs in leukocytes 

NOX2 has been firstly identified in the membrane of phagocytes, and 
has an important role in the mechanisms of host defense against path
ogens such as bacterial and fungal [116]. In addition to the involvement 
of NOX2 in the phagocytic role of leukocytes, they have also been 
extensively studied for their contribution to inflammation, atheroscle
rosis, restenosis, and hypertension [117–122]. 

NOX1 and NOX2 are critical for the differentiation of monocyte into 
macrophage and the polarization M2-type cells, as found in macro
phages without NOX1 and NOX2 [123]. It has also been described that 
the ROS produced by NOXs in macrophages contribute to fatty liver 
disease [124], neurotoxic processes for retinal microglia [125], and 
NLRP3 inflammasome activation [126–128]. 

It has been shown that NOX2 is the predominant isoform in the 
neutrophils of patients with chronic granulomatous disease [129] and 
NOX2 knock-out mice [130]. 

Several protein kinases, including AKT2 and protein kinase C, 
phosphorylate p47phox at eight to nine serine sites during neutrophil 
stimulation [131,75]. Phosphorylation of p47phox promotes membrane 
translocation and the recruitment of additional cytosolic subunits, 
resulting in NOX2 enzymatic activity. 

In dendritic cells (DCs), the expression of NOX subunits is low 
compared to other immune cells such as monocytes and the levels of 
p47phox and NOX2, but not p40phox and p67phox, were selectively 
increased during maturation and activation of DCs after TLR activation 
[132]. Several studies have found that NOX2 plays a key function in of 
the phagosome regulation. Indeed, DCs have a neutral or at least slightly 
alkaline pH, and deletion of NOX2 leads to the formation of acidic 
phagosomes [62,133], which leads to increased antigen degradation and 
compromised cross-presentation to CD8+ T cells via MHC class I [133, 
134]. 

Recently, it was found that the levels of p22phox, but not NOX2, were 
raised in addition to NOX5 expression in a subset of DCs during differ
entiation from circulating monocytes [135]. 

The role of NOXs in lymphocytes is complex and based mainly on 
animal models and human pathological conditions associated with al
terations in NOX2 function, as reported by Paige et al. [136]. NOX2 
signaling is required for balanced development of CD4+ T cells [137] 
and T regulatory cells (Tregs) [138]. NOX2 is essential for blocking TCR 
signal transduction in CD8+ Tregs because it is employed by CD8+ Tregs 
to produce a new Treg-mediated inhibition of CD4+ T cells [139]. In B 
cells, NOX2 is employed to rapidly create ROS in response to intracel
lular bacteria [140], as well as negatively modulate ROS-driven 
BCR-induced proliferation [141]. 

2.2. NOXs in platelets 

ROS have a significant impact on platelet function [142,143] and 
platelets themselves can generate ROS including O− •

2 , H2O2, and OH•

[144]. Platelets may promote the release of ROS in pathological con
ditions, which in turn lead to changes in platelet functions [145–147], 
resulting in potential thrombotic phenotype. Although ROS may be 
elicited by various source, several studies have reported NOX activity in 
platelets (Table 1) [54,68,74,148]. In vitro studies have shown that the 
radical species produced by platelets act as an intracellular signaling 
pathway and contribute to the prothrombotic phenotype. In vitro, 
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collagen causes the production of NOX-dependent O− •
2 , in platelets, 

which increases the released ADP and sustains thrombus growth [149]. 
In platelets, inhibition of NOX decreased not only the formation of ROS, 
but also aggregation induced by collagen/thrombin and the release of 
thromboxane B2 promoted by collagen [148]. 

Human platelets or megakaryocytic cell line (MEG-01) homogenates 
can produce ROS through NADH/NADPH-dependent enzymatic activity 
[69]. Further studies have shown that platelets and/or megakaryocytes 
express various subunits that form NOX, (p22phox, p67phox, p47phox [69], 
and small G protein Rac, but not NOX2 [149,150]). In contrast to pre
vious work, some years later Chlopicki and colleagues demonstrated 
that platelets express also NOX2 at levels comparable to neutrophils 
[148]. Consistent with this observation, Pignatelli et al. confirmed in 
vivo that the production of O− •

2 from platelets depends on the expression 
of the NOX2 subunit. The absence of this subunit has a direct effect on 
the expression of CD40 ligand promoted by collagen, arachidonic acid 
and, thrombin [151]. Currently, it has been confirmed that in platelets 
the subunits p47phox, p67phox, p22phox, NOX2 and Rac1/2 form the NOX 
active enzyme [55]. 

Although NOX2 is the most studied and characterized isoform in 
platelets [148,74], human platelets also express NOX1 [74], and NOX5 
[68] isoforms. Interestingly, the NOX4 mRNA but not the protein was 
detected in human platelets [54]. 

Activation of NOX2 in platelets is mediated by collagen/GPVI, 
sCD40L/CD40L, and oxidized lipids (ox-LDL)/CD36. In particular, the 
signal mediated by CD40 is mainly involved in atherosclerotic processes 
[152], while the signals mediated by collagen/GPVI and oxLDL/CD36 
are preferentially associated with thrombotic and thromboembolic 
processes [63,64]. 

The association of the cytoplasmic tails of GPVI, a membrane 
glycoprotein expressed only by platelets and known as a collagen re
ceptor [65], with the tumor necrosis factor receptor-associated factor 4 
(TRAF4) and with p47phox subunit leads to ROS production via a 
NOX2-dependent pathway, and to GPIIb/IIIa activation, which allow 
the binding of fibrinogen and consequently aggregation of platelets and 
formation of thrombus [63]. 

Ox-LDL, which are not only important for atherosclerosis, are also 
important activators of platelets [86,66,67,153,154]. The interaction of 
endogenous ox-LDLs with the CD36 receptor on platelets promotes 
platelet hyperactivity through the formation of ROS, which has a critical 
function in the prothrombotic phenotype [64]. Binding of ox-LDL to 
CD36 mediates the production of ROS through NOX2 activation, as 
demonstrated by specific CD36 and NOX2 inhibitors and by NOX2 
deletion [86,155]. 

