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Abstract
Background: Plasma	neurofilament	 light	chain	(NFL)	 is	a	biomarker	of	 inflammation	
and	neurodegenerative	diseases	such	as	Alzheimer's	disease	(AD).	However,	the	un-
derlying	neural	mechanisms	by	which	NFL	affects	cognitive	function	remain	unclear.	
In this study, we investigated the effects of inflammation on cognitive integrity in 
patients	with	cognitive	impairment	through	the	functional	interaction	of	plasma	NFL	
with large- scale brain networks.
Methods: This	 study	 included	 29	 cognitively	 normal,	 55	 LowNFL	 patients,	 and	 55	
HighNFL	patients.	Group	independent	component	analysis	(ICA)	was	applied	to	the	
resting-	state	fMRI	data,	and	40	independent	components	(IC)	were	extracted	for	the	
whole	brain.	Next,	the	dynamic	functional	network	connectivity	(dFNC)	of	each	sub-
ject was estimated using the sliding- window method and k- means clustering, and five 
dynamic functional states were identified. Finally, we applied mediation analysis to 
investigate	the	relationship	between	plasma	NFL	and	dFNC	indicators	and	cognitive	
scales.
Results: The	present	 study	explored	 the	dynamics	of	whole-	brain	FNC	 in	 controls	
and	LowNFL	and	HighNFL	patients	and	highlighted	the	temporal	properties	of	dFNC	
states	in	relation	to	psychological	scales.	A	potential	mechanism	for	the	association	
between	dFNC	indicators	and	NFL	levels	in	cognitively	impaired	patients.
Conclusions: Our findings suggested the decreased ability of information processing 
and	communication	in	the	HighNFL	group,	which	helps	us	to	understand	their	abnor-
mal cognitive functions clinically. Characteristic changes in the inflammation- coupled 
dynamic brain network may provide alternative biomarkers for the assessment of dis-
ease severity in cognitive impairment patients.
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1  |  INTRODUC TION

Alzheimer's	disease	 (AD)	 is	a	prevalent	neurodegenerative	disease	
characterized	by	cognitive	 impairment	and	dementia	 in	the	elderly	
population, affecting almost 50 million people worldwide.1 It has 
high morbidity and mortality rates and has become increasingly bur-
densome to families and society in recent years.2,3	Significant	effort	
in the past few years has been devoted to the search for biomarkers 
of	AD.	Neuropsychiatric	disease	severity	and	cognitive	impairment	
are often described and predicted using functional connectivity.4 
Specifically,	plasma	NFL	 is	a	promising	 low-	invasive	method	of	as-
sessing various neurologic conditions,5– 7	and	plasma	NFL	has	been	
shown to be a sensitive biomarker of inflammation and chronic neu-
rodegenerative disorders.8,9

Measures of functional connectivity describe the functional archi-
tecture of the human brain by quantifying the temporal dependence 
between	voxels,	brain	regions,	or	network	signals.10,11 Resting- state 
functional	magnetic	 resonance	 imaging	 (rs-	fMRI),	 as	 a	noninvasive	
measure of brain integrity, can assess brain activity changes and 
monitor	endogenous	changes	in	the	blood–	oxygen	level-	dependent	
(BOLD)	signal	under	resting	conditions.	Previous	research	has	con-
firmed	that	patients	with	dementia	of	AD	exhibit	functional	connec-
tivity abnormalities.12,13 Briefly, patients with cognitive disorders 
exhibited	disrupted	functional	connectivity	in	several	key	functional	
systems compared to healthy elderly individuals.14,15 These critical 
regions	include	the	default	mode	network	(DMN),	dorsal	attention	
network	(DAN),	control	network	(CON),	salience	network	(SN),	and	
sensorimotor	network	(SMN).	Abnormal	functioning	of	the	auditory	
network	 (AN)	 leads	 to	a	disruption	of	memory	 information,	which	
results in its incorrect processing of internal memory, and these ap-
parently contradictory findings suggest that the presence, severity 
and stage of illness matter.16 However, it has been considered that 
functional connectivity is static over the entire time period of typical 
rs- fMRI protocols but not dynamic. In fact, the human brain is not 
immutable but obviously a dynamically interactive system. Dynamic 
functional	 network	 connectivity	 (dFNC)	 analysis	 based	 on	 resting	
fMRI shows different connectivity states of the brain over time by 
summarizing	recurring	 large-	scale	connectivity	patterns,	as	well	as	
the mutual transitions between connectivity states.17– 19 Recently, 
several	studies	have	focused	on	the	dFNC	of	AD	and	indicated	that	
the	progressively	changing	connectivity	pattern	of	the	dFNC	is	im-
portant for tracking the progression of cognitive impairment and 
can be considered a biomarker of dementia. In more detail, abnor-
mal	connectivity	patterns	of	the	whole-	brain	dFNC	were	identified	
in	 the	 early	 stages	 of	AD,	 and	 decreased	 connectivity	 among	 the	
SMN,	 visual	 network	 (VN),	 and	AN	was	 observed	 relative	 to	 nor-
mal healthy individuals.20	 Another	 study	 demonstrated	 significant	
associations	between	dFNC	features	and	cognitive	performance	on	

neuropsychological indicators. Importantly, these associations could 
not	be	observed	between	static	FNC	traits	and	cognitive	scores.21

