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Abstract

A common motif in biology is the arrangement of cells into tubes, which further transform 

into complex shapes. Traditionally, analysis of dynamic tissues has relied on inspecting static 

snapshots, live imaging of cross-sections, or tracking isolated cells in 3D. However, capturing 

the interplay between in-plane and out-of-plane behaviors requires following the full surface as 

it deforms and integrating cell-scale motions into collective, tissue-scale deformations. Here, we 

present an analysis framework that builds in toto maps of tissue deformations by following tissue 

parcels in a static material frame of reference. Our approach then relates in-plane and out-of-plane 

behaviors and decomposes complex deformation maps into elementary contributions. The Tube-

like sUrface Lagrangian Analysis Resource (TubULAR) provides an open-source implementation 

accessible either as a standalone toolkit or as an extension of the ImSAnE package used in the 

developmental biology community. We demonstrate our approach by analyzing shape change in 

the embryonic Drosophila midgut and beating zebrafish heart. The method naturally generalizes to 

in vitro and synthetic systems and provides ready access to the mechanical mechanisms relating 

genetic patterning to organ shape change.

INTRODUCTION

In the morphogenesis of thin tissues, the interplay between mechanical forces, cellular fates, 

and physiological function determines dynamic patterns of shape change. In epithelia [1], 

circulatory organs [2, 3], digestive organs [4, 5], respiratory organs [6–8], elastic shells [9, 

10], and whole organisms alike [11, 12], tube-like surfaces deform in 3D space, contracting 

and dilating in-plane while bending out-of-plane in a coupled fashion. Understanding the 

dynamic mechanisms of shape change requires not only capturing instantaneous motion 
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in 3D, but also following the material as it deforms [13, 14]. Furthermore, decomposing 

that motion into physically meaningful components enables insights linking cell behavior to 

organ shape [4, 15, 16].

Emerging computational approaches have enabled quantitative characterizations of 

morphogenesis that clarify the relationship between gene expression patterns, physical 

forces, and tissue geometry [14, 17–24]. In a particularly fruitful methodological advance, 

the community has applied ‘tissue cartography’ methods that map curved tissues to planar 

representations [25–28]. This has provided insight into a variety of systems including egg 

chambers [29], fly wings [30], eyes [31], ascidian vasculature [32], zebrafish endoderm [25], 

and mouse intestines [33]. While these methods are sufficient to track tissue motion within 

static geometries or in local patches, in toto measurements of tissue deformation in complex, 

dynamic geometries have remained a challenge.

We propose an automated method for registering dynamic surfaces with the topology of 

a cylinder – but with arbitrarily complex geometry – and classifying the signatures of 

tissue deformation underlying organ-scale shape change (Fig. 1). This provides a framework 

for automatically tracing the dynamics of complex shapes and facilitates cell tracking on 

contorting 3D surfaces (Fig. S1 and Supplementary Information Section I). This framework 

then decomposes tissue dilation, rotation, and shear, handling the computational subtleties 

that arise from surface curvature and bending. Further, performing 2D cell segmentation and 

projecting onto the deforming 3D surface resolves tissue shape changes into contributions 

from cell shape, cell rearrangement, and cell division.

By applying this approach to the embryonic gut of the fly Drosophila melanogaster [4, 

34–36] and the beating heart of the embryonic zebrafish Danio rerio [37–40], we extract the 

full deformation fields and relate signatures of in-plane and out-of-plane tissue deformation. 

Despite the complexity of tissue motion in these systems, we obtain simple geometric 

descriptions underlying shape change.

RESULTS

Contemporary microscopy methods such as confocal microscopy [41] or light-sheet 

microscopy [42–44] generate volumetric data, wherein each voxel carries a (potentially 

multi-channel) intensity measured at a specific location in the sample. At the same time, 

many biological processes harness quasi-2D, thin tissues or interfaces to sculpt complex 

3D forms. To probe the interplay between in-plane interactions and out-of-plane dynamics 

in such systems, we must extract the tissue surface, track motion within the surface as it 

deforms, and decompose the resulting motion into signatures of deformation (Fig. S2).

We package this functionality in the Tube-like sUrface Lagrangian Analysis Resource 

(TubULAR), publicly available on GitHub. The package includes (and uses) independent 

toolkits for surface visualization (TexturePatch), conformal mapping (RicciFlow), and 

discrete exterior calculus (DECLab). A typical workflow (1) extracts the tissue surface 

from 3D data – whether from confocal, light-sheet, or another 3D imaging technique, 

(2) generates a pullback representation for surface parameterization and visualization, (3) 
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analyzes tissue motion using discrete exterior calculus, and, if appropriate, (4) decomposes 

the dynamics into a mode-based description (see Fig. S3, Fig. S4, and Supplementary 

Information Section II). In addition to the standalone toolkit, we have incorporated the 

core functionality of TubULAR within the ImSAnE environment [26], extending ImSAnE’s 

capabilities to tackle complex, tube-like geometries and interpret their dynamics.

TubULAR’s parameterization approach offers several advantages over previous methods. In 

contrast to 3D tracking of individual cells, TubULAR supplies a material frame of reference 

through which to interpret motion and deformations for curved surfaces of interest (Fig. 1a–

e). TubULAR further extends previous cartographic approaches like ImSAnE to construct 

constrained in toto parameterizations of surfaces, following tissue patches as they move and 

deform over time (Fig. 1f–g and Supplementary Information Section III). While ImSAnE 

can generate high-quality cartographic projections at any given timepoint by dividing a 

surface into multiple coordinate patches, tissue motion within and between patches is 

unconstrained between time points, posing challenges for tracking and interpreting cell 

and tissue motion in dynamic geometries (Fig. S5). Moreover, while previous methods can 

construct an in toto parameterization for simple surface geometries, native ImSAnE methods 

failed to capture complex geometries and do not constrain tissue motion in the 2D pullback 

space (Fig. S6).