Finally, triple NOX knockout mice (ie. NOX1− /− /NOX2− /− /NOX4− / 

− ) displayed impair platelet activation and reduced thrombus formation 
in vitro and in vivo, confirming the relevance of NOXs in the physiopa
thology of thrombosis [156]. 

2.3. NOXs in endothelium 

Endothelial cells synthesize small amounts of mRNA encoding NOX 
subunits and have a low rate of oxidant production compared with 
phagocytes [157]. In addition, much of the O− •

2 is produced intracellu
larly, whereas neutrophil O− •

2 is mainly produced in the extracellular 
compartment [158]. In view of these features, the generation of oxidant 
by these cells is usually considered to be a ’redox-sensitive’ intracellular 
pathway that plays a central role in physiological and pathological 
situations. 

Different studies explored the composition of the enzyme in endo
thelial cells showing that they generally contain only the catalytic sub
unit NOX2 and the regulatory p22phox [159]. Only one study showed the 
presence of NOX2, p22phox, p67phox, and p47phox subunits but not of 
p40phox and the flavocytochrome b558 [157]. Of note, Gorlach et al. 
showed that the NOX2 subunit was identical in endothelial cells and 

phagocytes [160], whereas Bayraktutan et al. found distinct differences 
in the domain of NADPH-binding and in sites of glycosylation of endo
thelial NOX2 [159]. 

Endothelial cells express NOX1, NOX2, and NOX5, which regulate 
the superoxide generation, and NOX4, the constitutively active enzyme, 
that generates H2O2 (Table 1) [70]. 

NOX1, NOX2, and NOX5 have been found to enhance endothelial 
dysfunction, inflammation, and apoptosis in the arterial wall in arteries 
from individuals with coronary artery disease and in animals with 
experimentally generated hypertension, diabetes, or atherosclerosis. 
NOX4, on the other hand, is vasoprotective by enhancing NO bioavail
ability and decreasing cell death pathways [161]. 

In endothelium, NOX2 and NOX1 expression are increased under 
pathological conditions, leading to excessive O− •

2 formation, especially 
in the extracellular compartment [162]. The release of ROS contributes 
to the inactivation of NO, the reduction of its vasoactive function, and 
the generation of peroxynitrite, which is responsible for the damage of 
lipids, proteins and DNA, and promotes cell damage and death. This 
results in the loss of NO vasoprotective action, macromolecule damage, 
and stimulation of proinflammatory mechanisms, leading to endothelial 
dysfunction [163]. 

In particular, it has been shown that different types of stimuli (e.g. 
cholesterol, TNF-α, homocysteine, and endostatin) enhance the NOX1 
and NOX2 expression. As a result, NOX2 tends to cluster in lipid rafts 
and translocate p47phox from the cytosol into the plasmatic membrane 
[164]. These clusters promote the formation of large amounts of O− •

2 and 
are a point of attraction for NOX2-expressing macrophages. The simul
taneous presence of NOX2 in endothelial lipid rafts and in macrophages 
promotes the formation of ROS in the luminal space of the vessel, which 
explains why vascular lesions are more often associated with extracel
lular than with intracellular protein damage [165]. 

2.4. NOXs in neurons 

The expression of almost all NOX subunits has been described in 
neuronal cells (Table 1), although the role of NOX1 and NOX2 has 
mainly been investigated [18,166–169]. 

Levels of NOX subunits are low expressed, in physiological condi
tions, whereas they are upregulated in pathological conditions. High 
levels of p47phox and NOX2 were described in pyramidal cortical neu
rons and GABAergic neurons in preclinical experimental models of 
depression and in postmortem patients with depression, respectively 
[18,168]. 

At the neuronal subcellular level, NOX2, p47phox, and p22phox have 
been localized in the soma, neurites, and synapses, respectively, whereas 
the exact neuronal distribution of the other NOX subunits has not yet 
been analyzed in detail [113]. 

Physiological production of oxidant by NOXs have positive effects in 
neurogenesis, neurite growth and branching, synaptic plasticity, and 
synaptic weakening have been described [100,170,171]. Postsynaptic 
NOX2 regulates long-term depression by reducing AMPA-mediated 
transmission [171]. Increased generation of ROS by members of the 
NOX family has adverse effects on adult hippocampal neurogenesis, 
dendritic arborization, synaptic plasticity, glutamate receptor regula
tion, excitotoxicity, and neuronal survival [109,172,72]. 

Interestingly, in rodent models of depression, upregulation of NOX2 
promoted the reduction of parvalbumin-positive GABAergic neurons in 
the prefrontal cortex [173], whereas overexpression of NOX1 oxidized 
NMDA receptor 1 and decreased expression of BDNF through epigenetic 
modifications [105]. 

2.5. NOXs in microglia 

Microglia are the tissue-specific macrophages in the brain, playing a 
significant function in neuroinflammation in different brain diseases, as 
psychiatric disorders and depression [92,174]. In healthy condition, 
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microglia exhibit high motility, monitor the brain from damaged or 
dying cells, for pathogens and debris maintaining local homeostasis. In 
addition, microglia interact with neuronal synapses, monitor synapse 
status, and contribute to the maintenance of neuronal circuits [175, 
176]. Activated microglia release pro-inflammatory cytokines, excit
atory neurotransmitters, proteinases, and ROS that promote neuro
inflammation and brain disease. In fact, production of ROS by microglia 
is considered one of the key factors in dysfunction, damage, and death of 
neurons [177]. Microglial activation was observed both in patients with 
depression and in experimental models, and an association between 
microglial activation and depression severity has also been described 
[92,178]. Moreover, depletion of microglia prevented the production of 
ROS and depression-like phenotypes in mice exposed to social stress 
[179]. Among brain cells, microglia have the greatest levels of NOX, 
particularly NOX2 (Table 1) [177] and inflammation-induced over
expression of NOX2 occurs first in microglia and then in neurons [180]. 
Furthermore, the stress-induced anxiety-like phenotype was related 
with a rise in NOX2 in microglial cells and was prevented in NOX2 
knock-out mice [181]. 