The	 neurofilament	 light	 (NFL)	 chain	 is	 a	 neural	 axon	 cytoskel-
etal	protein	 that	 releases	NFL	 into	 the	extracellular	 space,	 includ-
ing	peripheral	blood,	when	the	pathological	process	of	neural	axon	
injury	 occurs.	 In	 neurodegeneration,	 NFL	 can	 be	 measured	 using	
the	ultrasensitive	 single-	molecule	 array	 (SiMoATM)	method	 in	 the	
blood	due	 to	 injury	 in	 inflammation-	related	 acute	 neuroaxonal	 in-
jury.6	 Those	 who	 experience	 longer	 treatment	 interruptions	 are	
more	likely	to	experience	central	nervous	system	inflammation	and	
neuronal damage.22 It is a promising blood marker for neurodegen-
erative diseases.23,24 Moreover, plasma biomarkers are the easiest 
to use in clinical applications, where PET imaging or cerebrospinal 
fluid lumbar puncture is not yet popular due to low accessibility and 
open	examination.	The	levels	of	plasma	NFL	are	related	to	the	pre-
clinical	stages	of	AD,	and	previous	studies	have	 indicated	that	the	
level	of	NFL	correlates	with	brain	structure	in	patients	with	cognitive	
impairment.25	Briefly,	plasma	NFL	in	patients	with	cognitive	impair-
ment has been linked to neuroimaging measures such as hippocam-
pal	 volume	 and	 cortex	 thickness,	 as	 well	 as	 cognitive	 function.26 
The	longitudinal	association	between	plasma	NFL	and	white	matter	
atrophy progressively involved periventricular regions throughout 
cognitively impaired subjects and appeared to propagate from the 
temporal lobe.27

However,	whether	 and	 how	 the	 changes	 in	 plasma	NFL	 could	
modulate	the	association	between	dFNC	and	cognitive	function	re-
main unclear. In the present study, we investigated the moderating 
effect	of	plasma	NFL	on	the	relationship	between	dFNC	(i.e.,	dFNC	
state	and	dFNC	graph	theory)	and	neuropsychological	scales	in	pa-
tients	with	cognitive	impairment.	First,	we	hypothesized	that	plasma	
NFL	could	modulate	the	association	between	dFNC	and	cognition,	
specifically, at the microscopic level, since patients with cognitive 
impairment have poorer cognitive control than healthy controls. 
Therefore, these patients may rely on the temporal variability 
of brain networks that respond to cognitive function to control 
cognitive-	related	activities.	Second,	considering	the	possible	effects	
of	 plasma	NFL	on	 cognitive	 scales,	we	hypothesized	 that	 changes	
in	 dynamic	 functional	 connectivity	 could	 directly	 affect	 patients'	
cognitive dysfunction or indirectly cause cognitive impairment me-
diated	through	plasma	NFL.

2  |  METHODS AND MATERIAL S

2.1  |  ADNI database

Data used in the preparation of this article were obtained from 
the	 Alzheimer's	 Disease	 Neuroimaging	 Initiative	 (ADNI)	 database	
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(http://adni.loni.usc.edu).	 The	 ADNI	 is	 a	 multicenter,	 longitudinal	
neuroimaging study launched in 2003 as a public– private part-
nership	 led	by	Principal	 Investigator	Michael	W.	Weiner,	MD.	The	
primary	goal	of	the	ADNI	has	been	to	identify	whether	serial	MRI,	
PET, other biological markers, and clinical and neuropsychological 
assessments	would	study	 the	pathogenesis	and	prevention	of	AD.	
Since	2003,	the	ADNI	has	been	further	followed	by	the	ADNI-	GO	
and	ADNI-	2	and	has	recruited	over	1500	older	adults	(aged	55–	99)	
over	 three	phases	 (ADNI-	1,	ADNI-	GO,	 and	ADNI-	2)	 from	over	50	
sites	in	the	United	States	and	Canada.	ADNI	participants	consist	of	
cognitively normal older individuals, people with early or late mild 
cognitive	impairment	(MCI),	and	people	with	AD.	The	study	was	ap-
proved by the institutional review boards of all participating centers, 
and written informed consent was obtained from each participant or 
authorized	representative.	A	detailed	description	of	the	full	inclusion	
and	exclusion	criteria	for	the	ADNI	is	provided	in	the	Appendix	S1.

2.2  |  Participants

In	 this	 study,	 all	 subjects	were	obtained	 from	 the	ADNI	database,	
including 139 participants. The participants included 29 cognitively 
normal	(CN),	55	low	plasma	neurofilament	light	chain	(LowNFL),	and	
55	 high	 plasma	neurofilament	 light	 chain	 (HighNFL)	 patients	 from	
whom	the	resting-	state	fMRI	data	were	downloaded	from	the	ADNI.	
In addition, the present study matched the groups by age, educa-
tion	 level	 and	 sex,	 and	 LowNFL	 and	 HighNFL,	 included	 patients	
with different stages of cognitive impairment, such as early MCI 
(EMCI),	 late	MCI	(LMCI),	and	AD.	For	grouping,	plasma	NFL	values	
above	and	below	the	median	were	classed	as	HighNFL	and	LowNFL,	
respectively.