After validating our constrained method with a synthetic dataset (Fig. 1e and g, Fig. S7–

S11 and Supplementary Information Section IV), we then applied our method below using 

a dataset of the embryonic Drosophila midgut (Fig. 1a–d, Fig. 2, and Fig. 3) from ref. 

[4], as we discuss step-by-step below. During development, the midgut closes into a tube 

composed of a monolayer of endoderm surrounded by a thin net of muscle cells [36, 45–47]. 

Constrictions then form, subdividing the organ into chambers [4, 34]. This dataset featured 

midgut-specific expression of an mCherry-tagged plasma membrane marker (see Methods).

From volumetric data to dynamic textured surfaces

We first set out to extract curved surfaces of interest from 3D data. As shown in Fig. 1a, we 

use a level sets method [48] to obtain a simply-connected surface with a desired smoothness 

and generate a smooth mesh triangulation (see Fig. S12 and Supplementary Information 

Section V). The result is a dynamic set of surfaces tracing the tube-like surface over time. 

Users may alternately generate triangulated surfaces via other methods (such as Imaris, 

iLastik [49], or intensity-based segmentation), then use TubULAR for subsequent analysis.

Constrained parameterization for tracking surface dynamics

Understanding the ways in which shape dynamics couple to biological processes such as 

cell shape change, cell intercalations, cytoskeletal patterning, and gene expression requires 

the ability to identify and follow patches of tissue as they move and deform. On its own, 

the previous surface extraction step provides an instantaneous description of the surface 

geometry, but does not identify how the tissue moves and deforms from timepoint to 

timepoint. In the language of continuum mechanics, we must construct a Lagrangian 
description, wherein we follow material parcels along the surface as morphogenesis 

proceeds [50].
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As illustrated in Fig. 1b–d and Fig. 2, we build a parameterization scheme such that cells 

(or other objects) in the pullback representation move as little as possible. This enables us 

to follow a nearly static 2D representation, which we can then project into 3D to obtain the 

true motion. TubULAR first cartographically maps the surface at a reference timepoint to the 

plane – defining a material frame of reference (Fig. 1d). To do so, we cut small ‘endcaps’ 

at two poles (Fig. S13 and create a virtual seam along the long axis for ‘unrolling’ the mesh 

into the plane using a conformal map (see Fig. S14, Fig. S15, Fig. S16, and Supplementary 

Information Sections VI–VIII).

We then advance from this initial map at a single timepoint to follow the tissue motion 

over time, adjusting the mapping so that tissue is immobilized in the pullback image. 

The result is a dynamic map φ t  from the 3D surface to a 2D material frame of 

reference that parameterizes the whole organ surface over time (Fig. 2). We found that 

a four-step approach to constructing this map provides a balance between stringent 

motion minimization and stability across many timepoints: φ t = J ∘ Φ ∘ Z ∘ f, where f is 

a conformal map from the 3D surface to the plane, Z adjusts the longitudinal axis, Φ
minimizes motion along the circumferential axis, J  accounts for residual motion through 

optical correlation of consecutive pullback images, and ◦ denotes function composition 

(Extended Data Fig. 1 and Fig. S15). We are then able to follow extreme deformations of the 

tissue in 3D space simply by reading off the dynamic inverse map φ−1 t .

Fig. 2a–c shows this parameterization scheme applied to the Drosophila midgut, with 

tracked surfaces colored by the longitudinal (Fig. 2a) and circumferential (Fig. 2b) 

coordinates of the tissue as it deforms in space. The resulting parameterization can 

be conceptualized as tracking polygons arranged sequentially along a system-spanning 

centerline (Fig. 2c).

Fig. 2d–e shows that tracked cells in the corresponding pullback images move little despite 

large deformations, taming the analysis of whole-organ morphogenesis. Extended Data Fig. 

2 shows an overlay of the tissue in the material frame for timepoints spanning over 1 hour, 

highlighting the precision of pullback stabilization. Since the method rectifies tissue-scale 

velocity (at a user-defined spatial scale), but not necessarily individual cells’ motion, we 

observe cell intercalation events such as those shown in Fig. 2e. Separating out the effects 

of cell shape changes and cell intercalations has given insights into multiple mechanisms of 

morphogenesis in planar tissues [19, 51]. Here, this follows naturally from our approach. 

Extended Data Fig. 3 and Supplementary Information Section IX detail an example of this 

decomposition.

Interpreting motion on curved surfaces

The previous step provides ‘pathlines’ of material points in the tissue: since tissue patches 

remain stationary in the material coordinates, we can read off the 3D paths of these patches. 

Motion along these paths provides velocity vectors of the tissue defined over the surface and 

over time. In order to interpret these tissue flows, we now decompose the velocity fields 

into their underlying components. With 3D velocities in hand for each timepoint, we first 

separate the component that is normal to the tissue surface from tangential motion along the 
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surface (Fig. 3a–b), then measure the divergence, curl, Laplacian, and harmonic component 

[52] of tangential tissue velocities.