NOX1 is localized in intracellular vesicles, some of which are lyso
somes, whereas NOX2 is distributed in the plasma membrane but 
redistributed intracellularly into small vesicles after microglial activa
tion [167,177,182]. Several studies have shown that the increase in 
NOX family members are associated with microglia activation in 
different brain regions [177,182,183]. Interestingly, recent research 
studies have shown that microglia release several chemicals compounds 
including chemokines, cytokines and growth factors that may have a 
critical function in controlling brain and cardiovascular activity [184]. 
On the other hand, myocardial infarction promotes a persistent micro
glia activation in specific brain areas [185,186]. These pieces of evi
dence suggest that microglia may have a key role in linking brain and 
heart disease. 

2.6. NOX in astrocytes 

Astrocytes make up about 30 % of the cells in the brain, interact with 
neurons and blood vessels, involved in the pathophysiology of depres
sion [187]. Astrocytes are homeostatic and defensive cells that play a 
role in maintaining brain homeostasis by releasing transmitters such as 
glutamate, gamma-aminobutyric acid (GABA), and adenosine 
5′-triphosphate (ATP) or trophic factors such as BDNF. Furthermore, 
astrocytes have a role in neuroinflammation by producing proin
flammatory cytokines [188]. Astrocytes become reactive and participate 
in the recovery of injured brain tissue in neurodegenerative and psy
chiatric conditions [189]. NOX4 is the most abundant isoform in as
trocytes, although NOX1 and NOX2 have also been detected (Table 1) 
[169,190]. Interestingly, anxiety and depression-like symptoms have 
been reported to be associated with astrocytosis and overexpression of 
NOX1 in a model of brain injury [191]. 

3. NOXs and thrombosis 

The clinical relevance of NOX-dependent production of ROS in 
promoting platelet responsiveness [84] and, consequently, in deter
mining the risk of thrombosis [85,86] has been demonstrated in several 
studies. 

However, contradictory results on the effects of deletion of NOX1 on 
platelet response and the resulting thrombotic phenotype have been 
reported. Delaney et al. demonstrated that platelets derived from NOX1 
knock-out mice (NOX1-/Y) showed decreased ROS production and 
impaired aggregation promoted by thrombin and thromboxane A2 
analog U46619 but a normal response to collagen-related peptide (CRP). 
Moreover, NOX1-/Y mice did not exhibit alterations in in vivo thrombus 
formation [54]. In contrast, Vara et al. showed that washed platelets 
isolated from NOX1-/Y mice have reduced platelet aggregation induced 
by collagen, whereas they showed normal responses to thrombin. 

Furthermore, ferric chloride-induced coronary artery thrombosis was 
delayed in NOX1-/Y mice, whereas tail bleeding was similar to that in 
control mice, suggesting that NOX1 has an important role in patholog
ical arterial thrombosis but not in hemostasis [192]. 

ROS derived from activation of the NOX2 isoform, appears to be a 
major contributor to pathological signaling, as seen in NOX2 deficient 
patients [193]. In particular, granulomatous disease patients with 
p47phox or NOX2 deficiency present deactivation of NO resulting in 
arterial dilatation associated with a low carotid intima-media thickness. 
Taking together these observations suggest that reduction of NOX2 ac
tivity prevents or retards the development and the progression of 
atherosclerotic plaques [129]. Similarly, hypercholesterolemic children 
showed reduced flow mediated-dilation and enhanced carotid 
intima-media thickness, related to increased NOX2 expression on 
platelets [194]. Of note, platelets NOX2− /− patients display defective 
arterial thrombosis [54,155]. Platelets obtained from individuals with 
hereditary NOX2 deficiency were incapable of producing O− •

2 , expressed 
low levels of CD40L and showed impaired activation [151]. 

These observations were also confirmed by experimental animal 
models lacking NOX2 [195] or specific p47phox deficiency [196], in 
which reduced platelet activation and venous and arterial thrombosis 
was found. The importance of NOX2 platelets in thrombosis was pro
vided by the defective arterial thrombus formation observed in control 
thrombocytopenic mice after injection of NOX2− /− platelets [195]. 
Recently, it has been showed that NOX2 deletion in mice reduced 
platelet aggregation induced by thrombin without affecting the platelet 
response to collagen, and it was not sufficient to affect pathological 
arterial thrombosis and hemostasis [192]. 

Regarding the effects of altered NOX activity on endothelial cells, 
numerous studies have demonstrated the involvement of distinct NOX 
isoforms in endothelial dysfunction or activation, which consequently 
contributes to a thrombotic phenotype. In particular, NOX1 over
expression in vascular smooth muscle cells may lead to effects on the 
adjacent endothelial cell layer [197]. This may cause tetrahy
drobiopterin oxidation in endothelial cells and uncoupling of endothe
lial nitric oxide synthase (eNOS), leading to reduction of NO 
bioavailability and endothelial dysfunction [197]. In addition, the su
peroxide anion can react rapidly with NO leading to the formation of 
peroxynitrite, a highly reactive and cytotoxic molecule, resulting in a 
loss of NO bioactivity. NO regulates vascular tone, inhibits platelet ag
gregation, and has antithrombotic properties. The reduction in NO 
bioavailability caused by increased superoxide anions contributes to the 
pathogenesis of thrombotic conditions associated with endothelial 
dysfunction, vascular inflammation and platelets activation [198]. 

Deletion of NOX1 attenuates hypertensive response to angiotensin-II 
(Ang-II) and it is protective against oxidative stress, endothelial 
dysfunction, aortic dissection and vascular hypertrophy [199–201]. In 
addition, NOX1 deletion is related to reduced formation of ROS, 
expression of chemokines, proinflammatory and profibrotic markers, 
and adhesion and recruitment of leukocytes into vessel wall [202]. 