2.3  |  Clinical and neuropsychological measurement

Demographic characteristics and neuropsychological assessment 
data	 were	 downloaded	 from	 the	 ADNI	 database	 (http://adni.loni.
usc.edu).	 For	 the	 primary	 analyses,	 all	 subjects	were	 subjected	 to	
a	 thorough	 physical	 and	 cognitive	 examination	 by	 ADNI	 or	 BLSA	
study	 personnel.	 ADNI	 subjects	 were	 evaluated	 using	 the	 Mini-	
Mental	State	Examination	(MMSE),	Montreal	Cognitive	Assessment	
(MoCA),	 Clinical	 Dementia	 Rating	 (CDR),	 Alzheimer's	 Disease	
Assessment	 Scale-	Cognitive	 Section	 (ADAS),	 and	 Functional	
Activities	 Questionnaire	 (FAQ)	 as	 general	 cognition	 and	 the	 Ray	
Auditory	Verbal	Learning	Test	(RAVLT)	as	a	marker	of	episodic	mem-
ory.	Full	information	regarding	the	ADNI	inclusion	and	exclusion	cri-
teria can be accessed at http://adni.loni.usc.edu/.

2.4  |  Plasma NFL

During	the	course	of	the	study,	plasma	NFL	was	available	for	all	pa-
tients	 included.	 Plasma	 NFL	 concentrations	 were	measured	 using	

an	NFL	kit	 (NF	light;	UmanDiagnostics)	and	then	transferred	to	an	
ultrasensitive single- molecule array platform using a homemade kit 
(Simoa	Homebrew	Assay	Development	Kit;	Quanterix	Corporation).	
A	 6.7 ng/L	 was	 the	 lower	 limit	 of	 quantification,	 and	 1620.0 ng/L	
was	 the	 upper	 limit.	 All	 measurements	 fell	 within	 the	 limits	 of	
quantification.

2.5  |  MRI scanning

All	image	data	analyzed	here	were	obtained	from	the	ADNI	website	
(http://www.adni- info.org).	 MRI	 scanners	 with	 a	 3.0-	Tesla	 Philips	
were used for scanning all subjects. In this study, resting- state 
fMRI was acquired using a gradient echo planar imaging sequence 
with	 the	 following	 parameters:	 repetition	 time	 (TR) = 3000 ms;	
echo	 time	 (TE) = 30 ms;	 slice	 thickness = 3.3 mm;	 flip	 angle = 80°;	
acquisition	 matrix = 64 × 64;	 slice	 number = 48;	 and	 spatial	 resolu-
tion = 3.31 × 3.31 × 3.31 mm3. Then, the data processing pipeline was 
divided into several main processing blocks, while the study flow-
chart is available in Figure 1.

2.6  |  rs- fMRI preprocessing

The resting- state fMRI data were preprocessed using the Data 
Processing	Assistant	 for	 Resting-	State	 fMRI	 v2.2	 (DPARSF)	 under	
the	MATLAB	R2013b	 environment.	 The	 following	 is	 a	 description	
of	the	data	preprocessing	procedure.	A	10-	point	time	series	was	re-
moved to lessen the impact of the scanner on the participants during 
their initial scanning and to facilitate their adaptation. Then, the func-
tional images were slice time corrected for timing offsets between 
different slices and realigned to the first image to account for head 
motion	between	scans.	Participants	whose	head	motion	exceeded	
3 mm	in	translation	and	3°	in	rotation	were	rejected	from	the	study.	
Subsequently,	 spatial	 smoothing	 was	 performed	 using	 a	 Gaussian	
smoothing	 kernel	 with	 a	 full	 width	 at	 half	 maximum	 (FWHM)	 of	
6 × 6 × 6 mm.	After	that,	we	applied	a	bandpass	temporal	filter	(0.01–	
0.08 Hz).	 As	 a	 final	 step,	 nuisance	 covariates,	 including	 head	mo-
tions, global mean signals, white matter signals, and cerebrospinal 
fluid signals, were removed from the regression calculations.

2.7  |  Group independent component analysis and 
postprocessing

Group-	level	 independent	 component	 analysis	 (ICA)	 for	 the	 pre-
processed	fMRI	data	was	conducted	with	the	Group	ICA	for	fMRI	
Toolbox	(GIFT	version	4.0b).28,29 First, data reduction was conducted 
to	 decrease	 computational	 complexity	 using	 a	 two-	stage	 princi-
pal	component	analysis	 (PCA).	Specifically,	 the	preprocessed	 fMRI	
data of both the patient and control groups were first dimensionally 
reduced in the temporal dimension, and then the dimensionality- 
reduced data of all subjects were concatenated along the temporal 
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dimension into a dataset, or grouped data, and reduced by another 
dimension.	After	that,	the	preprocessed	data	were	decomposed	into	
40	independent	components	(ICs)	through	a	two-	step	PCA.	To	en-
sure the repeatability or stability of the decomposed independent 

components,	we	used	the	Infomax	algorithm30 with 20 repetitions 
of	ICASSO.31	Ultimately,	using	back	reconstruction,28,32 individual- 
level	components	were	transformed	into	Z	scores,	which	represent	
how	closely	the	time	series	of	a	given	voxel	matches	the	mean	time	