Dealing with velocity fields on curved surfaces requires certain computational care: parallel 

lines cross and diverge, and the orientation of a cell may change by simply traveling 

along ‘straight’ lines (geodesics). In TubULAR, our calculations therefore rest on an 

implementation of the discrete exterior calculus (DEC) formalism [52, 53]. Signals are 

represented as discrete differential forms on the surface. In this framework, basic differential 

operators can be combined together to form the divergence, curl, and Laplacian operators 

that are a part of TubULAR’s default workflow, as well as more complicated differential 

operators. These operators can be directly applied to geometric data (e.g. surface curvature), 

kinematic data (e.g. surface velocities), and beyond (e.g. surface data intensity, surface 

data anisotropy fields etc.) to understand the ways in which spatiotemporal variation in 

observable fields (such as gene expression or myosin anisotropy) generate 3D shape change.

To make these methods accessible to a broad audience, we provide the DECLab toolkit, 

a simple and flexible framework for discrete geometry processing. It is included with 

TubULAR and also functions as a standalone tool. No deep knowledge of differential 

geometry or exterior calculus is necessary to use our implementation (see Supplementary 

Information Section X, Fig. S17, and Fig. S18 for validation and details).

Fig. 3 displays examples of DEC calculations applied to the developing Drosophila midgut. 

Whole-organ measurements of the tangential velocity are represented in the 2D pullback 

coordinates for snapshots of a representative embryo in Fig. 3a, with normal velocities 

shown in Fig. 3b. Further processing via DEC of the in-plane velocity fields shows localized 

sinks in the flow ∇ ⋅ v∥ < 0  near constrictions, as shown in Fig. 3c. Extended Data Fig. 4 

shows that this analysis reveals nearly incompressible dynamics of the midgut tissue [4].

Lagrangian measures of time-integrated tissue strain

Endowing the evolving surface with a set of Lagrangian coordinates induces the construction 

of a material metric. The metric tensor, g(t), is a geometric object enabling the measurement 

of distances and angles between points on the surface. Unlike in flat geometries, here 

lengths and angles deform under the surface motion due to both gradients in the tangential 

velocity and also due to out-of-plane motion in curved regions of the tissue (see Methods 

and Supplementary Information Section XD). These changes are captured by the rate-of-
deformation tensor, dg(t)/dt, which we construct directly from the tissue velocity fields and 

surface curvatures. Integrating the rate-of-deformation tensor along pathlines provides a 

Lagrangian measurement of cumulative tissue strain: ε ̿ (t) = g(t) − g t0 /2.

As illustrated in Fig. 3d–f, the result is decomposed into both an isotropic area change and 

an anisotropic shear deformation. In the midgut, the small but persistent areal strain-rate 

pattern results in areal growth in the lobes of each chamber and modest decrease in tissue 

area near each constriction (Fig. 3e). The anisotropic shape-changing deformation indicative 

of convergent extension, in contrast, is strongest near constrictions (Fig. 3f).
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Field decomposition simplifies complex deformations

Frequently, seemingly complicated patterns of motion can be decomposed into a sum of 

contributions from simpler components. This strategy has been successfully adopted to 

interpret zebrafish gastrulation [54] and vertebrate limb generation [24], for instance. In 

addition to the surface velocity decomposition discussed earlier, TubULAR also constructs 

mode decompositions on the surface. These are applicable to scalar fields, vector fields, 

or more complex objects such as cell anisotropy tensors. This functionality comes in two 

forms. First, our DEC implementation compares the relative importance of long-wavelength 

modes (with smooth spatial variation) and short-wavelength modes (with rapid spatial 

variation) by decomposing signals onto a basis of the eigenfunctions of the discrete Laplace-

Beltrami operator [55]. Second, we include functions to decompose signals using principal 

component analysis (PCA) [56], as demonstrated in the next section. This extracts more 

general patterns of motion that contribute most strongly to the variance observed across time 

or across datasets.

Decomposing deformations of an embryonic heartbeat

Pumping circulatory organs such as the heart are ubiquitous across metazoans. To 

demonstrate the generality of our method to cyclic organ deformations, we analyzed a 

zebrafish heartbeat at a developmental timepoint roughly 28 hours post fertilization. In toto 
imaging of the heart relied on light-sheet illumination of an embryo expressing GFP in 

cardiomyocytes [40, 57]. Reconstruction of the 3D shape of the beating heart is shown for a 

set of illustrative timepoints in Fig. 4a [40]. Passing the volumetric data through TubULAR 

then returns covariant measures of in-plane and out-of-plane deformation (Supplementary 

Information Section XI).

Cyclic deformations of the heart result in both in-plane velocities v∥ (Extended Data Fig. 5) 

and out-of-plane motion vn that constricts or dilates the tube (Fig. 4b). Both the surface area 

and the enclosed volume of the heart oscillate as it beats, shown in Fig. 4c. Fig. 4d highlights 

the waveform of the beat by plotting a kymograph of the radius as a function of time 

and position along the long axis of the tube. Given that the developing heart is reasonably 

symmetric along its circumference at this early stage, we average along the circumferential 

axis of the tube in this measurement (see Supplementary Information Section VIII).