NOX2 deletion in mice reduced endothelial dysfunction [203] and 
vascular hypertrophy, but had little or no effect on blood pressure [204, 
205] in an experimental hypertension model induced by Ang-II stimu
lation, suggesting that NOX2 may play a marginal role in the regulation 
of blood pressure. Endothelial overexpression of NOX2 in mice increased 
endothelial dysfunction induced by Ang-II. Similarly, targeted over
expression of NOX2 in the endothelium of ApoE− /− mice promoted 
vascular O− •

2 production, activated endothelial cells, and enhanced 
macrophage infiltration [206]. In addition, bone marrow transplant 
studies showed that deletion of endothelial NOX2 significantly reduced 
neutrophil-platelet interactions during vascular inflammation [207]. 

Regarding the possible role of NOX5 in atherothrombosis, almost all 
studies have been performed on cells isolated from human tissues. NOX5 
has been found in the endothelium of normal arteries and increased in 
the neointima of diseased arteries and in the smooth muscle of advanced 
atherosclerotic arteries [208]. Overexpression of NOX5 generated large 
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amounts of O− •
2 , which in turn can react with NO to produce perox

ynitrite reducing the availability of NO. Endothelial cells attempted to 
compensate for the reduction in NO by boosting NO activity synthase 
[209]. 

As already mentioned, NOX4 activity promotes the generation of 
H2O2, which, unlike superoxide, does not react to any significant extent 
with NO and thus does not reduce the availability of NO [210]. More
over, H2O2 is known to oxidize reactive cysteine residues selectively and 
reversibly, changing the activity of protein targets, such as ion channels, 
transcription factors, kinases, and phosphatases [211]. H2O2 can itself 
work as a relaxing factor derived from the endothelium [212]. There
fore, it’s not surprising that NOX4 has protective roles in the vessel wall. 
NOX4 is required for endothelial progenitor cell (EPC) proliferation and 
migration, and it protects EPCs against cell death caused by proin
flammatory cytokines. These NOX4 features may aid in the effective 
functioning of EPCs [213]. NOX4 has been shown to be an O− •

2 elimi
nating enzyme and its deletion promotes the accumulation of O− •

2 and 
reduction of eNOS expression [214]. Similarly, loss of NOX4 under stress 
conditions promoted by ischemia or Ang-II led to a reduction of 
expression of eNOS and production of NO, which in turn stimulates 
inflammation and cell death in NOX4− /− mice [214]. In contrast, se
lective overexpression in the epithelium of NOX4 leads to beneficial 
cardiovascular effects by increasing eNOS expression [215,216], 
exhibiting increased endothelial-dependent vasodilation and blood 
pressure decrease compared to control animals [217]. 

Regarding the involvement of NOXs of leukocytes in thrombotic 
mechanisms, most information focuses on neutrophils. Through the 
interaction of P-selectin and its ligands, the neutrophils are the first 
blood cells to reach the site of inflammation, adhere there and roll over 
the endothelium [218]. Creeping neutrophils rapidly migrate through 
the inflamed endothelium, worsening the progression of the disease by 
interacting with platelets and/or clogging the vessel lumen [219]. 

Infusion of platelets or neutrophils from NOX2 knock-out mice into 
control mice showed that NOX2 plays a critical role in regulating the 
interaction between neutrophils and platelets during vascular inflam
mation [207]. In contrast, bone marrow transplantation experiments 
provided evidence that NOX2 deletion did not affect the adhesion and 
roll over of neutrophil to endothelium [207]. Importantly, 
neutrophil-platelet interactions can induce the formation of neutrophil 
extracellular traps (NETs) [220], which have a crucial role in immu
nothrombosis processes [221]. Considering that the production of ROS 
by NOX2 are crucial for NETosis [222,223], it would be relevant to 
specifically investigate the function of AKT2-NOX2 pathway in NETosis. 

4. NOXs and depression 

Some progress in understanding the molecular relationship between 
oxidative stress and psychiatric disorders, including depression, has 
been made in experimental models, primarily through the use of stress 
paradigms. Indeed, chronic stress experimental models have consis
tently reported to promote behavior deficit, along with corticolimbic 
brain areas atrophy, hippocampal neurogenesis reduction, neurotrans
missions alteration, enhanced neuroinflammation, and disruption of the 
hypothalamic-pituitary-adrenal (HPA) axis, all of which have been 
described in stress-related psychiatric disorders [180,224–226] 

Seo et al. observed that chronic restraint stress promoted depression- 
like phenotypes paralleled by increased ROS levels and lipid peroxida
tion in the prefrontal cortex and hippocampus of mice. Moreover, 
enhanced gene and protein levels of the p47phox and p67phox subunits 
were detected. Remarkably, pharmacological inhibition of NOXs by the 
antioxidant/NOX inhibitor apocynin, molecular downregulation of 
p47phox in the hippocampus, or the use of heterozygous p47phox 

knockout mice suppressed the increase in oxidative stress and 
depression-like behavior induced by chronic stress, indicating the 
important role of NOX2 in the depression-like phenotype promoted by 

chronic stress in mice [227]. 
Similar results were also obtained using different stress paradigms, e. 

g. chronic mild stress, social isolation rearing and single prolonger 
stress. Indeed, chronic mild stress promoted the increase in microglial of 
NOX2 levels leading to an increase in oxidative stress in the ventral 
hippocampus and behavioral alterations in mice [181]. In addition, the 
molecular and behavioral changes induced by chronic mild stress were 
attenuated in NOX2 knockout mice or by the treatment with apocynin 
[181]. Social isolation rearing and single prolonged stress enhanced 
NOX2 levels in the hippocampus, nucleus accumbens and prefrontal 
cortex, thereby promoting a rise in oxidative stress and microglia that 
are associated with reduction in parvalbumin immunoreactivity and 
behavioral impairments [173,228]. Dysfunction of 
parvalbumin-positive GABAergic interneurons were correlated with 
various psychiatric disorders such as depression, schizophrenia, post
traumatic stress disorder and Alzheimer’s disease [229]. The increased 
in p47phox was mainly observed in pyramidal cells in the prefrontal 
cortex, whereas there was no evidence of microglial activation [228]. 
Both loss-of-function p47phox subunit or treatment with the inhibitor 
apocynin prevented all these alterations [173,228]. In addition, aged 
mice (18 months old) displayed elevated levels of NOX2, p47phox, and 
ROS in the hippocampus and were more susceptible to stress-induced 
depression-like phenotypes [71]. 