F I G U R E  1 Pipeline	of	capturing	whole-	brain	connectivity	features.	(A)	Group	ICA	is	performed	on	three	independent	datasets,	and	the	
estimated	independent	components	(ICs)	are	matched	by	spatial	correlation.	(B)	Pearson	correlation	coefficients	are	calculated	using	the	
time	courses	across	all	scans,	and	then	a	sliding	window	approach	is	used	to	estimate	dFNC.	K-	means	clustering	is	performed	on	the	dFNC	
estimates.	(C)	State	occurrences	and	transitions	are	calculated.
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series of that component. Then, we identified ICs of interest by using 
the automatic identification method and visual screening based on 
previously reported spatial maps. Of the 40 ICs obtained, 11 ICs of 
interest	were	determined	that	exhibited	peak	activation	and	higher	
low- frequency spectral power predominantly in gray matter, with 
known spatial overlap with vessels, ventricles, white matter, and 
limbic	regions.	Eleven	ICs	were	characterized	as	subnetworks:	AN,	
DAN,	DMN,	left	frontoparietal	network	(LFPN),	right	frontoparietal	
network	(RFPN),	SMN,	ventral	attention	network	(VAN),	visual	net-
work	(VN),	and	SN.	In	addition,	following	a	previous	study,	we	ap-
plied additional postprocessing steps on the time courses of the 11 
ICs	 to	eliminate	noise,	 including	 (i)	 linear,	quadratic,	 and	cubic	de-
trending;	 (ii)	 regression	of	 their	 temporal;	 (iii)	 removal	of	detected	
outliers;	 and	 (iv)	 low-	pass	 filtering	 with	 a	 high-	frequency	 cut-	off	
of	0.15 Hz.	Eventually,	we	performed	the	following	dFNC	analyses	
using the residual time courses.

2.8  |  Dynamic functional network connectivity

We	adopted	this	analysis	using	the	FNC	toolbox	in	GIFT	using	the	
sliding window approach and k- means clustering, which are com-
mon	ways	to	estimate	dFNC.	The	tapered	windows	were	created	by	
convolving	a	rectangle	(window	size	set	to	30	TRs)	with	a	Gaussian	
of σ = 3	and	slides	 in	steps	of	1	TR.	Based	on	Pearson	correlation,	
a	covariance	matrix	was	calculated	to	measure	the	dFNC	between	
ICA	time	courses.	Then,	the	k-	means	clustering	algorithm	(using	the	
squared Euclidean distance method with 500 iterations and 150 rep-
licate	dFNC	windows)	was	conducted	on	the	matrices.	 In	addition,	
three	dFNC	indices	were	extracted	from	the	target	dFNC	state	of	
each	subject,	namely	the	fraction	of	time	(FT),	the	mean	dwell	time	
(MDL),	and	the	number	of	transitions	(NT).	FT	refers	to	the	percent-
age of the total time that occurs in each state. MDL indicates the 
average	of	time	spent	in	a	given	state	for	each	subject.	NT	reflects	
the number of times each participant switched between states. 
Subsequently,	statistical	analysis	was	performed	using	the	nonpara-
metric	Whitney	U	test	for	these	indicators	(p < 0.05	was	considered	
statistically	significant).

Additionally,	to	determine	whether	plasma	NFL	mediated	the	re-
lationships	between	dFNC	indices	and	cognition,	mediation	analysis	
was	 further	performed.	Based	on	bootstrapping	 (k = 1000	random	
samples),	 bias-	corrected	 95%	 confidence	 intervals	 (CIs)	 were	 cal-
culated	 to	 test	 whether	 the	 mediation	 was	 significant.	 Statistical	
analyses	were	performed	with	PROCESS	for	the	Statistical	Package	
for	 Social	 Science	 (SPSS)	 version	 22.0	 for	 Windows	 (SPSS,	 Inc.,	
Chicago,	IL).

2.9  |  Graph theory analysis

We	applied	graph	theory	analysis	using	GRETNA	software	(www.
nitrc.org/proje cts/gretna)	to	analyze	the	topological	properties	of	
the dynamic functional networks of each subject. Based on the 

previous graph theory framework, 11 ICs corresponded to func-
tionally independent nodes and connectivities linking node pairs 
were	defined	as	edges	in	the	graphs.	Then,	all	FNC	matrixes	were	
binarized,	and	a	wide	range	of	sparsity	thresholds	was	set	(thresh-
old	range	of	0.05–	0.40	with	an	interval	of	0.01).	At	each	sparsity	
threshold, global and local network efficiencies were employed to 
investigate local and global information in functional brain net-
works. Briefly, we calculated both global and nodal network prop-
erties	and	the	area	under	the	curve	(AUC)	for	each	property	over	
the	 sparsity	 range	and	compared	 the	AUC	between	each	group.	
We	applied	variance	to	assess	the	differences	in	global	and	local	
efficiency.