Unlike in midgut morphogenesis, the beating heart’s in-plane velocities are not proportional 

to the out-of-plane deformation so as to produce incompressible motion (Fig. 4e–g). While 

both the in-plane divergence and out-of-plane motion display directional waves in their 

kymographs, the two fields are not in phase. As shown in Fig. 4g, we measure a phase offset 

between the two fields of 0.3T , where T  is the period of the heartbeat. In other words, as 

the tube constricts, the tangential velocities are compressive and the in-plane dilation lags 

behind the wave of constriction. These features contrast sharply with the constrictions of 

the fly midgut during embryonic stages 15–16, in which a 97% correlation between the two 

fields results in only small (but persistent) areal growth in the lobes and areal contraction 

near the constrictions (Fig. 3e, Extended Data Fig. 4, and [4]). This analysis offers a route 

for quantitatively testing mechanical models of the beating heart.
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Finally, we decomposed the complex cyclic beating of the heart into simpler constituent 

motions. To do so, we performed principal component analysis (PCA) on the set of 3D 

tissue velocities across the surface over time. This determines the motions in the material 

coordinates that explain the majority of the variance in the data over time. The most 

prominent modes are displayed in Fig. 5a–b.

TubULAR further decomposes these modes to probe the signatures of motion. After 

separating the out-of-plane motion from in-plane motion along the surface, the tangential 

component of the velocity field decomposes into three physically distinct classes of motion: 

dilational, rotational, and harmonic. The dilational (or “curl-free”) velocity encodes the 

extent to which material patches are induced to expand or contract due to in-plane motion. 

The rotational (or “divergence-free”) velocity reflects swirling, vortex-like motion in which 

the velocity tends to circulate around a point. Finally, the harmonic component reflects 

surface motion that is neither contributing to in-plane expansion or contraction nor to vortex-

like patterns. For tubular geometries, examples of harmonic velocities include uniform flows 

along or around the tube. Fig. 5a–b shows the application of this decomposition to the heart.

We find that two modes dominate the dynamics, offering insight into the kinematics driving 

unidirectional pumping. As shown in Fig. 5c–d, the system oscillates between the first 

two modes, sweeping out a roughly circular trajectory subtending a nonzero area. This 

phased oscillation indicates a simple description underlies unidirectional pumping of the 

heart. Computing the contribution of each mode to the total motion validates this 2D state 

representation: the first two modes capture nearly 90% of the deformation (Fig. 5e and Fig. 

S19).

DISCUSSION

We developed a computational framework for unravelling the complex, dynamic shapes of 

tube-like surfaces into their principal signatures of deformation. This framework computes 

Lagrangian measures of strain and strain-rate, decomposing dilatational and rotational 

signatures and mapping them onto the a reference material configuration. This enables 

ready interpretation of how cell behaviors collectively generate shape change. We provide 

an open-source MATLAB implementation, and we also packaged the core elements of this 

toolkit into the existing ImSAnE environment [26].

Our approach has important limitations. First, our implementation follows tubes with a 

single opening on each end. This means that the TubULAR functionality does not naturally 

handle tissue surfaces that dynamically branch, split, merge, or intersect. Extending to 

higher-order networks of tubes [58, 59] and shapes which fuse or separate [60] poses future 

challenges. Our method is furthermore designed for 3D datasets with sufficient resolution 

in space and time to track features in the pullback plane during the stabilization of the 

material parameterization across timepoints. While TubULAR was built to handle surfaces 

with exaggerated and dynamic geometries, extreme geometries may still pose inherent 

difficulties during analysis. Surfaces with wild variation in their radius along the centerline, 

for instance, may exhibit more distortion in the 2D pullback space. This distortion can make 

tangential velocity extraction more challenging, especially in scenarios where the data has 
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only coarse temporal resolution. Finally, large changes of the coiling or twisting of the 

tissue from timepoint to timepoint require tuning parameters for capturing a topologically 

consistent virtual seam. Supplementary Information Section XII provides further details on 

TubULAR’s limitations.

Using our approach, we characterized the tissue dynamics and strains during midgut 

morphogenesis. We then analyzed the cyclic deformations of the beating zebrafish heart – 

highlighting a phased relationship between in-plane motion and out-of-plane deformation 

– and captured the heart’s directional pumping motion with a two-dimensional mode 

decomposition. An efficient method for tracing surface dynamics in the Lagrangian frame of 

reference offers new opportunities for understanding not only the morphogenesis of organs, 

but also organoids, in vitro systems, and sub-cellular structures [60–62]. As multi-scale 

datasets emerge, we foresee constrained parameterization methods as useful building blocks 

for tracking the dynamics of hierarchical processes.

METHODS

Microscopy data

The midgut dataset from [4] was generated by crossing female w;48YGAL4;klar flies 

(obtained from crossing Bloomington #4935 [63] with a klar line from Eric Wieschaus) with 

male w;UAS-mCherry.CAAX.S flies (Bloomington #59021 [64]). The klarsicht mutation in 

the mother reduced light scattering in the embryo, enhancing image clarity deep within the 

embryo at the gut surface [65].

We analyzed a zebrafish heart dataset from [40] taken on a light-sheet microscope described 

in [21]. The transgenic Tg(cmlc2:eGFP) zebrafish embryo expressed GFP in cardiomyocytes 

[57]. Reconstruction of the volumetric snapshots at multiple intervals throughout the 

heartbeat cycle relied on an approach which combines 2D frames acquired across multiple 

heartbeat cycles [40].

The synthetic dataset shown in Fig. 1e and g was created by specifying a centerline that coils 

with an amplitude varying as a function of both time and position along the curve. After 

defining a radius at each point along the centerline, we then decorated the resulting surface 

with artificial nuclei and membranes (Supplementary Information Section IV).

No statistical method was used to predetermine sample size. No data were excluded from the 

analyses. The experiments were not randomized, and the investigators were not blinded to 

allocation during experiments and outcome assessment.