In clinical studies, NOX2 has been suggested as a possible biomarker 
for suicidality, which is a common hallmark of several psychiatric dis
orders, such as depression. It’s interesting to note that depressed people 
with a history of suicide attempts have higher levels of oxidative stress 
and lower overall antioxidant levels [230]. and increased NOX2 levels 
have been specifically detected in GABAergic neurons in the cortical 
region of postmortem subjects who committed asphyxial suicide [168]. 

It has also been suggested that depressive-like behaviors and NOX1 
in the mesocortical pathway are causally linked. Compared to other 
NOX isoforms, NOX1 is a non-phagocytic version of the protein that is 
less prevalent in the nervous system. Social defeat stress or chronic 
treatment with corticosteroid, which is elevated in depressed patients, 
specifically raise NOX1 levels in the ventral tegmental area (VTA), but 
not in other parts of the brain [105]. The VTA has a crucial function in 
regulating reward processing and altered cellular functions in the VTA 
have been linked to depression [231]. The VTA contains dopaminergic, 
GABAergic, and glutamatergic neurons projecting to different brain 
areas including the prefrontal cortex. The increase in NOX1 levels in the 
VTA promoted by chronic administration of corticosterone was paral
leled by the development of depressive behavior, enhanced oxidative 
stress, atrophy of dendritic arborization and reduction in BDNF levels in 
the prefrontal cortex [105]. Molecular downregulation of NOX1 in the 
VTA or use of a NOX1 knockout mice prevented all the molecular and 
behavioral alterations promoted by chronic treatment with corticoste
rone [105]. Consistent with these findings, another paper reported that 
the depressive-like phenotypes promoted by chronic unpredictable mild 
stress were associated with upregulation of NOX1, ROS, and apoptosis in 
the frontal cortex of mice [232]. Again, the downregulation of NOX1 in 
the frontal cortex prevented all of these molecular and behavioral 
changes promoted by chronic unpredictable mild stress [232]. 

The investigation of variations in NOX1 plasma levels in patients 
suffering from major depressive disorder has only been carried out in 
one study to date. It was discovered that people with a first episode of 
depression who did not smoke and were not treated with psychotropic 
drugs had higher serum NOX1 levels compared to healthy people. In 
addition, a strong and positive correlation between plasma NOX1 levels 
and depressive symptoms was found, suggesting that NOX1 could be a 
potential biomarker for depression [104]. 

5. NOXs and inflammation in thrombosis and depression 

Thrombosis and depression are characterized not only by an increase 
in oxidative stress, but also by an increase in inflammatory markers 

P. Amadio et al.                                                                                                                                                                                                                                 



Redox Biology 70 (2024) 103060

8

[233,234]. Indeed, the NOX-dependent ROS production promotes 
inflammation, which maintaining oxidative stress, creating a vicious 
cycle that exacerbates chronic inflammation. To summarize the concept 
that oxidative stress and inflammation are intertwined processes that 
influence and reinforce each other, the term OxInflammation was coined 
[235]. 

Oxidative stress can activate numerous redox-sensitive transcription 
factors such as NF-κB, which in turn regulate the expression of pro- 
inflammatory molecules. When stimulated, inflammatory cells release 
chemokines and cytokines that can further promote the generation of 
ROS via NOX enzymes and other mechanisms, contributing to oxidative 
stress and leading to a positive feedback loop that can promote or 
exacerbate the development of different chronic diseases, including 
thrombosis and depression [236]. 

It is well known that NOXs regulate thromboinflammatory responses 
[237]. Specifically, NOX inhibition limits production of NETs, modu
lator of thromboinflammation, attenuating in vivo thrombus formation 
in both arterioles and venules [238]. 

During TNF-α-induced vascular inflammation, thrombus formation 
is markedly influenced by the exposure of P-selectin after agonistic 
stimulation and ligand binding activity of GPIbα mediated by ROS 
produced by platelet NOX2 [207]. In addition, pharmacological inhi
bition of NOX and deletion of p47phox prevented endothelial dysfunction 
induced by cytokine cocktail [11,239]. Interestingly, deletion of NOXO1 
was recently reported to selectively reduce the plasmatic proin
flammatory cytokine profile and the development of atherosclerosis in 
female mice [240]. 

Depression is associated with chronic and low-grade inflammatory 
conditions. Elevated levels of various cytokines, including TNFα, IL1β, 
IL6, IL18 have been detected in the serum of depressed patients [233, 
241] and in various brain regions of animal models of depression [242]. 
Intranasal administration of lipopolysaccharide induced a 
depressive-like phenotype associated with an increase in NOX2, p47phox 

and lipid peroxidation in the hippocampus and amygdala of mice. 
Treatment with apocynin prevented all of these changes induced by 
lipopolysaccharide administration [243]. Chronic social defeat stress in 
mice promoted depressive-like phenotypes associated with increased 
levels of NOX2, IL6 and TNFα in the striatum, prefrontal cortex and 
hippocampus [244]. Similarly, the depressive-like behaviors promoted 
by chronic unpredictable mild stress were paralleled by the increase of 
NOX1, TNFα, IL1β and IL6 in the prefrontal cortex of mice [232]. 

6. Consequence of NOX inhibitors on thrombosis and depression 

Given the role of NOX in regulating various processes involved in 
both thrombosis and depression, the use of agents targeting this enzyme 
has gained interest in counteracting these pathologies and especially 
their coexistence. 