2.10  |  Statistical analysis

The	statistical	 analysis	was	performed	with	SPSS	version	22.0	 for	
Windows.	 The	 differences	 among	 CN,	 LowNFL,	 and	 HighNFL	 in	
demographic,	 neuropsychological,	 and	 plasma	NFL	were	 assessed	
by	Kruskal–	Wallis	tests,	a	nonparametric	test.	Post	hoc	tests	were	
also	performed	by	another	nonparametric	 test,	 the	Mann–	Whiney	
U	test.	We	performed	Spearman's	correlation	analysis	to	investigate	
the	 relationship	 between	 the	 dFNC	 characteristics	 and	 the	 neu-
ropsychological	assessment	data	in	the	HighNFL	group.	The	statisti-
cal significance threshold was set at p < 0.05.

3  |  RESULTS

3.1  |  Demographic and neuropsychometric 
characteristics

Demographic and neuropsychometric characteristics are provided 
in Table 1.	Comparisons	of	age,	education	level,	or	sex	variables	did	
not reveal any significant differences. General cognition and epi-
sodic	memory	(i.e.,	RAVLT_immediate,	RAVLT_learning,	and	RAVLT_
perc_forgetting)	 indicated	 significant	 differences	 between	 the	CN	
and	HighNFL	groups,	as	well	as	the	LowNFL	and	HighNFL	groups.	
Furthermore, a previous study demonstrated that a significant cor-
relation	was	 found	between	NFL	 levels	 and	cognitive	 impairment.	
In Table 1,	we	observed	 that	plasma	NFL	 levels	were	 significantly	
higher	in	the	HighNFL	group	than	in	the	CN	and	LowNFL	groups,	and	
patients'	 general	 cognition	 (i.e.,	MMSE,	MoCA,	CDR,	ADAS11/13,	
and	 FAQ)	 and	 episodic	 memory	 (i.e.,	 RAVLT_immediate,	 RAVLT_
learning,	 and	 RAVLT_perc_forgetting)	 worsened	 with	 plasma	 NFL	
level	progression	(p < 0.05).

3.2  |  ICs of interest

Figure 2 shows the 11 ICs of interest, which were selected from 
the	40	ICs	(one	sample	t test, p < 0.001,	FDR	corrected).	Based	on	
their anatomical and functional properties, 11 ICs were further 
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categorized	 into	 nine	 networks,	 including	 the	 AN,	 DAN,	 DMN,	
LFPN,	RFPN,	SN,	SMN,	VAN,	and	VN.

3.3  |  dFNC states

The	sliding	window	approach	was	utilized	to	calculate	the	dFNC	be-
tween	ICs,	and	then	the	dFNC	was	estimated	for	all	subjects	using	
k- means clustering to identify five states of connectivity that re-
curred over time. The five states of the clusters and their respective 
frequencies and percentages appear as in Figure 3A,B.	 Using	 the	
five	clustering	centroids	(cluster	medians)	described	above,	all	dFNC	
windows for each subject were classified into one of the five states 
based	on	the	similarity	of	the	starting	clustering	centroids.	Note	that	
not	all	subjects	were	assigned	a	dFNC	window	for	each	state;	see	the	
subject counts for each state shown in Table 2.

In	 state	 1,	 which	 accounts	 for	 16%	 of	 all	 windows,	 the	 FNC	
between	the	AN	and	SMN,	VAN,	VN,	and	SN	showed	positive	con-
nectivity	and	negative	connectivity	between	the	DMN	and	DAN	
and	SN.	 In	states	2	and	3,	which	accounted	for	22%	and	43%	of	
all	windows,	 the	FNC	between	 all	 functional	 networks	was	 very	
sparse. Compared with state 2, state 4 showed the opposite 
connectivity pattern, such as a more positive correlation within 
networks.

With	regard	to	temporal	properties,	the	dFNC	was	computed	in	
Figure 3C,D	(i.e.,	fractional	of	time	and	mean	dwell	time).	Figure S1A 
(for	 details,	 see	 Appendix	 S1)	 generated	 the	 state	 transition	 vec-
tor of three groups for 139 participants, as well as the number of 
transitions	and	matrix	of	transitions,	as	shown	in	Figure S1B,C	(for	
details,	 see	Appendix	S1).	Among	 these	 state-	related	 indicators	 in	
state 1, we found significant differences in fraction time and mean 
dwell	 time	 in	 the	CN	and	HighNFL	groups,	as	well	as	 the	LowNFL	

F I G U R E  2 Eleven	independent	
functional components were derived from 
the	group	ICA:	auditory	network	(AN,	
IC	5),	dorsal	attention	network	(DAN,	IC	
36),	default	mode	network	(DMN,	IC	25,	
20),	left	frontoparietal	network	(LFPN,	IC	
30),	right	frontoparietal	network	(RFPN,	
IC	28),	salience	network	(SN,	IC	22,	8),	
somatomotor	network	(SMN,	IC	10),	
ventral	attention	network	(VAN,	IC	34),	
and	visual	network	(VN,	IC	17).



8 of 13  |     YAO et al.

and	HighNFL	 groups	 (Table 3).	 However,	we	 did	 not	 observe	 any	
significant group differences in the other state- related indicators. 
Furthermore, we also found that in state 1, the fraction of time and 
mean	dwell	time	of	the	HighNFL	group	were	lower	than	those	of	the	
CN	and	LowNFL	groups.

3.4  |  Associations between dFNC features and 
cognitive scores

Figure 3E–	K displays the results of a significant association be-
tween	dFNC	features	and	cognitive	scores	 in	the	HighNFL	group.	