Generating stabilized surfaces

The TubULAR workflow begins by first extracting tissue surfaces for each timepoint. We 

used a level sets approach for surface segmentation [66, 67], combined with marching 

cubes to generate a mesh of the surface [68] and Laplacian smoothing (see Supplementary 

Information Section V).
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For the Drosophila midgut, we first captured the surface of the endoderm as a topological 

sphere. After an iLastik pass to identify yolk in the interior of the midgut tissue, a level 

sets minimization captured the apical surface of the endoderm by minimizing a Chan-Vese 

functional defined on the output of the iLastik training. The result from each timepoint 

served as an initial condition for the level sets optimization of the subsequent timepoint. 

With surfaces of the apical side of the endoderm in hand, we pushed each surface 2.5μm 

outward to vizualize and segment cells.

For the zebrafish heart dataset, we used level set methods to segment only the heart tissue, 

rather than the space enclosed. This resulted in a binary level set solution of toroidal 

topology. We then skeletonized each annular cross section along the length of the tube to 

produce a point cloud approximating the mid-surface of the tissue. We fed a smoothed, 

up-sampled version of this point cloud into the Poisson surface reconstruction algorithm 

included in TubULAR to produce a closed, spherelike mesh of the heart.

The next step in the TubULAR workflow is to remove two endcaps of the closed surfaces. 

This yields surfaces with cylindrical topology. By default, this step is performed by the 

user in an interactive point-and-click method using a graphical user interface supplied as a 

TubULAR routine. For the midgut, we instead classified regions in 3D space as endcaps 

using the semi-automatic iLastik option from TubULAR (Supplementary Information 

Section VI). TubULAR extracts the centroid of these regions and point-matches each to 

the mesh to identify endcap vertices. Mesh vertices within a designated distance from these 

points are removed from the mesh to yield a processed surface with cylindrical topology.

We note that the endcaps for the zebrafish heart were defined in a non-standard way relative 

to the default TubULAR workflow. First, the cylindrical point cloud extracted by thinning 

the segmented heart tissue was snapped onto the closed, spherical mesh. We then calculated 

the geodesic distance along the surface between each vertex on the mesh and the snapped 

locations of the “true” surface points. This distance was low for vertices along the length 

of the tube (since they were always close to at least one snapped point), but high for 

future endcap vertices. The endcap points were defined to be the two vertices on either end 

of the tube with the maximal geodesic distances from the snapped points. After defining 

endcaps, we define a virtual seam connecting one endcap to another in order to prepare for 

unwrapping the surface into the plane.

Our method for mapping the 3D tissue surface into the 2D plane begins with an initial map 

at a reference timepoint that defines the material coordinates. We then ensure that these 

material coordinates are consistently assigned to the time-evolving surface in accordance 

with the tissue flow by a applying a sequence of maps that constrain tissue motion in 

the pullback plane. The composite dynamic map from the evolving surface to a fixed 

2D material coordinate system – which we denote φ(t) − is built via a sequence of four 

steps: φ(t) ≡ J ∘ Φ ∘ Z ∘ f (Extended Data Fig. 1 and Supplementary Information Section 

VII). f:S(x) (u, v) is a conformal map of the surface S to the unit square via Ricci flow 

(slow, but more precise) or Dirichlet energy minimization (see Supplementary Information 

Section VIIa). Note that the mapping to the plane is independent of the choice of virtual 

seam (Supplementary Information Section VIIa3). Intuitively, the surface is periodic along 
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the circumferential direction, and so our parameterization is tiled along the ϕ axis. Z:u s
maps each longitudinal coordinate u(t) to proper length s(u(t))  along the longitudinal axis (u
axis) of the tube-like surface:

s(u) =
0

u ds u′, v
du′ v

du′,

(1)

where the average is taken over the circumferential hoop defined by u′ = constant. This step 

adjusts circumferential hoops sampled at equally spaced distances (as measured by their 

average proper distance along the longitudinal axis) to be equally spaced in pullback space. 

Φ:v ϕ then stabilizes motion of the tissue along the circumferential axis:

ϕ u, v = v − ϕ0 u .

(2)

For the reference timepoint t0, ϕ0(u) = 0 and (s, ϕ) = (s, v) defines the material coordinate 

frame. For other timepoints, ϕ0(u) is chosen to minimize the difference in positions of 

material points at the current timepoint relative to the previous (next) timepoint for 

t > t0 t < t0 . For the datasets presented here, we used the option for computing ϕ0(u) that 

numerically minimizes the sum of squared Euclidean distances of uniformly-sampled points 

along this circumferential hoop from the mapped 3D locations at a previously-solved 

timepoint closer to t0. Finally, J :(s, ϕ) s0, ϕ0  removes any residual motion of the material 

in the pullback plane relative to the material coordinate frame by subtracting optical flow 

(obtained via particle image velocimetry [69]).

Computing tissue motions and strain

We extract tissue velocities on the surface by mapping the endpoints of 2D PIV vectors 

obtained in the computation of J onto their respective mesh positions in 3D. Displacement 

vectors v extend from x1 on the surface at time t1 to x2 on the deformed surface at time 

t2. When t1 and t2 are adjacent timepoints, this defines the 3D tissue velocity at t1 as 

v = x2 − x1 / t2 − t1  (Fig. 1b).