Most of the compounds that have been tested to reduce oxidative 
stress-induced thrombosis and depression are inhibitors of NOX1 and 
NOX2 activation [104,111]. 

In the following section, we briefly summarize natural and non- 
natural compounds that have been tested in the field of thrombosis 
and depression (Table 2). 

Apocynin is a naturally occurring methoxy-substituted catechol, 
extracted from the roots of Picrorhiza kurroa and was one of the first 
NOX inhibitors described. Apocynin prevents the shift of p47phox subunit 
from the cytosol to the plasma membrane as well as the overexpression 
of NADPH oxidase subunits [259,260]. 

Apocynin is a compound extensively studied as a NOX inhibitor in 
experimental models of cardiovascular disease and depression. 

It prevents platelet aggregation triggered by various stimuli (e.g., 
collagen, thrombin, and ADP) [148], significantly decreases 
thrombin-induced GPIIbIIIa activation [261], reduces the thrombus 
formation on collagen under high shear stress [261,245], and prevents 
platelet adhesion in subject with advanced atherosclerotic plaques 

Table 2 
Effect of NOX inhibitors on thrombosis and depression.  

Compound Thrombosis source Depression source 

Apocynin ↓ platelet 
aggregation 

[132] ↓ p47phox and p67phox 

↓ HDACs 
↑ H3Ac 

[84] 

↓ thrombus 
formation in vitro 

[216, 
217] 

↓ adhesion of 
platelets 

[204] ↓ depressive-like 
phenotype 

[16,84,85, 
87,208, 
221–223] ↓ arterial 

thrombosis in 
vivo 
↓ NOX1 
expression in 
megakaryocytes 

[16] 

↓ endothelial 
dysfunction 
NO signalling 

[220]     

Celastrol ↓ P-selectin and 
GPIIbIIIa on 
platelets 

[224]   

↓ arterial 
thrombosis in 
vivo 

[225] ↓ depressive-like 
phenotype 

[227,228] 

↓ endothelial 
dysfunction in 
vivo 

[226]   

Ebselen ↓ platelet 
aggregation 

[232]   

↓ arterial and 
venous 
thrombosis in 
vivo 

[233] ↓ depressive-like 
phenotype 

[236] 

↓ NOX2 
expression in 
macrophages 

[234]   

Suramin ↓ platelet 
aggregation 
↓ calcium 
mobilization 

[238]     

↓ venous 
thrombosis in 
vivo 

[239] N.A. N.A. 

↓monocyte 
adhesion 
↓ LDL oxidation 
↑ NOX4 

[240]   

Perhexiline ↓ platelet 
aggregation 

[243] N.A. N.A. 

Berberine ↓ NOX4 in 
endothelial cells 

[245] ↓ depressive-like 
phenotype 

[246,247] 

↓ platelet 
aggregation 

[248] ↑ BDNF [246,247] 

↓ macrophage 
activation 

[249] ↑ 5HT, DA, NE [247,250] 

↓ leukocyte 
adhesion to 
endothelium 

[251] ↓ neuroinflammation 
↓kynurenine 
metabolism 
↓iNOs 

[171,252] 

↓ endothelial 
dysfunction 

[253] 

2-APT/ 
ML171 

↓ platelet 
aggregation to 
collagen 

[62, 
174, 
254] 

N.A. N.A. 

↓ platelet 
adhesion 
collagen 
↓ thrombus 
formation in vitro 
collagen 
= platelet 
response to 
thrombin 

(continued on next page) 
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[223]. 
In endothelial cells, the activity of NOX represents an important 

signaling pathway, and complete inhibition of this enzyme could lead to 
deleterious effects in cells and tissues [248]. In this regard, apocynin 
could be considered sufficiently safe, since the levels of myeloperox
idase, the enzyme that converts the prodrug into its active form, are very 
low in blood vessels and are raised fivefold in cardiovascular disease 
[249]. Therefore, it is likely that apocynin has no effect on the endo
thelium under physiological conditions, when endothelial NOX levels 
are low, and only inhibits excessive NOX activity under pathological 
conditions. Specifically, apocynin prevents endothelial dysfunction by 
not only inhibiting NOX activity but also affecting NO signal [251], 
resulting in an antithrombotic phenotype. 

We recently showed that apocynin reduces the formation of ROS and 
the NOX1 levels in bone marrow megakaryocytes, decreases platelet 
hyperactivity and plasmatic levels of malondialdehyde and prevents 
arterial thrombosis in stressed mice [16]. In addition, we reported that 
apocynin is able to reduce the increase of oxidative stress, p47phox and 
p67phox in the hippocampus in an experimental animal model of 
depression [17]. Moreover, apocynin prevents stress-induced epigenetic 
and behavioral changes [17]. Consistent with our data, several other 
studies have described the antidepressant properties of apocynin in 
various stress-induced experimental paradigms of depression by 
reducing levels of oxidative stress in the hippocampus, prefrontal cortex 
and striatum [103,105,227,253]. Interestingly, apocynin also reduces 
the depression-like phenotype in nonstress-related depression models 
such as the progressive multiple sclerosis and acute lung injury mouse 
models by reducing levels of oxidative stress in the hippocampus and 
amygdala [243,246]. Several studies have shown that apocynin is able 
to reduce the NF-κB signaling pathway, inflammasome activation, 
neuroinflammation and microglial activation [247,252]. In addition, 
apocynin protects against autophagy activation and neuronal cell death 
[252,250]. 

Celastrol is an orange triterpene obtained from Tripterygium wil
fordii Hook F. (Thunder God vine) and Celastrus regelii. This compound 
is a NOX inhibitor that acts on the interaction between p47phox and 
p22phox and is a promising inhibitor of platelet activation. It inhibits the 
expression of P-selectin promoted by thrombin, ADP, and 12-myristate- 
13-acetate and GPIIbIIIa expression in platelets stimulated with ADP. In 
addition, celastrol moderately reduces platelet adhesion to fibrinogen 
and aggregation induced by ADP [262]. Interestingly, Ouyang et al. 
reported that this molecule reduces thrombosis in thrombogenic mice 

administered with high-fat diet [263]. Inhibition of NOX2 by celastrol is 
also able to inhibit Ang–II–mediated endothelial dysfunction [254]. 