F I G U R E  3 Dynamic	functional	connectivity	state	results.	Identified	dFNC	states	using	the	k-	means	clustering	method.	(A)	Cluster	
centroids of each state and percentage of occurrence of each brain connectivity state across the sliding windows of all subjects. The color 
bar	shows	the	strength	of	the	connectivity.	(B)	Visualization	of	functional	network	connectivity	at	every	state.	(C)	Comparison	of	the	group	
effect	in	the	temporal	properties	of	the	dFNC	state	among	the	CN,	LowNFL,	and	HighNFL	groups	(p < 0.05,	FDR	corrected):	Fraction	time.	
(D)	Mean	dwell	time.	(E–	K)	Correlations	of	the	HighNFL	group	between	cognitive	scales	and	dFNC	indices	in	state	1.
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In	 dFNC	 state	 1,	 the	 fraction	 of	 time	 was	 positively	 correlated	
with	 ADAS11	 (r = 0.2817,	 p = 0.0372)	 and	 ADAS13	 (r = 0.2978,	
p = 0.0272),	 whereas	 it	 was	 negatively	 correlated	 with	 MMSE	
(r = −0.2693,	 p = 0.0468)	 and	 RAVLT_immediate	 (r = −0.3057,	
p = 0.0232).	Similarly,	we	found	that	the	mean	dwell	time	was	posi-
tively	correlated	with	ADAS11	(r = 0.3143,	p = 0.0195)	and	ADAS13	
(r = 0.3227,	p = 0.0163)	 and	 negatively	 correlated	with	RAVLT_im-
mediate	(r = −0.3091,	p = 0.0216).

3.5  |  Graph topological properties

Graph theory analysis was applied to investigate the topologic met-
rics	 of	 dFNC	 states	 and	 compare	 them	 between	 groups	 (i.e.,	 CN,	
LowNFL,	 and	HighNFL).	 The	 variability	 of	 the	 global	 and	 local	 ef-
ficiency for the three groups is depicted in Figure S2	 (for	 details,	
see	Appendix	S1).	 In	global	and	 local	efficiency,	we	observed	 that	
LowNFL	and	HighNFL	patients	exhibited	significantly	higher	global	
efficiency	 than	CN	 (p < 0.05	FDR	corrected),	 suggesting	 that	aver-
age parallel information in brain networks of cognitively impaired 
patients can provide more efficient information transfer. In addition, 

we	found	a	significant	correlation	between	CN	and	LowNFL,	as	well	
as	CN	and	HighNFL	groups	in	local	efficiency.

3.6  |  Mediators of plasma NFL

Three	parent-	reported	variables	(plasma	NFL	as	a	mediator,	topologic	
metrics	of	dFNC	states	were	entered	as	a	predictor,	and	neuropsy-
chological	performance	was	an	outcome)	showed	differential	change	
by condition and were subjected to mediation analyses. In the cog-
nitively	impaired	patients,	plasma	NFL	was	used	as	a	mediator,	and	
topologic	metrics	of	dFNC	states	 (i.e.,	 fractional	of	time,	FT;	mean	
dwell	time,	MDL)	affected	general	cognition	and	episodic	memory	by	
these	mediators	(p < 0.05,	details	see	Figure 4).	The	results	indicated	
that dynamic indicators influenced cognitive scale mainly through 
the	mediator	of	plasma	NFL	in	state	1.	In	detail,	the	effect	of	plasma	
NFL	was	found	to	be	significant	in	the	HighNFL	group	FT	of	CDR,	
ADAS11,	ADAS13,	RAVLT	immediate,	FAQ,	MOCA,	and	MMSE	(95%	
CIs	in	order	were	as	follows:	−1.3721,	−0.1034;	−5.5790,	−0.3781;	
−6.7920,	 −0.5959;	 0.3992,	 5.1880;	 −5.9447,	 −0.2529;	 0.1202,	
2.7546;	0.1066,	2.4672,	separately),	while	plasma	NFL	was	found	to	

TA B L E  2 Number	of	per	group	individuals	in	each	state	and	their	number	of	windowed	FNC	in	parentheses.

Groups N State 1 State 2 State 3 State 4 State 5

CN 29 16 13 21 13 1

LowNFL 55 28 22 43 20 2

HighNFL 55 16 23 42 20 3

Total 139 60	(2193) 58	(3071) 106	(5912) 53	(2357) 6	(367)

Note:	Number	of	individuals	in	per	group	participating	in	each	state.	The	number	of	FNCs	in	the	window	is	indicated	in	parentheses.
Abbreviation:	N,	number.

TA B L E  3 Group	differences	in	temporal	dynamic	indices	revealed	by	the	states	clustering	analysis.