Taking the dot product of the velocity vectors with the surface normal n̂ returned the signed 

normal velocity vn and the tangential velocity v∥ = v − vnn̂. We computed the divergence of 

the tangential velocity using our discrete exterior calculus toolkit DECLab included with 

TubULAR. In the language of discrete exterior calculus, the divergence of the tangential 

vector field v∥ is

∇ ⋅ v∥ ⋆ d ⋆ (v∥
b),

(3)

where the exterior derivative d and Hodge star operator ⋆ are defined for each mesh surface 

upon instantiation of a DiscreteExteriorCalculus class instance [52]. The musical 
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isomorphism b transforms the vector field into a 1-form [52]. Validation of the discrete 

exterior calculus toolkit is shown in Supplementary Information Section X.

We computed integrated tissue deformations relative to a reference configuration at the onset 

of constrictions. To do so, we define a metric tensor g(t), which is an object measuring 

distances and angles between nearby points on the surface:

gij = ∂x
∂ui ⋅ ∂x

∂uj ,

(4)

where x = x1, x2, x3 = (x, y, z) are the coordinates of a tissue parcel on the surface in 3D 

space, u = u1, u2 = (u, v) are the coordinates of that same parcel in the 2D material space, 

and i and j are indices ∈ 1, 2  [70].

The rate-of-deformation tensor is the time derivative of this metric and describes how 

lengths and angles change locally as the surface deforms in time:

dgij(t)
dt = ∇iv ∥ j + ∇jv ∥ i − 2vnbij,

(5)

where v ∥ i, i ∈ 1, 2 , and vn denote the tangential (in-plane) and normal (out-of-plane) 

components, respectively, of the tissue velocity, ∇i denotes the covariant derivative with 

respect to the ith tangential coordinate, and bij denote the components of the second 

fundamental form [71]. In the absence of cell proliferation, the relationship between local 

tissue area rate of change, in-plane divergence, and out-of-plane motion in Fig. 4 and 

Extended Data Fig. 4 is

1
2Tr[g−1ġ] = ∇ ⋅ v∥ − 2Hvn,

(6)

where ∇ ⋅ v∥ is the in-plane covariant divergence of the in-plane tissue velocities v∥, 

H = Tr[g−1b]/2 is the mean curvature of the surface, and Tr[g−1ġ]/2 is the rate of local 

area change.

We integrated the rate-of-deformation tensor along pathlines to construct a Lagrangian 

measurement of cumulative tissue strain in Fig. 3:

ε t = 1
2 τ = 0

τ = t
dτ dg τ

dτ = 1
2 g t − g t0 .

(7)
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In the language of geometric elasticity, this is equivalent to the Green-St. Venant strain 

tensor [72], defined relative to a reference configuration at time t = 0. We decomposed the 

strain tensor into a dilatational (isotropic) component

1
2Tr[g−1 t0 ε t ]g t0 ,

(8)

and the deviatoric component

Dev[ε(t)] = ε(t) − Tr[g−1 t0 ε(t)]g t0 /2 .

(9)

Decomposition of motions

We decomposed the motion of the heart by separating the normal (out-of-plane) component 

of the velocity and performing a Helmholtz-Hodge decomposition on the tangential 

component. The Helmholtz-Hodge decomposition breaks up that vector field into dilational, 

rotational, and harmonic components using DECLab’s helmholtzHodgeDecomposition 

(Supplementary Information Section Xc).

We also performed principal component analysis (PCA) on the full 3D velocity field on the 

surface using TubULAR’s computePCAoverTime. Explicitly, we consider the full surface 

velocity field on the mesh triangulation at a time t to be a single vector in a 3F-dimensional 

space where F  is the number of triangle faces in the mesh and the factor of 3 accounts 

for the (x, y, z)-components of the 3D velocity vector on each face. PCA analysis provides 

information about the variation of this full surface velocity field over time.

To compare the contribution of different modes, we computed the time-averaged ratio of the 

squared length of the projection of the velocity along each mode normalized by the total 

squared length of each velocity vector in state space:

1
N ∑

t = 1

N (vt ⋅ pk)2

vt
2 ,

(10)

where vt is full 3D surface velocity at time t (treated as a vector of dimension 3F), p̂k is the 

unit vector kth PCA mode direction, and N is the total number of timepoints.

Tutorials and documentation for using TubULAR are provided at https://

npmitchell.github.io/tubular/ and validation of the method is provided in Supplementary 

Information Sections IV and X.
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Extended Data

FIG. Extended Data Fig. 1. Global parameterization of tube-like surfaces with material 
coordinates proceeds by a sequence of mapping steps.
The 3D surface is first mapped via f to the plane, either through Ricci flow (which is 

slower but results in a more exactly conformal map) or through minimization of a Dirichlet 

energy (faster but less precisely conformal, see Supplementary Information Section VIIa). 

In either case, the material is periodic in the v dimension and finite in extent along the 

longitudinal direction u. The resulting coordinate system is then adjusted. First we apply 

Z:u s, where s is a distance along the longitude of the tissue defined by Eq. (1), which 

we find aids in parameterization for tubes with varying radii (Supplementary Information 

Section VIIb). If the timepoint under question is the reference timepoint t0, this defines 

the material coordinates. Otherwise, if t > t0, we then apply Φ:v ϕ, where ϕ is given by 

Eq. (2), and then apply J to stabilize the resulting coordinates based on material motion 

measured through particle image velocimetry (phase correlation analysis) relative to the 

previous timepoint.
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FIG. Extended Data Fig. 2. Overlaid pullback images spanning morphogenesis demonstrate the 
stability of the pullback parameterization against 3D motion of the tissue.
Using planar maps of the folding Drosophila midgut, we perform refined Lagrangian 

parameterization of the surface. The resulting timepoints at 0 minutes, 35 minutes, and 

70 minutes after constriction onset are overlaid in cyan, magenta, and yellow, respectively. 