Few works have investigated the potential function of celastrol in 
animal models of depression. In one study, celastrol administration 
reduced the depression-like phenotype in a mouse model of the co
morbidity of obesity and depression. These behavioral changes are 
associated with the suppression of the overexpression of TNFα and the 
downregulation of BDNF [264]. In addition, celastrol showed antide
pressant effects in a winter depressive-like model in medaka fish [265]. 
It has been also demonstrated that celastrol is able to reduced oxidative 
stress, production of IL1β, activation of NF-κB, glia activation and neu
rodegeneration [250]. 

Ebselen, a synthetic organoselenium molecule with anti- 
inflammatory, antioxidant, and cytoprotective activity, is another 
compound that has been studied as a NOX inhibitor [266]. Ebselen was 
shown to prevent the translocation of p47phox into membranes and its 
interaction with p22phox [255]. 

This molecule is able to inhibit aspirin-mediated increases in intra
cellular calcium in human platelets [267] and, more importantly, re
duces cardiovascular risk in animal models. Specifically, ebselen 
attenuated platelet aggregation in a mouse model of chronic kidney 
disease known to be at higher risk for developing CVD [256]. In addi
tion, ebselen delayed and/or completely prevented venous and arteri
olar thrombus formation in photochemical and ferric chloride 
thrombosis models [257]. Interestingly, ebselen reduces aortic lesions in 
diabetic ApoE− /− mice by decreasing NOX2 levels in macrophages, 
suggesting its potential therapeutic role in atherothrombotic disease 
[258]. Although ebselen has been suggested as a potential treatment for 
depressed patients resistant to drug treatments [268], its efficacy as an 
antidepressant has been little studied. Ebselen rescues depressive-like 
phenotypes in CREB-regulated transcriptional coactivator-1 knockout 
mice, a gene involved in regulating brain metabolism and associated 
with psychiatric disorders [269]. Moreover, it has been reported that 
ebselen can modulate oxidative stress levels, apoptotic pathway, adult 
hippocampal neurogenesis, synaptic protein levels, and long-term 
potentiation in the brain of different animal model [270–274]. 

Suramin, a purinergic receptor antagonist used as an antiparasitic 
agent, inhibits NOX2 activity by competitive inhibition [275]. 

Suramin completely blocks platelet aggregation induced by platelet- 
activating factor, thrombin, arachidonic acid, and alkyllysophosphatic 
acid. Calcium mobilization mediated by thrombin was also inhibited by 
this compound [276]. It also reduced venous thrombus formation in 
mouse models [277]. Studies in leukocyte cells have also focused on 
suramin therapeutic effect in atherosclerosis-related events. Specif
ically, it inhibits oxLDL-induced adhesion of monocyte cell lines and 
oxLDL-associated ROS production and induction of NOX4 [278]. 

No specific studies have been performed to assess the potential role 
of suramin as an antidepressant. However, suramin improved social 
behavior and memory performance [279,280], two features common in 
depressed patients. It is noteworthy that suramin reduces the expression 
and release of microglial cytokines, oxidative stress and neuronal cell 
death in vitro [281,282] as well as the activation of microglia [283]. 

Perhexiline is an anti-anginal agent working as a noncompetitive 
inhibitor of NOX2, although the precise mechanism of action has not yet 
been identified [275]. 

Perhexiline is associated with increased responsiveness to NO. Spe
cifically, in platelets, it enhances the effect of the NO donor sodium 
nitroprusside, which inhibits aggregation [284]. 

Only one study examined the effect of perhexiline in endothelial and 
leukocyte cells, showing that it can inhibit the preassembled NOX 
complex in neutrophil and human umbilical vein endothelial cells [73]. 
The relevance of these findings to specific pathologies has not yet been 
investigated. 

No data are available on the possible effects of perhexiline on 
depression. Only one article describes how two patients taking fluoxe
tine and paroxetine, selective serotonin reuptake medications, suffered 

Table 2 (continued ) 

Compound Thrombosis source Depression source 

= platelet 
adhesion to 
fibrinogen 

Phox-I ↓ platelet 
activation in vitro 
and ex vivo 
↓ platelet 
adhesion in vivo  
= bleeding 

[255] N.A. N.A. 

VAS2870 
and 
VAS2870 

↓ platelet 
aggregation 
↓ platelet granule 
release 
↓ GPIIbIIIa 
activation  
= bleeding 

↓ arterial 
thrombosis in 
vivo 

[256] N.A. N.A. 

↓ platelet 
adhesion ex vivo 

[257] 

↓ vascular 
reactivity 

[258]  
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severe toxicity from perhexiline [285]. 
Berberine is an ammonium salt of alkaloid found in various plants 

such as Berberidacea, Coptis, and Hydrastis. Berberine has promising 
therapeutic effects on CVDs including atherosclerosis, myocardial 
infarction heart failure, cardiac hypertrophy, and hypertension [260, 
286] and could be a natural compound useful in the treatment of 
depression [287]. 

Berberine has a protective function in cardiovascular cells by 
inhibiting NOXs, particularly NOX4. Treatment with berberine 
decreased ROS plasma levels in healthy humans and inhibited NOX4 
upregulation and ROS production in cultured endothelial cells [288]. 

In addition, berberine was reported to inhibit platelet aggregation, 
ROS production and NADPH oxidase activation. It can also act syner
gistically with the no specific inhibitor of NOX (DPI/VAS2870) and 
reduce agonist-induced platelet aggregation [289]. 