Indices CN LowNFL HighNFL

p- (Mann– Whiney U Test)

CN vs. 
LowNFL CN vs. HighNFL Low vs. HighNFL

FT in state 1 0.17 ± 0.23 0.22 ± 0.26 0.10 ± 0.19 0.564 0.048* 0.007*

FT in state 2 0.21 ± 0.31 0.22 ± 0.32 0.23 ± 0.31 0.912 0.888 0.875

FT in state 3 0.42 ± 0.33 0.40 ± 0.34 0.46 ± 0.35 0.751 0.624 0.325

FT in state 4 0.19 ± 0.28 0.15 ± 0.25 0.18 ± 0.29 0.387 0.875 0.509

FT in state 5 0.01 ± 0.08 0.02 ± 0.14 0.03 ± 0.16 0.524 0.924 0.416

MDL in state 1 14.57 ± 20.28 15.02 ± 18.37 5.96 ± 10.27 0.895 0.018* 0.005*

MDL in state 2 17.35 ± 28.91 16.14 ± 28.84 15.65 ± 23.62 0.748 0.952 0.722

MDL in state 3 27.98 ± 28.80 29.98 ± 32.18 36.0 ± 33.81 0.928 0.451 0.258

MDL in state 4 16.47 ± 25.44 11.06 ± 19.19 11.99 ± 21.37 0.342 0.593 0.632

MDL in state 5 1.48 ± 7.61 2.13 ± 13.64 2.83 ± 14.35 0.524 0.941 0.408

Transition	Number 2.38 ± 1.68 2.55 ± 1.95 2.42 ± 1.64 0.834 0.893 0.913

Note:	Values	were	presented	as	the	average ± standard	deviation	(SD);	p- (Mann–	Whiney	U	Test)	was	used	here	due	to	the	fact	that	the	data	were	not	
normally distributed.
Abbreviations:	CN,	cognitively	normal;	FT,	fraction	of	time;	HighNFL,	high	neurofilament	light;	LowNFL,	low	plasma	neurofilament	light;	MDL,	mean	
dwell time.
*Indicates a statistical difference between groups, p < 0.05.
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be	significant	in	the	HighNFL	group	MDL	of	CDR,	ADAS11,	ADAS13,	
RAVLT	immediate,	FAQ,	MOCA,	and	MMSE	(95%	CIs	in	order	were	
as	follows:	−0.0204,	−0.0016;	−0.0855,	−0.0079;	−0.1027,	−0.0110;	
0.0087,	0.0761;	−0.0889,	−0.0040;	0.0019,	0.0426;	0.0015).

4  |  DISCUSSION

The	 present	 study	 explored	 the	 dynamics	 of	 whole-	brain	 FNC	 in	
CN,	LowNFL,	and	HighNFL	patients	and	emphasized	the	temporal	
properties	of	 functional	connectivity	of	dFNC	states	 in	relation	to	
psychological	scales.	The	main	findings	were	as	follows:	(i)	the	dFNC	
in the 11 brain networks could be clustered into 5 states that re-
curred over time, which differed in their connectivity patterns, with 
3	states	showing	dense	connectivity	(states	1,	4,	and	5)	and	2	states	
showing	sparse	connectivity	(states	2	and	3);	(ii)	analysis	of	the	tem-
poral	properties	of	the	functional	connectivity	of	the	dFNC	states	
revealed	that	the	HighNFL	group	spent	less	time	in	state	1	than	con-
trols and had significantly lower fraction time and mean dwell time, 
but	the	opposite	 in	state	3;	and	 (iii)	a	potential	mechanism	for	the	
association	between	dFNC	indicators	and	plasma	NFL	levels	in	cog-
nitively impaired patients, in addition, it could be used to distinguish 
normal patients from cognitively impaired patients. These results 
suggested that the dynamic behavior of brain connections should be 
highlighted	as	AD	related.

Transient	dFNC	states	may	reveal	the	functional	capacity	of	the	
nervous system.33	 Strengthened	 integration	 between	 networks	 is	
necessary for greater working memory performance.34,35	A	recent	
study	showed	that	the	motor	network	in	AD	subjects	is	independent	
of other brain networks and is in a sparsely connected functional 
connectivity state most of the time.36 In addition, another study 
demonstrated	 that	 the	 time	 spent	 by	 AD	 patients	 differed	 when	
they	were	 in	 different	 states	 of	 connectivity.	Namely,	 states	with	

lower connectivity spend more time, while states with higher con-
nectivity spend less time.37 Our results showed that the subjects in 
the	HighNFL	group	spent	more	time	in	state	3,	which	showed	sparse	
connectivity between brain networks, and less time in the state with 
stronger	connectivity	between	brain	networks.	Next,	another	part	
of the results was identified by showing that the normal brain spends 
more	time	in	tight	junctions	than	HighNFL,	as	in	state	1.	Therefore,	
this reinforces the role of connectivity sparseness and denseness in 
the transition from the normal to the cognitive impairment stage in 
different states.