Much of the tissue appears as black and white, indicating that tissue placement in the 

pullback frame is stationary.
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FIG. Extended Data Fig. 3. TubULAR aids in measuring the contribution of cell intercalations to 
tissue-scale convergent extension.
a, In the absence of cell divisions, in-plane tissue-scale convergent extension occurs due 

to the changing shape of cells as well as the occurrence of oriented cell intercalations 

(‘T1 events’). b, During constrictions in the fly midgut, no cell divisions take place, but 

cells change shape and also intercalate in the endodermal layer. Scale bars are 10 μm. c, 

We can then compare the cumulative effect of each contribution (blue and yellow) to the 

total tissue-scale convergent extension (orange, constricting along ϕ and extending along s). 

In the midgut endoderm, we directly measure tissue shear from the deviatoric component 

of the integrated strain computed from Lagrangian pathlines in 3D. This shear strain is 

almost entirely oriented along the longitudinal axis u. In order to compare directly this 

quantity to the cell shape change, we imprint the segmentation of 1260 cells at t = 0 on 

the tissue surface, follow the outlines of these cells along 3D tissue pathlines obtained 

from full stabilization J ∘ Φ ∘ Z ∘ f with small Gaussian smoothing applied to the optical 

flow stabilization J to avoid self-intersections in pathlines, and compute the cell shape 

anisotropy (1 − a/b) cos 2θ in the tangent plane of the tissue for each cell. Here, a and 

b are the semimajor and semiminor axes of the ellipse capturing each cell’s moment of 

inertia tensor, and θ is the cell’s angle with respect to the material frame’s longitudinal 

axis. We excluded advected polygons that acquire partial self-intersections from advection, 

so that we excluded 3, 5, and 8 out of a total 1260 advected cell shapes at the latest 

timepoints 63, 73, and 83 minutes after constriction onset, respectively. We compared 

these advected segmentation shapes with the true segmentation. After passing pullback 

images through a skeletonization procedure detailed in ref. [4], we manually selected 

n = 961, 925, 1028, 1262, 883, 833, 912, 1184, 659, 783, 663, and 964 cells for accuracy 

with broad organ coverage at each timepoint. Blue and yellow curves represent the net 

contribution of cell shape change and the net contribution of intercalations averaged 

across the organ, and the red curve represents the mean tissue shape change. Error bars 
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denote standard error on the mean. Further technical details are found in TubULAR’s 

generateCellSegmentationPathlines3D method.

FIG. Extended Data Fig. 4. TubULAR measures the kinematic coupling between in-plane and 
out-of-plane motion, computing the rate of local area change across the organ, shown here for 
the developing midgut.
a, The underlying out-of-plane deformation, defined as the normal motion vn times twice the 

mean curvature H, shows negative values at each constriction, where the mean curvature 

becomes negative. b, DEC computation of the divergence of the in-plane velocity ∇ ⋅ v∥

shows patterns of sinks in the constrictions and sources in the chambers’ lobes, in synchrony 

with the out-of-plane deformation. c, As a result of the match between in-plane and out-of-
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plane dynamics, the areal growth rate – defined as Tr[g−1ġ]/2 – remains relatively quiescent. 

Here g is the metric (first fundamental form) of the tissue surface. d, Regions of tissue 

which experience positive divergence (the lobes of each gut chamber) tend to experience 

modest areal growth, while regions with negative tissue divergence experience slight areal 

compression. This is the relatively quiescent signature of the tissue’s compressibility. 

Here, data is averaged across three biological repeats, with shaded band denoting standard 

deviation and tick marks denoting standard error on the mean. e, An example kymograph 

from a single embryo’s developing midgut showing the small but persistent areal strain rate. 

The tissue expands in the lobes of each chamber (red in the kymograph) and contracts near 

each constriction (dashed lines and red arrows). The kymograph is aligned such that each 

vertical line follows a ring of tissue as it deforms in 3D. In other words, measurements are 

made in the Lagrangian frame of reference. The anterior-posterior position (horizontal axis) 

is parameterized in the material frame at the onset of the first constriction.

FIG. Extended Data Fig. 5. TubULAR reveals the tangential deformations of a beating 
embryonic zebrafish heart.
a, A rendering of cardiomyocyte fluorescence via TexturePatch shows cyclic 

deformations with a beat period, T . See also Fig. 4a. b, TubULAR maps the tangential 

component of the 3D velocity field onto the pullback plane. Color denotes the tangential 

velocity direction along the long axis (purple or orange) or along the circumferential axis 

(green or red). The opacity of the rendered image reflects the magnitude of the tangential 

velocity, as do the length of overlaid black arrows.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. TubULAR is a toolkit for tracking dynamic surfaces such as visceral organs.
a, TubULAR first extracts dynamic surfaces of interest from volumetric datasets, here shown 

for the Drosophila midgut. b, Constrained parameterization of the whole surface facilitates 

tracking tissue motion. Mapping the surface at a reference timepoint to the plane defines a 

material coordinate system, s0, ϕ0 . Pullback images of subsequent timepoints are optimized 

to be nearly stationary in the parameterization space. 3D tissue velocities (white arrow) 

are obtained by linking the 3D positions of each material coordinate across timepoints. 

c, Velocities decompose into in-plane and out-of-plane tissue motions, here shown by a 
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2D pullback representation of the tangential tissue velocity v∥ (colored quiverplot) and 

the normal velocity, vn (red for inward velocity, blue for outward). d, We integrate tissue 

deformations over time in the tissue’s material frame of reference. Here, the gut is colored 

by the location of each tissue parcel in its intrinsic material coordinate system s0, ϕ0 . 