The role of berberine on leukocyte cells has been mainly associated 
with autoimmune, inflammatory, or cancer diseases. However, recent 
studies have shown that berberine is able to decrease oxLDL-induced 
macrophage activation [290], to reduce adhesion of leukocyte to 
LPS-treated endothelial cells [291], and to protect against endothelial 
injury and dysfunction [292]. All these data could suggest that berberine 
may also be beneficial in atherothrombotic disease, although none of the 
previous studies directly linked these effects to NOX inhibition. 

The antidepressant effects of berberine have been demonstrated 
especially in stress-related experimental models of depression. 
Berberine reduces depressive-like phenotypes in stressed rodents by 
rising the production of dopamine, norepinephrine, serotonin, and 
BDNF [293,294]. In addition, berberine prevented depressive-like phe
notypes by reducing oxidative stress, kynurenine metabolism, and 
neuroinflammation in the hippocampus of mice exposed to chronic 
stress [188,295]. Berberine also reduced depressive-like phenotypes in 
rat models of chronic pain and diabetes, and this was paralleled by the 
reduction of oxidative stress in several brain areas important for mood 
regulation [296,297]. Berberine also promotes neuroprotective effects 
by reducing oxidative stress, mitochondrial dysfunction and inflamma
tory reactions and controlling autophagy [298]. 

Among the synthetic compounds that may affect NOX activity, they 
have been studied only in CVD models, and currently no data are 
available on their possible effect on depression. 

2-acetylphenothiazine (2-APT, also known as ML171) is a NOX 
inhibitor that significantly blocks the NOX1-dependent production of 
ROS and has only marginal effects on the other NOXs [299]. 

It has been consistently reported that 2-APT blocks superoxide anion 
production, platelet aggregation, adhesion, and thrombus formation in a 
collagen-dependent manner without effects on platelet response to 
thrombin or platelet adhesion to fibrinogen [74,192,300]. Similar re
sults were also obtained with a 2-APT derivative, 1-(10H-phenothia
zin-2-yl) vinyl tert-butyl carbonate (2APT-D6) [192]. 

2-APT, together with other compounds that have higher specificity 
for NOX1 and/or NOX2 than for NOX4 [299,301,302], represent a good 
therapeutic agent that can be used in endothelial vascular pathogenesis 
because they preserve NOX4 activity, which plays a beneficial role in 
endothelial function. However, very little evidence is available in vivo, 
so they are far from true therapeutic use. 

Phox-I is a novel small molecule specifically designed to inhibit the 
interaction of Rac1 with p67phox [303]. Phox-I inhibits ROS production 
and platelet activation in vitro and ex vivo experiments, and platelet 
adhesion and accumulation in vivo models, without altering the hemo
static response to damage [304]. 

VAS2870 and its derivative VAS3947 are pan-NOX inhibitors that 
promote conformational changes and block formation of the NOX 
multicomplex without affecting xanthine oxidase activity, eNOS, and 
ROS scavenger [305]. 

VAS2870 and VAS3947 decreased collagen- and thrombin-induced 
platelet aggregation in mice, blocked downstream PKC signaling, 
decreased calcium mobilization, GPIIbIIIa activation, and platelet 

granule release. In vivo, administration of VAS reduced thrombus for
mation without impairing regular hemostasis [306]. In ex vivo studies, 
VAS2870 inhibited human platelet adhesion under static settings and 
thrombus formation under physiological flow settings promoted by 
Aβ1-42 treatment [307]. 

Specifically, VAS2870 was reported to prevent carotid artery reac
tivity promoted by chronic stress in rats [308]. 

7. Open question and conclusions 

CVDs and depression are both common. Compared to the general 
population, CVD patients suffer more frequently from depression. In 
addition, depressed patients have a higher mortality rate and a higher 
risk of cardiovascular disease in later life compared to the general 
population. The outcomes of CVD patients who are also depressed are 
worse than those of people who are not depressed. The risk of CVDs and 
subsequent mortality varies according to the severity of depression 
[171,309–319]. In addition, CVDs and depression share some common 
risk factors, such as stressful experiences, obesity, smoking, sedentary 
lifestyle, and chronic inflammation. Unfortunately, the two pathologies 
have been studied almost exclusively, both in clinical studies and in 
preclinical experimental models: as consequence bidirectionality of the 
relationship between CVDs and depression makes this subject particu
larly complex. Indeed, it has been suggested that both depression is a 
risk factor for CVDs and that CVDs is a risk factor for depression [320] 
(Figs. 1 and 3). 

To the best of our knowledge, there is no epidemiological informa
tion available regarding how the above-mentioned NOX inhibitors affect 
the association between depression and thrombosis. Nevertheless, some 
clinical trials have been conducted or are underway aimed at separately 
defining the effect of these compounds on cardiovascular disease and 
depressive disorders. For berberine and perhexiline in particular, the 
studies focus on CVD, while for ebselen there is only one study on 
depressive symptoms (Table 3). Further studies are needed to under
stand whether these molecules might be effective in reducing 
thrombosis-depression comorbidity. 

As for drugs currently used to treat depression and thrombosis, there 
is evidence of their effectiveness in inhibiting NOX activation. In 
particular, there is evidence that statins block platelet activity by 
inhibiting platelet NOX formation of ROS [155] and that aspirin reduces 
the production of ROS via a reduction in NOX4 expression in endothelial 
cells [321–323] and microglial cells [323]. 

Similarly, antidepressants such as fluoxetine and mirtazapine can 
reduce the activity and expression of the NOX subunits and the subse
quent production of ROS in microglial cells [53,324,325]. 

We have provided here a comprehensive overview of how the 
overactivation of NOX and the consequent generation of ROS is a 
possible common mechanism in CVDs, especially thrombosis, and 
depression. Indeed, the common risk factors underlying CVDs and 
depression may promote NOX activation and production of ROS, 
contributing to both diseases (Fig. 3). Therefore, it would be important 
to investigate whether inhibition of NOX by pharmacological treatments 
could be effective in preventing and treating the comorbidity of 
thrombosis and depression. More importantly, addressing cardiovascu
lar health and mental well-being together may be beneficial in the 
prevention and treatment of both conditions. 
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