Previous work has demonstrated the overlap between areas of 
pathological	damage	in	AD	and	regions	of	the	DMN.38	Notably,	activa-
tion	in	the	DMN	plays	a	significant	role	in	goal-	directed	and	introspec-
tive cognitive control associated with episodic memory.39,40 Therefore, 
as	prior	studies	have	demonstrated,	we	expected	the	role	of	the	DMN	
as a pivotal brain function to be compromised. However, we found 
that	 the	strength	of	 the	 functional	 connectivity	between	 the	SMN/
SN	was	most	associated	with	symptom	severity.	Meanwhile,	the	DMN	
was tightly connected to internal functions in four states but sparsely 
connected	to	other	brain	networks.	 In	 the	HighNFL	group,	 the	time	
spent	in	state	1	was	positively	correlated	with	the	ADAS11/13	score	
but	negatively	correlated	with	 the	ADAS11/13	score.	The	SMN	and	
SN	are	assumed	to	be	less	affected	by	AD	pathology	in	the	later	stages	
of cognitive impairment. Therefore, these stimulating findings may 
serve as a measure of sensitivity for monitoring neurological damage 
in	AD	(possibly	more	sensitive	than	regions	of	primary	degeneration).	
Therefore,	 we	 speculated	 that	 SMN	 and	 SN	 may	 impact	 cognitive	
function by dynamically regulating functional connections within the 
networks.	Additionally,	our	 results	may	suggest	 that	 the	DMN	 is	an	
important	brain	network	affected	by	AD	progression	to	later	stages,	
which	 could	 also	 help	 explain	 why	 changes	 in	 motor	 function	 may	
occur preferentially and earlier than the onset of cognition and de-
mentia.41 Large, population- based prospective studies are needed to 

F I G U R E  4 Relationships	among	plasma	NFL,	the	temporal	properties	of	the	dFNC	state,	and	cognition	were	revealed	in	cognitive	
impairment	patients.	Plasma	NFL	was	used	as	a	mediator,	and	fraction	time	affected	general	cognition	and	episodic	memory	by	these	
mediators	(p < 0.05).	In	addition,	plasma	NFL	was	used	as	a	mediator,	and	mean	dwell	time	affected	general	cognition	and	episodic	memory	
by	these	mediators	(p < 0.05).
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identify more precise changes in sensory or motor function that mark 
early cognitive impairment.

NFL	is	one	of	the	three	subunits	of	neurofilament	proteins	in	the	
central nervous system, which are essential cytoskeletal proteins for 
neurons	and	are	abundantly	present	in	most	myelinated	axons.42	NFL	
is a dynamic biomarker that is released into the circulation and eventu-
ally	into	the	bloodstream	following	axonal	injury.	NFL	levels	have	been	
associated	with	neurodegenerative	diseases,	such	as	AD.5	NFL	levels	
were	positively	correlated	with	cerebral	axonal	degeneration,	and	the	
higher	the	NFL,	the	more	severe	the	cerebral	axonal	degeneration.43 
Clinical	studies	have	also	 indicated	that	plasma	NFL	 is	higher	 in	pa-
tients	who	 suffer	 from	MCI	or	AD	dementia	with	pathological	 fea-
tures	Aβ.43 Previous studies have also shown that age affects plasma 
NFL	levels.44 Previous studies from our research team demonstrated 
that	plasma	NFL	could	affect	the	interactions	of	the	core	subsystem	
and	FPN,	which	leads	to	cognitive	decline	in	AD	spectrum	patients.45 
Some	studies	have	addressed	the	relationship	between	plasma	NFL	
and	 structural	 and	 functional	 changes	 in	 the	 brain.	 For	 example,	 in	
cognitively	impaired	subjects,	plasma	NFL	was	significantly	associated	
with material atrophy in the temporal lobe and anterior and posterior 
cingulate. Meanwhile, it can also independently predict hippocampal 
atrophy.46	This	study	further	highlighted	the	effect	of	plasma	NFL	on	
the	 temporal	properties	of	dFNC	states	 in	 relation	 to	psychological	
scales.

This study had several limitations. First, given the relatively small 
sample	size	of	our	study	population	and	based	on	a	heterogeneous	
group, it prevented us from a comprehensive assessment. Future 
studies	with	 larger	 sample	 sizes	or	multicenter	 clinical	 studies	 are	
recommended to validate this result and to further evaluate the 
impact	 of	 disease	 heterogeneity	 on	 dFNC.	 Second,	 the	 analytical	
approach	of	dFNC	is	relatively	new	and	in	this	case,	lacks	a	gold	stan-
dard.	For	example,	there	is	no	common	standard	for	how	parameters	
such as the optimal window length and overlap should be chosen, 
whereas variations in these parameters may have a large impact on 
the analytical results.47	The	choice	of	window	size	significantly	af-
fects	 the	 clustering.	A	window	 that	 is	 considered	 longer	does	not	
capture the true dynamic behavior, but more smoothing could be ac-
complished, while a shorter window can detect faster fluctuations. 
Future work could be completed to evaluate the variation in state 
derivatives	over	a	range	of	window	sizes.48 There was only one value 
of	the	plasma	NFL	index	in	this	study,	and	the	relationship	between	
NFL	over	time	and	dFNC	can	be	studied	in	a	follow-	up.

5  |  CONCLUSIONS

In	 summary,	 our	 study	 examined	 common	 and	 specific	 dFNC	 ab-
normalities in the brain networks of cognitive impairment patients 
at	 different	 levels	 of	 the	 inflammation-	related	 indicator	 NFL.	We	
found	that	the	HighNFL	group	preferred	to	spend	 less	time	 in	the	
dense connection state and spent more time in the sparse connec-
tion state. Moreover, our findings suggested decreased information 

processing	and	cognitive	abilities	in	the	HighNFL	group,	which	may	
contribute to our clinical understanding of their abnormalities in 
emotional and cognitive functions. In brief, characteristic changes in 
the inflammation- coupled dynamic brain network may provide alter-
native biomarkers for the assessment of disease severity of cognitive 
impairment.
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