Patches retain their original color as they move, stretch, and bend. e, Tracking individual 

cells typically involves laborious manual input and does not readily return tissue-scale 

deformation patterns. Cell identities are colored from an in silico dataset of cells on a coiling 

tube. f, Cartographic projections using previously-published methods fail for complex and 

dynamic shapes such as the folding midgut. (Left) Parameterization errors appear when 

using ImSAnE’s cylinderMeshWrapper on complex surfaces. (Right) Motion of cells in 

the pullback plane is large for adjacent timepoints. g, For the same in silico dataset as in (e), 

TubULAR maps the tissue to a series of images which change little over time. By tracking 

the motion in 2D, we read out tissue deformation across the full tube in 3D, here shown 

using the accumulated dilatational strain.
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FIG. 2. Coordinate parameterization follows 3D deformations of the evolving surface, enabling 
quantification of cell and tissue-scale dynamics, shown here for the fly midgut as it folds into 
compartments.
a-b, Dynamic maps to a fixed material frame captures the midgut’s longitudinal (a) 

and circumferential (b) coordinates as the surface deforms into a convoluted shape. c, 

Computational sectioning of the parameterized surface shows circumferential disks of 

the organ sampled evenly along its length. This construction provides a natural, system-

spanning centerline and a measure of sample width along the surface. d, Despite large 

tissue movement in 3D, tissue motion is restricted in the pullback images, as highlighted 

by the same patch of cells 1 hour apart. e, While tissue-scale motion is minimized in the 

pullback images, individual cells may move and exchange neighbors, enabling cell tracking. 

Measuring the difference between tissue strain-rate and intercalation rate gives insights into 

the morphogenetic process (see Extended Data Fig. 3).

Mitchell and Cislo Page 23

Nat Methods. Author manuscript; available in PMC 2024 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. Dynamic maps to the material frame yield covariant measures of tissue velocity and 
deformation in 3D.
Tissue velocities are decomposed into in-plane (tangential) and out-of-plane (normal) 

components. a, 2D pullback representation of in-plane tissue motion shows a line defect 

near the middle constriction, then defects at the anterior and posterior constrictions, followed 

by increasingly complex in-plane flows. Color denotes the orientation of flow relative to the 

longitudinal axis ŝ, and the opacity and arrow lengths reflect speed of the tissue motion. 

b, The underlying out-of-plane velocity vn is positive (inwards) near constrictions. c, DEC 

computation of the divergence of the in-plane velocity ∇ ⋅ v∥ shows patterns of sinks in 

the constrictions and sources in the chambers’ lobes, in synchrony with the out-of-plane 

deformation. d-f Following material pathlines in 3D through time returns measures of 

integrated strain. These decompose into dilatational (area-changing) and deviatoric (shape-

changing) components. e, The dilatational strain shows areal growth in the chambers but 

less area change near constrictions for a midgut 90 minutes after the onset of the first 

constriction. f, The deviatoric strain shows strong tissue shear near each constriction at the 

same timepoint.
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FIG. 4. Tracing the in-plane and out-of-plane dynamics of a beating heart reveals the phased 
coupling between dilatational and transverse deformations.
a, Segmentation of a beating zebrafish heart shows cyclic deformations in 3D, shown at 

three timepoints within a beat period, T . b, Decomposing in-plane and out-of-plane tissue 

motion demonstrates how pulsed deformation travels along the long axis of the tube. The 

normal velocity vn is represented by a color specifying both its magnitude and the direction, 

where inward motion corresponds to vn > 0. c, Both the total enclosed volume and the 

surface area oscillate over time. d, A kymograph of the radius of the tube measured along 

the long axis shows cyclic beating. We average the radius around the circumferential axis 

for each axial position u. e, During each cycle, tissue undergoes both out-of-plane motion 

and in-plane deformation. These two are coupled, such that the rate of area change depends 

on both the normal motion and the divergence of the in-plane velocity. f, Kymographs of 

in-plane and out-of-plane motion averaged along the circumferential axis highlights waves 

of contraction. During each cycle, the in-plane and out-of-plane deformations are nearly 

out of phase, so that the rate of local tissue area change is large. g, Cross correlation 

between in-plane tissue dilatation and out-of-plane deformation (constriction of the heart 

tube) indicates an offset phase relationship. The curve shown is a fit to the data by an offset 

sinusoidal wave, with a peak fit to Δ = 0.298 ± 0.003 T .
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FIG. 5. Decomposition of tissue motion in the beating heart reveals two principal components 
with nonreciprocal dynamics.
a-b, Visualization of the principal components of Lagrangian tissue velocities. The leftmost 

image in each panel shows the deformation induced by moving along the associated 

component axis, colored by the alignment of the component axis with the surface normal 

direction. Subsequent images illustrate each mode’s normal motion and a Helmholtz-Hodge 

decomposition of the tangential motion. Color in the normal part represents the norm of the 

normal component. Color in the dilatational, rotational, and harmonic parts are given by the 

scalar potential, vector potential, and norm of the harmonic motion, respectively. c, PCA on 

the time course of deformations returns two dominant modes of deformation. d, The two 

dominant modes have a phase relationship of nearly π/2, such that the system winds in state 

space along a nearly planar, circular pattern. e, A comparison of the relative contribution of 

the first 24 modes shows the time-averaged ratio of the squared length of the projection of 

the velocity along each mode, normalized by the total squared length of each velocity vector 

in state space.
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